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Abstract

We report results of experiments using BART
(Lewis et al., 2019) and the Penn Discourse
Tree Bank (Webber et al., 2019) (PDTB) to
generate texts with correctly realized discourse
relations. We address a question left open by
previous research (Yung et al., 2021; Ko and
Li, 2020) concerning whether conditioning the
model on the intended discourse relation—
which corresponds to adding explicit discourse
relation information into the input to the
model—improves its performance. Our re-
sults suggest that including discourse relation
information in the input of the model signif-
icantly improves the consistency with which
it produces a correctly realized discourse re-
lation in the output. We compare our mod-
els’ performance to known results concern-
ing the discourse structures found in written
text and their possible explanations in terms
of discourse interpretation strategies hypothe-
sized in the psycholinguistics literature. Our
findings suggest that natural language genera-
tion models based on current pre-trained Trans-
formers will benefit from infusion with dis-
course level information if they aim to con-
struct discourses with the intended relations.

1 Introduction

Traditional approaches to discourse have shown
the essential importance of discourse (rhetorical)
relations in providing coherence to a text (Mann
and Thompson, 1987; Lascarides and Asher, 2008;
Kehler and Kehler, 2002). While current ap-
proaches to natural language generation (NLG)
employing pre-trained models have been shown to
excel in generating well-formed texts (Kale and
Rastogi, 2020, i.a.), their ability to produce co-
herent texts structured with the help of discourse
connectives is understudied (Maskharashvili et al.,
2021). The impetus for the present study is the
growing body of evidence that neural models,
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whether trained fresh (Stevens-Guille et al., 2020)
or pre-trained (Maskharashvili et al., 2021), ben-
efit from input which includes specific reference
to the discourse structure intended to hold in the
output text (Balakrishnan et al., 2019). This line
of work is novel in the context of current NLG
practice, which frequently omits cues to discourse
structure in the input. The previous work is pur-
posefully restricted to producing relatively homo-
geneous texts (museum descriptions and weather
predictions). Given the findings of this work on
generating limited sets of discourse relations and
connectives, it is informative to study the per-
formance of neural models in generating texts
structured with the help of a richer set of dis-
course relations realized by a wide variety of dis-
course connectives. We study whether having dis-
course relation information in the input helps neu-
ral models to realize the intended discourse rela-
tion. These conditions more closely approximate
the context in which robust NLG systems would
be deployed. We expect our results to provide in-
sight into whether and how to include discourse
structure cues in fully-fledged NLG systems.

We report the results of our experiments using
BART (Lewis et al., 2019) and the Penn Discourse
Tree Bank (Webber et al., 2019) (PDTB) to gen-
erate texts with correctly realized discourse rela-
tions. We address a question left open by previ-
ous research (Yung et al., 2021; Ko and Li, 2020)
concerning whether conditioning the model on the
intended discourse relation—which corresponds
to adding explicit discourse relation information
into the input to the model—improves its perfor-
mance. While we recognize that a positive an-
swer to this question might seem obvious, it has,
to date, not been supported with quantitative evi-
dence. We compare our models’ performance to
baselines in which i) connective choice is deter-
mined by the most frequent connective which real-
izes the intended relation in the corpus, (ii) connec-
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tive choice is determine by the most frequent con-
nective in the corpus irrespective of the intended
relation to be expressed, (iii) connective choice is
determined by off-the-shelf BART-large mask sub-
stitution, and (iv) connective choice is determined
by off-the-shelf BERT (Devlin et al., 2019) mask
substitution. We propose two types of models by
fine-tuning BART on PDTB: models that have dis-
course relation information in the input (D+ mod-
els) and models that do not (D- models). We find
that our fine-tuned D+ models substantially out-
perform fine-tuned D- models, while both kinds
of fine-tuned models dramatically beat the base-
lines. In addition, fine-tuned D+ models produce
systematically fewer errors than corresponding D-
ones when tested against psycholinguistic observa-
tions that certain discourse relations tend to be re-
alized implicitly, while others usually are realized
by explicit (overt) discourse connectives. It is im-
portant to also point out that our fine-tuned mod-
els, unlike previous work and some of our base-
lines, are not given the position into which the con-
nective should be inserted. This more closely ap-
proximates the intended usage of end-to-end neu-
ral models, where there is no module in which con-
nectives are slotted into predetermined positions
in the output string. We find the models’ choices
for connective positions to be qualitatively good
and focus in the sequel on the connective choices
themselves.1

2 Background

BART, a transformer-based (Vaswani et al., 2017)
language model, is trained on purposefully cor-
rupted data so that the model learns to ‘denoise’
the corrupted input in the process of reconstructing
the original data. Fine-tuning BART on different
versions of input and output lets us probe whether
the underlying language model needs or benefits
from explicit cues to consistently reconstruct the
intended discourse connective. The PDTB is one
of the few corpora developed to identify discourse
dependencies in texts. PDTB provides a well-
developed ontology of discourse relations; these
discourse relations are used to annotate the Wall
Street Journal (WSJ) corpus of the Penn Treebank.

1In the appendix we provide examples of initial and fi-
nal connectives which complement the medial connectives
used throughout the rest of the paper. We note, however, that
our BART-base models prefer producing appropriately posi-
tioned initial or medial connectives rather than final connec-
tives.

We construct versions of the corpus differing in
(i) whether the order of the arguments in the out-
put is explicitly encoded in the input, (ii) whether
the output is the connective or the connective em-
bedded in the corresponding WSJ text, and (iii)
whether a discourse relation is included in the in-
put and how specific it is. The third difference is
conceptually the most important one since it cor-
responds to whether the model is conditioned on
discourse relation information.

To determine how well the models realize dis-
course relations, in addition to standard metrics
(i.e., recall and precision), we employ more re-
cent metrics inspired by psycholinguistic (Murray,
1997; Sanders, 2005; Yung et al., 2021) and cor-
pus studies (Asr and Demberg, 2012, 2013; Jin
and de Marneffe, 2015a) which allow us to find out
the degree to which the models’ preferences for re-
alizing different discourse relations correspond to
reported human preferences for realizing those re-
lations. In particular, it is argued that while some
discourse relations are mostly expressed explicitly,
by means of a discourse connective (i.e., overt lexi-
cal item or items), other discourse relations tend to
be expressed implicitly, i.e., without explicit lexi-
cal markers. One of the questions we want to an-
swer is whether providing a discourse relation in
the input helps models to learn when to realize a
discourse relation explicitly and/or implicitly.

Asr and Demberg (2012, 2013) argue that the
PDTB provides ample evidence for psycholinguis-
tic patterns of behaviour. In lieu of directly run-
ning human judgement experiments on our model
outputs, we test our models’ consistency with psy-
cholinguistic results indirectly: we compare the
distributions in model outputs to those distribu-
tions in the corpus which have been argued to sup-
port psycholinguistic theories. We focus on the
following two hypotheses:
The Continuity Hypothesis: ‘Readers have a bias to-
wards interpreting sentences in a narrative as following
one another in a continuous manner . . . additive addi-
tive and causal connectives should lead to less process-
ing facilitation than adversative connectives because
the former indicate continuity in the discourse whereas
the adversatives indicate discontinuity.’ — Murray
(1997, p.228-229)
The Causality-by-default Hypothesis: ‘Because readers
aim at building the most informative representation, they
start out assuming the relation between two consec-
utive sentences is a causal relation . . . Subsequently,
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causally related information will be processed faster, be-
cause the reader will only arrive at an additive relation
if no causal relation can be established.’ — Sanders
(2005)

Asr and Demberg (2012) report that in the
PDTB, relations that they consider discontinuous
and continuous in the sense of Murray (1997) are
more likely to be realized explicitly and implicitly,
respectively, which is consistent with the continu-
ity hypothesis. Furthermore, they find the propor-
tion of implicit to explicit connectives is highest
for causal senses. They conclude this provides sup-
port for the hypothesis of causality-by-default.

Asr and Demberg (2013) propose a metric for
deriving ‘markedness’—how much information
about the intended discourse relation is conveyed
by a connective or set of connectives—from the
PDTB. However, no prior work on the PDTB con-
ditioned models on the discourse relation intended
to be communicated. To our knowledge, the fol-
lowing questions, which we report on here, are
yet to explored in NLG: (i) whether conditioning
on discourse relations improves the prediction of
intended discourse connectives; (ii) whether or-
dering information concerning the arguments to
be expressed should be encoded explicitly; and
(iii) whether neural models can learn distributions
consistent with psycholinguistic results (Sanders,
2005; Murray, 1997) known to be reflected in the
training set (Asr and Demberg, 2012).

3 Methods

Our experiments use the BART-base and BART-
large implementations of HuggingFace fine-tuned
on different versions of the reconstructed PDTB
corpus, which we describe in the sequel.2The cor-
pus is a modified version of the WSJ texts derived
from reconstructing the texts from the string po-
sitions provided by the PDTB. Our modifications
were intended to make the reconstructions more
natural for pre-trained models by using full sen-
tences but without giving away hints to connective
location by capitalization or punctuation. An ex-
ample is provided in Figure 1.3 The input consists

2We find little difference in the performance of BART-
base and BART-large and therefore focus on BART-base
throughout the paper. Results on matching for BART-large
can be found in appendix G.

3Due to reconstruction from string positions, the output
text is sometimes missing spaces or punctuation from the end
of the arguments. The first letter of every argument in the
input is in lower case for uniformity. The context arguments
can be empty if the string indices from the PDTB correspond

of the set of ‘<sep>’ separated items, while the out-
put is the text the model is trained to produce. The
output is either the reconstructed text (marked as
full-ouput) or the connective of import in the re-
constructed text (marked as conn-only).4

We produced in total sixteen different versions
of the corpus (see Table 3), twelve of them with
discourse relations in the input, which we dub
BARTD+ models, and four without these relations,
which we dub BARTD− models. Previous work
(Asr and Demberg, 2012) found correspondence
between the distribution of implicit (respectively
explicit) connectives in the WSJ and human be-
havior reported by Murray (1997); Sanders (2005)
concerning which discourse relations are expected
(respectively less expected). We produced three
versions of the corpus reflecting different levels in
the PDTB sense hierarchy as follows:

• Level 1 is the top level (Temporal, Expansion,
Comparison, Contingency).

• Level 2 is the set of children of the level 1.
• Full is the set of complete senses, the depth

of which is no more than 3.

To determine whether the order of arguments in
the PDTB affects the model’s choice of connec-
tive, we further divided the corpus into versions
which included or didn’t include explicit encoding
of the order of arguments in the output: ‘12’ en-
codes the case where the first argument precedes
the second argument in the reference text, while
‘21’ corresponds to the second argument preced-
ing the fist argument in the reference text. This
is in principle useful since the order of arguments
in the input need not reflect their order in the out-
put. To control for the influence of generating full
texts, we produced versions of the corpus in which
the outputs were the discourse connectives without
the surrounding WSJ text. Since whether the dis-
course connective is left implicit or made explicit
is something we would like to test every model on,
we include no information about whether the con-
nective should be implicit or explicit in the input.

The difference between BARTD+ and
BARTD−, corresponding to whether the in-
put includes the discourse connective’s type,

to sentences. The string ‘none’ is inserted into empty con-
texts. If the PDTB string indices do not correspond to sen-
tences, the context arguments correspond to the sentences in
which the PDTB string indices were embedded.

4While the PDTB is licensed from the LDC, the scripts
for producing our corpora from it plus the metrics and model
details will be made freely available on https://github.
com/SymonJoryStevens-Guille/PennGen.

https://github.com/SymonJoryStevens-Guille/PennGen
https://github.com/SymonJoryStevens-Guille/PennGen
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The board isn’t proposing a slate of its own and the other
four current directors don’t want to serve beyond the spe-
cial meeting date, Newport said.

Expansion_Conjunction

12
none

the board isn’t proposing a slate of its own
none
none

the other four current directors don’t want to serve beyond the special meeting date

,Newport said

A WJS text with
arguments and dis-
course connective
highlighted

The input constructed
from the WJS corpus
and its PDTB annotation

discourse relation

order of arguments

argument 1 left context

argument 1

argument 1 right context

argument 2 left context

argument 2

argument 2 right context

The board isn’t proposing a slate of its own and the other four cur-
rent directors don’t want to serve beyond the special meeting date,
Newport said.

and

Target output for gener-
ating the complete text
(full-output)

Target output
for generat-
ing only the
discourse con-
nective (conn-
only)

Figure 1: A WSJ text together with its PDTB annotation used in constructing the input to the models and their
target outputs. (In the linearized input form, the fields are separated by a <sep> token.)

rounds out the set of distinctions between cor-
pus versions. Details of the corpus split into
train/dev/test can be found in Appendix A.

4 Metrics

In order to study whether the models can recon-
struct the discourse connectives found in the WSJ,
we report model-reference matching. We further
consider matching with respect to implicit and ex-
plicit discourse connectives.

Implicit and explicit matching, both indepen-
dently and summed, is our first metric. Sec-
ond, we consider the proximity of the mismatches
between reference and generated connective in
terms of the PDTB sense hierarchy. With re-
spect to Figure 1, matching would be producing
and, either in the embedded sentence in which
it occurs (full-output) or on its own (conn-only).
Since the type of and in this context is Expan-
sion_Conjunction, the mismatch could be by sub-
stitution of some other connective from Expan-
sion_Conjunction (=full), from one of the sub-
senses of Expansion (=level 1), or from some com-
pletely different sense (=level 2).

We test the consistency of the models with the
continuity and causality-by-default hypotheses by
reference to the metrics proposed by (Asr and
Demberg, 2012, 2013) to quantify the support for
such hypotheses in the PDTB. The usefulness of

the distribution of implicit versus explicit connec-
tives is helpfully summed up by Asr and Demberg
(2012, pg. 2671): “if readers have a default pref-
erence to infer a specific relation in the text, this
type of relation should tend to appear without ex-
plicit markers.” This likewise motivates our use
of the metric of markedness, to be discussed be-
low, since markedness quantifies how expected a
relation is and, in conjunction with the hypothe-
sis of Uniform Information Density (UID) (Jaeger
and Levy, 2006), how likely it is to be explicitly
cued versus left to be inferred (Asr and Demberg,
2013).

Asr and Demberg (2012) propose to define im-
plicitness of PDTB senses in terms of the distri-
bution of implicit discourse relations correspond-
ing to the sense in the corpus (# of implicit tokens
of senses divided by # of tokens of senses). Fol-
lowing Asr and Demberg (2012, 2013); Jin and
de Marneffe (2015b), we focus on the two groups
of (sub)types in Table 1, which respectively repre-
sent discontinuous and/or noncausal relations and
continuous and/or causal relations.5

Implicitness and explicitness provide one sort
of proxy for continuity and discontinuity in our
metrics. We therefore compare the distribution of

5We ignore some relations identified by the foregoing au-
thors which don’t appear frequently enough in our test set.
We report results for the level 1 relations too.
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Continuous Discontinuous
Contingency_Cause Comparison
Expansion_Instantiation Temporal_Asynchronous

Table 1: Continuous discourse relation types are shown
on the left and discontinuous ones on the right

implicitness predicted by our models to the distri-
bution of implicitness in the test set to determine
the fit of the model with respect to the continuity
hypothesis.

Following Asr and Demberg (2013); Jin and
de Marneffe (2015b), we make use of a metric
of markedness, which Asr and Demberg (2013)
argue provides a good picture of how likely a
given relation is to appear with a connective and to
what degree the relation-connective co-occurrence
is unique: The higher the markedness, the more
likely the relation is to appear with a set of spe-
cific connectives. Consequently, it would be more
surprising to have that relation cued by a less
expected connective or no connective at all—we
should then expect both causal and continuous re-
lations to have lower markedness.

Asr and Demberg (2013) report the markedness
of level 1 relations, finding the gross cline of Tem-
poral < Contingency < Expansion < Comparison.
They argue these results are consistent with the
UID, the continuity-by-default hypothesis, and the
causality-by-default hypothesis. We consider the
degree to which the markedness cline of our model
outputs corresponds to the markedness cline of the
corpus to provide evidence of whether the model
is learning to produce text consistent with the pre-
viously mentioned cognitive biases.

Markedness is defined in the equation below,
where npmi is normalized point-wise mutual infor-
mation, r belongs to the set of relations R, and c
belongs to the set of connectives C minus the null
connective.

markedness(r) =
∑
c∈C

p(c|r)npmi(r; c) + 1

2

Since the markedness metric doesn’t provide a
direct probability distribution, significance for dif-
ferences between markedness must be measured
by non-parametric methods. For these purposes
we use approximate randomization (AR) (Noreen
1989): we randomly re-sample from the two mod-
els’ union, producing 30K versions of the results
and comparing whether and how many such ver-
sions improve over the different model predictions
in terms of proximity to the reference score (we de-

scribe AR at length in Appendix C).

5 Results

With respect to the types of fine-tuning we ex-
perimented with, we find BARTD+ models rou-
tinely exceed BARTD− models. We show here
that BARTD+ models seem to recover even some
of the distributions found by Asr and Demberg
(2012) to support psycholinguistic results concern-
ing discourse structure.6

In Table 3 we include the results of our base-
lines. Both models D+ (=80.5%) and D- (=67.2%)
significantly improve over the corresponding base-
line D+ and D- models. This improvement is fur-
ther corroborated by comparing BERT and BART-
large off-the-shelf to the corresponding BARTD+

and BARTD− models. Both D+ (=79%) and D-
(=71.3%) make over a 20% improvement on both
BERT and BART-large off-the-shelf. Since the
off-the-shelf models were given intended position
information in the form of MASK tokens, the re-
sult shows that this positional information, at least
without fine-tuning, doesn’t suffice to predict the
intended connective.7

Interestingly, with respect to producing match-
ing explicit (respectively implicit) connectives, the
models trained to produce full sentence outputs
frequently outperform the models trained to pro-
duce only discourse connective outputs. This is
shown in Table 3, where the difference in scores
is most visible when the model is provided with
less or no information concerning the intended dis-
course relation. This suggests there is some bene-
fit to producing the connective in context, where
the fidelity of the decoded connective is improved
by the preceding and subsequent strings. But this
benefit seems to taper off from depth 2 down.

There seems to be a sweet spot in the level of
discourse relation type included in the input: there
is little improvement between full and level 2 types

6The chosen connective need not occur directly between
the arguments in the input. Determining which connective is
produced by the full-out model is done by iteratively substitut-
ing elements of the input found in the output with the empty
string. Once this process is complete the remaining strings
will include the connective. Strings which are not in the com-
plete set of connectives are removed to eliminate noise. If
no connective is found after this process then the model evi-
dently chose to leave the relation implicit.

7Note that the MASK position for implicits is uniformly
between the rightmost position of arg1 and the leftmost po-
sition of arg2. We chose this position for uniformity in light
of the absence of implicit connective span annotation in the
PDTB.
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Type Comparison Contingency Expansion Temporal

Reference 0.53624 0.21141 0.34245 0.47499

BARTD+ 0.62666 0.21302 0.32155 0.46709

BARTD− 0.35860 0.19829 0.29256 0.42175

Table 2: Level 1 markedness scores by model

Type Level Order FullOutput Match
baselineD+ - - 34%
baselineD− - - 16%
BART-large - + 48%
BERT - + 52.4%
BARTD+ full + + 79%
BARTD+ full + - 81.5%
BARTD+ full - + 79%
BARTD+ full - - 80.5%
BARTD+ 2 + + 79.3%
BARTD+ 2 + - 79.9%
BARTD+ 2 - + 79%
BARTD+ 2 - - 79.8%
BARTD+ 1 + + 76.5%
BARTD+ 1 + - 66.9%
BARTD+ 1 - + 75.7%
BARTD+ 1 - - 65.5%
BARTD− + + 70.5%
BARTD− + - 69.9%
BARTD− - + 71.3%
BARTD− - - 67.2%

Table 3: Model typology with distributions of matched
versus reference discourse connectives. BART-large
and BERT are baselines used off-the-shelf; baselineD+

is the majority baseline conditioned on discourse rela-
tions and baselineD− is the majority baseline uncondi-
tioned on discourse relations.

but there is greater improvement between level
2 and level 1—for conn-only the BARTD− mod-
els even sometimes exceed the level one BARTD+

models, suggesting the top level type information
could hinder connective choice when the connec-
tive isn’t generated in context.

Despite the boost to connective matching when
producing conn-only, the distinction between mod-
els which condition on the order of arguments ver-
sus those that do not, controlling for other corpus
distinctions, is minimal when present. This, too, is
visible in Table 3.

The major difference between models with
respect to reconstructing the reference connec-
tives is the difference between the BARTD+ and
BARTD− models. The BARTD+ models from
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Figure 2: Case of Explicit Connectives: Graph for
Models D+ and D- showing MP (Match Prediction);
MES (Mismatch with Explicit Sister type); MI (Mis-
match with Implicit); and Other (Explicit For Explicit
Minus One, Minus Two, and Minus Three level types)

the second level to the full level outperform
the BARTD− models when controlling for the
input order, whether the output is full-output
or conn-only. In the sequel we report signifi-
cance results just for the best BARTD− model
and a corresponding BARTD+ model: BARTD−
(-Order,+FullOutput) and BARTD+ (Depth 3,-
Order,+FullOutput). While the level 2 BARTD+

model ekes out the level 3 model, the difference is
uninteresting.

The main distinction in matching between
BARTD+ and BARTD− models is due to ex-
plicit connectives. Both models perform well
with respect to reconstructing implicit connectives,
though the differences even here are significant,
with the BARTD− model even improving over the
BARTD+ model with respect to implicit relations.
However, this observation points to a more likely
story for BARTD−’s performance: the BARTD−
model is less accurate. This is corroborated by it
generating an excess of 405 implicits for target ex-
plicits compared to BARTD+’s 275 implicits for
target explicits. The overproduction of implicits is
further borne out by the differences in F1 shown
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Figure 3: Case of Implicit Connectives: Graph for
Models D+ and D- showing MP (Match Prediction),
MES (Mismatch with Explicit Sister type), and Other
(Explicit For Implicit Minus One, Minus Two, and Mi-
nus Three types)

Model Explicit Match Implicit Match

BARTD+ 69.8% 89.2%

BARTD− 54.3% 90.6%

Table 4: Matches for BARTD+ and BARTD−.

in Figures 19 and 20 in Appendix D; errors con-
cerning connective choice are exemplified and dis-
cussed there too.

Returning to the production of explicit con-
nectives, the improvements of conditioning on
discourse structure information are highly sig-
nificant both with respect to matching per se
and with respect to matching explicit connec-
tives. We provide McNemar’s test statistics for
explicit matches (statistic=157.00, p=0.000), im-
plicit matches (statistic=118.00, p=0.025), and
their combination (statistic=313.000, p=0.00) (the
tables can be found in Appendix B).

Table 4 shows match results for both implicit
and explicit for BARTD− and BARTD+. More
fine-grained results are given in Figures 2 and
3. Focusing on the results concerning implicit
relations first, the most noticeable difference is
with respect to Comparison—the BARTD+ model
produces far fewer matches than the BARTD−
model. However, within the mismatches here,
the BARTD+ model overwhelmingly produces ex-
plicit connectives for reference implicit when the
relation can be expressed by both an explicit or
implicit connective. In fact the BARTD− model
makes more severe mismatches on Comparison

BARTD+: The board isn’t proposing a slate of
its own and the other four current directors don’t
want to serve beyond the special meeting date,
Newport said.
BARTD−: The board isn’t proposing a slate of its
own because the other four current directors don’t
want to serve beyond the special meeting date,
Newport said.

Figure 4: Full outputs on the input from Figure 1 for
BARTD+ full and BARTD− without cues to order. The
model’s generated connective is bolded.

than the BARTD+ model, since its productions
of explicit connectives for reference implicit are
more frequently productions of connectives which
simply are not used to express the relation.

With respect to producing matching explicit
connectives, the BARTD+ model exceeds the
BARTD− model on every top level type. When
BARTD+ doesn’t produce a matching explicit con-
nective, it is far more likely to produce an explicit
connective which expresses the same relation. For
each top level type, the severity of the mismatch
is less for BARTD+ than BARTD−. Without com-
mitting to the position that producing an implicit
connective for a relation intended to be expressed
explicitly is better or worse than producing an ex-
plicit connective for a relation intended to be ex-
pressed implicitly, we argue that either mismatch
is better than producing a connective which is
never used to express the intended relation. On
this score, the BARTD− model is considerably
worse—it is consistently more likely to produce a
connective not otherwise used to cue the intended
discourse relation.

When the metrics are extended to include
whether non-matching connectives chosen by the
model fit the intended discourse relation, the
BARTD+ model continues to outperform the best
BARTD− model. When producing non-matching
connectives, we find that the chosen connectives
of the BARTD+ model correspond to the intended
discourse relations more frequently than those pro-
duced by the BARTD− models.

We computed markedness scores for outputs of
the BARTD+ and BARTD− models. By apply-
ing AR significance tests on markedness score–
based statistics, we find that the BARTD+ out-
put on the test data is significantly closer to the
reference data than the output of BARTD−. We
show in Table 5 the distribution of markedness
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Type Contingency_Cause Expansion_Instantiation Comparison Temporal_Asynchronous

Reference 0.182 0.071 0.536 0.436

BARTD+ 0.179 0.061 0.626 0.419

BARTD− 0.170 0.058 0.358 0.365

Table 5: Markedness Scores for continuity and causality-by-default hypotheses.

BARTD− BARTD+

Discourse Relation Nonsister Implicit Nonsister Implicit

Contingency_Cause 4.3% 2.3% 1.9% 2.7%

Expansion_Instantiation 6.1% 1.6% 2.1% 1.6%

Temporal_Asynchronous 14.2% 4.7% 2.3% 4.7%

Comparison 13.9% 16.6% 1.3% 4.2%

Overall 7.8% 6.6% 1.6% 4.5%

Table 6: Error rates in Mispredicted Nonsister and Mispredicted Implicit of the models’ performances w.r.t dis-
course relations associated with the Continuity and Causality-by-default hypotheses. Proportions are with respect
to the sum of the items in the test set meant to express the relation type.

for several discourse relations. We should first
note that the BARTD+ markedness scores are con-
sistently closer to the reference scores than the
BARTD− scores. Second we note that the conti-
nuity hypothesis is partially supported, even just
considering this limited set of relations: both Con-
tingency_Cause and Expansion_Instantiation are
less marked than both Comparison and Tempo-
ral_Asynchronous. This is consistent with our
hypotheses that continuous and causal relations
should be less marked than discontinuous rela-
tions. However, like Jin and de Marneffe (2015b);
Asr and Demberg (2013), we found less direct sup-
port for the causality-by-default hypothesis, since
it is not less marked than Expansion_Instantiation.
This is at best consistent with a weak form of the
hypothesis, since we have not here reported con-
texts which would discriminate between the con-
junction of the causality-by-default and continuity
hypotheses versus just the continuity hypothesis.
Our conclusions are further reinforced by Table 2,
which shows the BARTD+ model, in particular, is
reasonably close to recovering the markedness ex-
emplified in the test set.

One further difference in distribution is pre-
dicted by the causality-by-default and continuity
hypotheses for those relations that are or are not
continuous or causal, exemplified by the relations
found in Table 1. Both these hypotheses posit de-
fault inferences. Given the apparent reliability of

these defaults with respect to psycholinguistic and
corpus studies, we’d expect that learning these de-
faults would reduce the rate of errors for those re-
lations to which the defaults apply. Consequently,
we can compare the proportion of errors for contin-
uous and causal relations to that for discontinuous
(and non-causal) relations to determine how likely
it is the model learned the default. We expect that
explicitly representing discourse relations should
support the learning of the default since, by hy-
potheses, the defaults are correlated with specific
relations. Table 6 shows the error proportions.

We find that the D+ model shows a lower er-
ror proportion with respect to continuous versus
discontinuous relations while the D- model shows
a higher proportion of such errors, particularly
where the relation to be expressed is discontinu-
ous and more marked. We note that the number of
D- Nonsister errors on Temporal_Asynchronous,
which dwarf the Implicit errors on the same re-
lation, is consistent with the continuity hypothe-
sis in particular since these relations, which are
not subject to default inferences, are important to
mark explicitly yet are difficult to mark correctly
in the absence of an explicit cue to the relation. On
Comparison, D- makes a similar number of Non-
sister errors, and also makes more than double the
number of overall implicit prediction errors. This
makes sense if the model recognizes it’s impor-
tant to signal these relations but erroneously treats
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them as if they were in a default relation where
leaving the connective implicit would be more ex-
pected. However, we do not have a ready expla-
nation for why Temporal_Asynchronous does not
have more implicit D- errors.

The differences in connective choice between
models sometimes result in wildly divergent mean-
ings. Figure 4 shows the BARTD+ full and
BARTD− outputs for the input in Figure 1. Nei-
ther model is conditioned on the order of argu-
ments. The BARTD− model’s output uses be-
cause to erroneously communicate that the inten-
tions of the directors cause the intentions of the
board, whereas the BARTD+ model correctly iden-
tifies the intentions of the board and the intentions
of the directors without suggesting either intention
is dependent on the other (generates and).

6 Related Work

Ko and Li (2020) reported the limits of GPT-2
(Radford et al., 2019) for generating texts with
discourse connectives. Their results concern both
fine-tuning and off-the-shelf experiments. For
fine-tuning they conditioned the model on prompt-
response pairs, testing the subsequently fine-tuned
model on the appropriateness of its output re-
sponses to input prompts in conversation. For
GPT-2 off-the-shelf they fed the first argument and
a candidate discourse connective to the model and
took the output to be the second argument. They
found that GPT-2 more frequently produced con-
nectives consistent with the judgements concern-
ing the discourse relation inferred by human sub-
jects when their agreement on the discourse rela-
tion is high. Like Ko and Li, we are interested in
discourse relation realization. However, in Ko and
Li’s approach the position of the discourse connec-
tive is explicitly given to the model (it’s the mask).
Also, Ko and Li’s fine-tuned model is restricted to
11 connectives. We condition models on both the
discourse relation and the arguments to provide
fine-grained control of the discourse without re-
stricting the position of the discourse connective.

Yung et al. (2021) found that GPT-2 diverges
from human subjects in its judgements concerning
the substitution of connectives which the PDTB
does not distinguish by type. This provides pre-
sumptive evidence that large pre-trained language
models could be limited in reconstructing human
judgements concerning the sense of connectives
and their substitutability.

7 Conclusion

The main conclusion one can draw from our re-
sults is that discourse relation information is essen-
tial for consistently generating matching discourse
connectives. While large-scale human judgement
experiments on our models’ predictions are the
most obvious next step, the improvement of the
BARTD+ models over the BARTD− models with
respect to exact matching is encouraging, espe-
cially in light of recent results showing that hu-
mans don’t uniformly accept substitution of dis-
course connectives which express the same dis-
course relation (Yung et al., 2021). With respect
to whether mere arguments suffice to generate a
discourse connective that correctly realizes the dis-
course relation holding between them, our results
indicate that the purely distributional meaning of
texts induced by the models under-determines the
relation expressed by explicit discourse connec-
tives. Directly conditioning on discourse relations
in the input significantly improves the likelihood
of the model producing a connective which cor-
responds to the intended discourse relation. One
must note that conditioning on the discourse rela-
tion is especially important when the relation is
marked, as in these cases the model is apt to pre-
dict an incorrect default (causal or continuous) re-
lationship just from the arguments.

As for markedness score–based statistics, we
can conclude that the presence of discourse rela-
tions in the input helped BARTD+ to learn the
discourse connective distribution patterns of the
PDTB. These metrics provide a useful avenue for
testing how well generation models recover pat-
terns which hold for a variety of different vari-
ables, from discourse relations themselves, to the
strength of co-occurrences between discourse rela-
tions and the words used to communicate them. To
the degree these patterns track cognitive dependen-
cies, they encourage integration of cognitive mod-
els of discourse coherence and NLG evaluation.
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Relation
Data set

Compar. Contig. Expan. Temp.

Train 5297 7592 12605 3302
Dev. 1173 1577 2635 784
Test 1195 1616 2563 774

Table 7: Numbers of occurrences of top level relation
types in data sets

m2y m2n
m1y 1617 663
m1n 157 825

Table 8: m1 = BARTD+, m2 =BARTD−.
statistic=157.000, p-value=0.000
Different proportions of total number of entries with
explicit matches (reject H0)

A Data sets collection and statistics

The corpus was split into train/dev/test by select-
ing the first 70 percent of reconstructed lines for
training purposes. To prevent content from one
split being encountered in another split, any re-
maining lines in a WSJ article encountered af-
ter the line corresponding to the end of train
were removed. This technique is used for pre-
venting spillover of content between dev and test,
too, which respectively comprise approximately
15 percent of the corpus. Namely, we have 28796
items in the training set, 6169 in the dev set, and
6149 in the test set.

The breakdown of top level relations distributed
through the splits is given in Table 7.

We excluded some items from the corpus if the
resulting sequences would be too long, if the rela-
tions were not extensions of those defined by level
1 in the foregoing, or to prevent possible repetition
of content between train, test, and dev splits.

B McNemar’s Significance Results

McNemar’s significance test results between
BARTD+ and BARTD− models are shown in Ta-
bles 8, 9, and 10.

m2y m2n
m1y 2459 118
m1n 156 153

Table 9: m1 = BARTD+ , m2 =BARTD−.
statistic=118.000, p-value=0.025
Different proportions of total number of entries with
implict matches (reject H0)

m2y m2n
m1y 4076 781
m1n 313 978

Table 10: m1 = BARTD+, m2 =BARTD−.
statistic=313.000, p-value=0.000
Different proportions of total number of entries with
implicit or explicit matches (reject H0)

C Approximate Randomization with
respect to Markedness Stats

We want to see whether markedness scores of
the outputs models are close to the reference test
data. We compute markedness for the test cor-
pus (i.e., gold reference text), tmrk, which is an
n-dimensional vector, where n is a number of dis-
course relation types. We also compute bd+mrk and
bd−mrk vectors for the outputs of the BARTD+ and
BARTD− models on the test corpus, respectively.
Then, we calculate the mean square distances be-
tween markedness scores of the test corpus and
produced ones, i.e., δ+ = MSQ(tmrk, bd

+
mrk)

and δ− = MSQ(tmrk, bd
−
mrk). We find that δ+

< δ−, which means that the BARTD+ model out-
put has markedness score at least as close to the
test corpus as one of the BARTD− model.

To see whether this difference between
BARTD+ and BARTD− is significant, we resort
to the Stratified Approximated Randomization
(AR) approach. We take the list of outputs of
BARTD+ and BARTD−, call them d+1 , . . . , d

+
k

and d−1 , . . . , d
−
k , where k is the size of the test

data set. For each i, we randomly assign to ci
either d+i or d+i , each with 0.5 probability. In this
way we obtain a new list c1, . . . , ck. We compute
the markedness score for c1, . . . , ck, call it cmrk.
Then, we calculate δc = MSQ(tmrk, cmrk).
We compare δc with δ+ and δ−. We do this N
(sufficiently large) number of times. If out of N
checks, δc was less or equal to δ+ in p-percent
of cases, we say that BARTD+ differs from
BARTD− with p-significance. (Usually, p is taken
to be 5.)

D Discussion of Errors

We consider several examples of errors in D- mod-
els and compare them to the same outputs of the
D+ model. This discussion is necessarily limited
by the length of the outputs. We do not suggest
these errors are representative of the models er-
ror in general, restricting ourselves to brief quali-
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Figure 5: Continuous Explicit Connective Case: Graph
for Models D+ and D- showing MP (Match Prediction);
MES (Mismatch with Explicit Sister type); MI (Mis-
match with Implicit); and Other (Explicit For Explicit
Minus One, Minus Two, and Minus Three level types)
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Figure 6: Continuous Case of Implicit Connectives:
Graph for Models D+ and D- showing MP (Match Pre-
diction), MES (Mismatch with Explicit Sister type),
and Other (Explicit For Implicit Minus One, Minus
Two, and Minus Three types)

tative remarks which complement the quantitative
results in the foregoing.

In Figure 9 both models mismatched with the
intended temporal_synchronous relation, which is
expressed by the connective while in the reference
text. The D- model’s choice produces much more
of a hedged judgement of the threat by using if
than either the reference connective as long as or
the D+ connective when, which seems to require
the existence of some time in which the threat is
present.

In Figure 10 the D- model mismatched with
the intended Comparison_Concession_Arg1-as-
denier connective even if. The D- model’s
choice unless reverses the intended condition, erro-
neously suggesting that the banks obtaining financ-
ing could prevent British Air from rejecting the
proposal described in the text. The D+ model pre-
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Figure 7: Ambiguous Explicit Connective Case: Graph
for Models D+ and D- showing MP (Match Prediction);
MES (Mismatch with Explicit Sister type); MI (Mis-
match with Implicit); and Other (Explicit For Explicit
Minus One, Minus Two, and Minus Three level types)
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Figure 8: Ambigous Case of Implicit Connectives:
Graph for Models D+ and D- showing MP (Match Pre-
diction), MES (Mismatch with Explicit Sister type),
and Other (Explicit For Implicit Minus One, Minus
Two, and Minus Three types)

dicts the connective even if which matches the ref-
erence and communicates the correct dependency
between financing and British Air rejecting the
proposal described in the text. We note that this
is consistent with the results of (Stevens-Guille
et al., 2020; Maskharashvili et al., 2021), who
found comparison to be quite vexing for LSTM
models.

In Figure 11 the D- model mismatched with
the intended Expansion_Level-of-detail_Arg2-as-
detail connective which is implicit. The D+ model
correctly predicts the second sentence to simply
provide further comment on the first sentence.
Note though that the D- model’s connective choice
but is coherent in the text. This highlights that the
two sentences, without the cue to the intended dis-
course relation, could be understood with respect
to a variety of discourse relations.
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BARTD+: Bush assured Roh that the U.S. would
stand by its security commitments “when there is
a threat” from Communist North Korea.
BARTD−: Bush assured Roh that the U.S. would
stand by its security commitments “if there is a
threat” from Communist North Korea.

Figure 9: Both models mismatch on Tempo-
ral_Synchronous, which is expressed by ‘while’ in the
reference text.

BARTD+: But British Air, which was to have sup-
plied $750 million out of $965 million in equity
financing, apparently wasn’t involved in the sec-
ond proposal and could well reject it even if banks
obtain financing.
BARTD−: But British Air, which was to have sup-
plied $750 million out of $965 million in equity
financing, apparently wasn’t involved in the sec-
ond proposal and could well reject it unless banks
obtain financing.

Figure 10: D- mismatch on
Comparison_Concession_Arg1-as-denier

BARTD+: The huge drop in UAL stock prompted
one takeover stock trader, George KellNER, man-
aging partner of Kellner, DiLeo & Co., to deny
publicly rumors that his firm was going out of busi-
ness. Mr. Kellner said that despite losses on UAL
Stock, his firm’s health is “excellent.”
BARTD−: The huge drop in UAL stock prompted
one takeover stock trader, George Kellner, manag-
ing partner of Kellners, DiLeo & Co., to deny pub-
licly rumors that his firm was going out of busi-
ness. But Mr. Kellner said that despite losses on
UUAL stock, his firm’s health is “excellent.”

Figure 11: D- mismatch on Expansion_Level-of-
detail_Arg2-as-detail

BARTD+: The National Cancer Institute also pro-
jected that overall U.S. mortality rates from lung
cancer should begin to drop in several years if
cigarette smoking continues to abate.
BARTD−: The National Cancer Institute also pro-
jected that overall U.S. mortality rates from lung
cancer should begin to drop in several years as
cigarette smoking continues to abate.

Figure 12: D- mismatch on
Contingency_Condition_Arg2-as-cond

In Figure 12 the D- model mismatched
with the intended Contingency_Condition_Arg2-
as-cond connective if. The D- model’s choice of
the connective as implies that cigarette smoking
will continue to abate, while the intended meaning
is that the dropping of lung cancer mortality rates
in the U.S. depends on cigarette smoking continu-
ing to abate, which abatement, while projected, is
not a foregone conclusion.

E Matching Explicit and Implicit Cases
of Discontinuous, Continuous, and
Ambiguous, Connectives: Figures
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Figure 13: Discontinuous Explicit Connective Case:
Graph for Models D+ and D- showing MP (Match Pre-
diction); MES (Mismatch with Explicit Sister type);
MI (Mismatch with Implicit); and Other (Explicit For
Explicit Minus One, Minus Two, and Minus Three
level types)

F Reproducibility Details

We use the pre-trained BART-Large HuggingFace
transformer model for our baselineD+.

We fine-tuned models, BARTD+ and D− on
BART-Base transformer model. In total, there
are 139421184 trainable parameters in this model.
The models are fine-tuned using cross entropy loss



513

0%

20%

40%

60%

80%

100%
D+MP

D+MES

D+Other

Comparison

Temporal_Asynchronous0%

20%

40%

60%

80%

100%

D-MP

D-MES

D-Other

Figure 14: Discontinous Case of Implicit Connectives:
Graph for Models D+ and D- showing MP (Match Pre-
diction), MES (Mismatch with Explicit Sister type),
and Other (Explicit For Implicit Minus One, Minus
Two, and Minus Three types)
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Figure 15: Continuous Explicit Connective Case:
Graph for Models D+ and D- showing MP (Match Pre-
diction); MES (Mismatch with Explicit Sister type);
MI (Mismatch with Implicit); and Other (Explicit For
Explicit Minus One, Minus Two, and Minus Three
level types)

without label smoothing. The learning rate is con-
stantly 2 × 10−5 and the batch size is 8 samples.
The optimizer is Adam (Kingma and Ba, 2014)
where β1 = 0.9, β2 = 0.999, ϵ = 1 × 10−8,
and the weight decay is 0. The best checkpoint is
selected by validation with patience of 10 training
epochs. Computing infrastructure we used is made
of NVIDIA V100 GPU and an Intel(R) Xeon(R)
Platinum 8268 @ 2.90GHz CPU. Training on av-
erage took 15 epochs.

G BART-large selected results

We provide match results for BART-base versions
of the full depth D+ and D- models in Table 11.
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Figure 16: Continuous Case of Implicit Connectives:
Graph for Models D+ and D- showing MP (Match Pre-
diction), MES (Mismatch with Explicit Sister type),
and Other (Explicit For Implicit Minus One, Minus
Two, and Minus Three types)
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Figure 17: Ambiguous Explicit Connective Case:
Graph for Models D+ and D- showing MP (Match Pre-
diction); MES (Mismatch with Explicit Sister type);
MI (Mismatch with Implicit); and Other (Explicit For
Explicit Minus One, Minus Two, and Minus Three
level types)

H Error Rate Examples

Figures 21, 22, and 23 exemplify D- Tempo-
ral_Asynchronous Nonsister, Comparison Nonsis-
ter, and Comparison Implicit errors respectively.

I Initial and Final Connective Examples

We provide an example of an initial connective
generation by D- in Figure 24. A final connective
generation by D- is provided in Figure 25, though
we note that the reference is here implicit.
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Figure 18: Ambigous Case of Implicit Connectives:
Graph for Models D+ and D- showing MP (Match Pre-
diction), MES (Mismatch with Explicit Sister type),
and Other (Explicit For Implicit Minus One, Minus
Two, and Minus Three types)
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Figure 19: F-score for top level discourse relation
types, case of explicit
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Figure 20: F-score for top level discourse relation
types, case of implicit

Type Depth Order FullOutput Match
BARTD+ full + + 79.7%
BARTD+ full + - 82%
BARTD+ full - + 80.5%
BARTD+ full - - 74.5%
BARTD− + + 73.6%
BARTD− + - 75%
BARTD− - + 71.5%
BARTD− - - 74.7%

Table 11: BART-large fine-tuned selected results.

Figure 21: D- Temporal_Asynchronous_Precedence
Nonsister Error

REFERENCE: That follows a more sub-
tle decline in the prior six months after
Manhattan rents had run up rapidly since
1986.
BARTD−:That follows a more subtle de-
cline in the prior six months because
Manhattan rents had run up rapidly since
1986.

Figure 22: D- Comparison_Concession_Arg1-as-
denier Nonsister Error

REFERENCE: “There’s quite a bit of value
left in the Jaguar shares here even though
they have run up” lately, says Doug John-
son, a fund manager for Seattle-based
Safeco Asset Management.
BARTD−: “There’s quite a bit of value left
in the Jaguar shares here and they have
run up” lately, says Doug Johnson, a fund
manager for Seattle-based Safeco Asset
Management.

Figure 23: D- Comparison_Concession_Arg2-as-
denier Error

REFERENCE: But that ghost wasn’t
fooled; he knew the RDF was neither
rapid nor deployable nor a force — even
though it cost $8 billion or $10 billion a
year.
BARTD−: But that ghost wasn’t fooled; he
knew the RDF was neither rapid nor de-
ployable nor a force — it cost $8 billion
or $10 billion a year.
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Figure 24: D- Initial Connective Generation

REFERENCE: But that ghost wasn’t
fooled; he knew the RDF was neither
rapid nor deployable nor a force – even
though it cost $8 billion or $10 billion a
year.
BARTD−: When Mr. Glass decides to get
really fancy, he crosses his hands and hits
a resonant bass note with his right hand.

Figure 25: D+ Final Connective Generation

REFERENCE: So far, analysts have said
they are looking for $3.30 to $3.35 a share.
After today’s announcement, that range
could increase to $3.35 to $3.40 a share.
BARTD−:So far, analysts have said they
are looking for $3.30 to $3.35 a share.
After today’s announcement, that range
could increase to $4.35 to $2.40 a share
however.


