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Abstract

This paper describes the use of AutoNLP tech-
niques applied to the detection of patronizing
and condescending language (PCL) in a binary
classification scenario. The proposed approach
combines meta-learning, in order to identify the
best performing combination of deep learning
architectures, with the synthesis of adversar-
ial training examples; thus boosting robustness
and model generalization. A submission from
this system was evaluated as part of the first sub-
task of SemEval 2022 - Task 4 and achieved
an F1 score of 0.57%, which is 16 percentage
points higher than the RoBERTa baseline pro-
vided by the organizers.

1 Introduction

The harmful use of language in social media can
have negative and long-lasting effects such as ex-
clusion and unfair treatment, specially when tar-
geting vulnerable communities. For this reason,
the detection of toxic, hateful and abusive com-
ments has been the central topic of several work-
shops and tool evaluations, drawing a lot of atten-
tion from the Natural Language Processing (NLP)
research community in the last years. However,
while toxic language has a clear intent and is usu-
ally obvious to the reader, patronizing and conde-
scending language (PCL) is more subtle and likely
used in a subconscious manner even in traditional
media (Perez Almendros et al., 2020). The afore-
mentioned characteristics and its subjective nature
makes PCL harder to identify than abusive com-
ments by both humans (Sap et al., 2019) and NLP
applications.

The continuously increasing taxonomies of lan-
guage misuse poses new challenges to social media
platforms, thus not only requiring more effort and
cost in order to identify abuse across different lan-
guages and textual genres but also having to keep
a balance between aggressive and conservative fil-
tering strategies. On the one hand, users eventually

devise ways of evading automatic content mod-
eration (Gerrard, 2018), while on the other hand,
policing that restricts freedom of speech can lead to
distrust (Kirk and Schill, 2021). For these reasons,
content filters usually rely on the latest advances
in NLP research, dominated in the recent years
by deep learning architectures. Despite the com-
petitive scores achieved via transfer learning and
models such as the Transformer (Vaswani et al.,
2017) in this area, choosing and optimizing the
right modeling framework for a given NLP task is
still a non-trivial problem.

Automated Natural Language Processing (Au-
toNLP), the equivalent of Automated Machine
Learning (AutoML) for NLP, is a relatively new
field of study that aims to automate the iterative
components of developing a NLP model given a
specific input data and task without requiring any
special domain expertise. By building upon exist-
ing concepts such as transfer learning, data augmen-
tation and meta-learning the author hypothesizes
that is possible to generate strong NLP baselines
with minimal human interaction. An analysis of
the results of the shared task 4 of SemEval-2022:
Patronizing and Condescending Language Detec-
tion (Pérez-Almendros et al., 2022) shows that Au-
toNLP can be successfully applied to PCL classi-
fication, obtaining a 16% higher F1 score than the
baseline provided by the task organizers.

This paper is organized as follows: In Section 2,
the state of the art is reviewed. Further on, Section
3 describes the AutoNLP approach for PCL classi-
fication. Next, in Section 4, an in-depth discussion
of the results obtained is described, and finally Sec-
tion 5 concludes this research and outlines future
work.

2 Related Work

There have been several research works on the
detection of different types of harmful language,
not only focused on the most explicit such as hate
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speech (Zampieri et al., 2019) (Garibo i Orts, 2019)
but also more subtle usages such as condescend-
ing interactions (Wang and Potts, 2019) and social
power implications (Sap et al., 2020). PCL towards
vulnerable communities in news articles has also
been characterized into 7 categories (Perez Almen-
dros et al., 2020) used in order to label the most
comprehensive PCL-annotated corpus to date: the
Don’t Patronize Me! (DPM) dataset, the official
training resource for the shared task 4 of SemEval-
2022: Patronizing and Condescending Language
Detection.

3 AutoNLP for PCL

Deep neural network modeling techniques have
inspired state of the art approaches in various do-
mains, such as image classification and language
modeling, thus dominating several benchmarks and
shared tasks in the last years. For this reason, NLP
applications relying on manually-crafted features
have been less popular in comparison with deep
learning (DL) architectures (Young et al., 2018),
specially where extensive manual feature engineer-
ing is required to achieve a similar performance
(Mosquera, 2021). However, since building a high-
quality DL system for a specific task still relies
on human expertise, AutoML offers a promising
solution to this problem by automating most of the
modeling steps (He et al., 2021).

In order to tackle an arbitrary NLP classification
task, in this case PCL detection, a custom end to
end AutoNLP solution has been designed and evalu-
ated by using exclusively the DPM dataset provided
by the organizers, off-the-shelf pre-trained models
and without applying any special pre-processing or
feature engineering besides standard tokenization.
The main components of the system are described
in the following section.

3.1 Adversarial Data Augmentation
Adversarial data augmentation can not only in-
crease model robustness but also improve general-
ization by increasing the number of training sam-
ples (Shorten et al., 2021). This can be specially
relevant when using neural networks, which tend
to under-perform in a low-data regime (Antoniou
et al., 2018). The different data augmentation strate-
gies incorporated in the AutoNLP pipeline are as
follows:

• Backtranslation: Transformation using Tex-
tAttack (Morris et al., 2020) that translates a

PCL sentence into a random target language
and translates it back to English.

• Checklist: TextAttack implementation of the
Invariance Testing Method: Contraction, Ex-
tension, Changing Names, Number, Location
(Ribeiro et al., 2020) applied to the positive
class.

• Wordnet: Word swap by swapping synonyms
in WordNet (Fellbaum, 1998) for PCL para-
graphs.

• Embedding: Attack that replaces words
with synonyms in the word embedding space
(Mrkšić et al., 2016) for PCL texts.

• Counterfactual: Inspired by the concept of
counterfactual augmentation (Kaushik et al.,
2020), this manipulation only applies to text
from the positive class which is augmented
with random texts from the negative class. The
resulting paragraph should still have a positive
(PCL) label.

• Shuffle: Attack that shuffles words in a PCL
paragraph.

• Parrot: Paraphrased PCL sentences generated
with Parrot (Damodaran, 2021).

• Pegasus: PCL augmentation by generating
paraphrases via conditional augmentation us-
ing Pegasus (Zhang et al., 2019).

3.2 Meta-learning

A common approach to meta-learning is stacked
generalization (Wolpert, 1992), where a set q of
base learners applied to a training set Ttrain :
{(X̃i, ci)}

m

i=1 to produce q hypotheses {hj}qj=1 is
redefined into a new set T ′

train by replacing each
vector X̃i with the class predicted by each of the q
hypothesis on X̃i. T ′

train is used as input to a set of
meta-learners, producing a new set of hypotheses
(Vilalta and Drissi, 2001).

While this approach has been successfully ap-
plied in several NLP tasks (Li and Zou, 2017) (Mos-
quera, 2020), an small variation that deals with
skewed datasets and automatically sub-samples
the majority class in each base learner (Chan and
Stolfo, 1998) was considered instead for this chal-
lenge. In order to do this, a pool of 40 base learners
was generated by randomly combining different
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data augmentation approaches, deep learning archi-
tectures via transfer learning and sub-sampling fac-
tors. Logistic regression was used as meta-learner
in the second layer, with probability thresholds and
hyper-parameters optimized via cross-validation.

Several pre-trained resources were used for fine-
tuning with early stopping including BERT (Devlin
et al., 2019), ELECTRA (Clark et al., 2020), GloVe
(Pennington et al., 2014) embeddings with capsule
networks (Frosst et al., 2018), RoBERTa (Liu et al.,
2019) and XLNet (Yang et al., 2019). The num-
ber of optimal training epochs was determined via
cross-validation. However, for cost mitigation pur-
poses, no model was trained for longer than 10
epochs and most hyper-parameters were left with
the default values.

3.3 Model Selection
The maximum relevance and minimum redundancy
(MRMR) algorithm (Zhao et al., 2019) was applied
as feature selection method, reducing the final num-
ber of base learners used by the meta-model to 8.

After analyzing the cross-validation results we
can observe that base models fine-tuned with
ELECTRA obtained the highest F1 scores. Like-
wise, the most successful data augmentation was
the combination of the Checklist and Backtrans-
lation methods. The final list of base learners, in-
cluding their cross validation F1 score and logistic
regression coefficient is shown in Table 1.

4 Evaluation and Results

Final test set results obtained in the PCL classi-
fication task by the AutoML system (amsqr) and
the winning submission (hudou) can be found in
Table 2. The official RoBERTa baseline and the
development set results are also included for com-
parison purposes.

Model Precision Recall F1
hudou 0.646 0.656 0.651
amsqr (dev) 0.587 0.578 0.582
amsqr (test) 0.547 0.599 0.572
RoBERTa baseline 0.393 0.653 0.491

Table 2: PCL classification results.

The fact that only 42 out of 78 competing teams
were able to beat the RoBERTa baseline provided
by the task organizers highlights the difficulty
of this competition. Besides the nature of the
task, other challenging factors were the strong

Model Augmentations F1 β

BERT Checklist 0.52 0.31
ELECTRA Checklist 0.55 0.25
ELECTRA Checklist 0.55 0.17

Backtranslation
ELECTRA Checklist 0.54 0.13

Backtranslation
Embedding
Counterfactual
Wordnet

RoBERTa Checklist 0.53 0.30
Backtranslation

RoBERTa Parrot 0.54 0.14
RoBERTa Checklist 0.54 0.09

Backtranslation
Embedding

RoBERTa Checklist 0.53 0.13
Backtranslation
Embedding
Counterfactual
Wordnet

Table 1: Final list of base learners selected via MRMR
with their cross-validation score and regression coeffi-
cient estimated during the training phase.

class imbalance and the considered evaluation met-
ric, which required careful tuning of classification
thresholds via cross-validation (Lipton et al., 2014).
A post-competition analysis in Table 3 shows that
the automatically chosen classification threshold of
0.26 during training was also optimal for the test
set.

Threshold Precision Recall F1
0.20 0.498 0.656 0.566
0.22 0.516 0.634 0.569
0.24 0.532 0.621 0.573
0.28 0.558 0.586 0.572
0.30 0.566 0.574 0.570

Table 3: Post-competition classification results in the
test set for different probability thresholds.

5 Conclusion and Future Work

This paper describes the system developed for the
PCL detection task of SemEval 2022. The author
demonstrates that the selected AutoNLP approach
can produce competitive results by leveraging meta-
learning, adversarial data augmentation and pre-
trained resources. Automatic hyper-parameter op-
timization and exploring different meta-learning

487



algorithms are left to a future work.
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