
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022), pages 36 - 59
July 14-15, 2022 ©2022 Association for Computational Linguistics

IRB-NLP at SemEval-2022 Task 1: Exploring the Relationship Between
Words and Their Semantic Representations

Damir Korenčić⇤
Division of Electronics

Rud̄er Bošković Institute
Zagreb, Croatia

damir.korencic@irb.hr

Ivan Grubišić⇤
Division of Electronics

Rud̄er Bošković Institute
Zagreb, Croatia

ivan.grubisic@irb.hr

Abstract

What is the relation between a word and its de-
scription, or a word and its embedding? Both
descriptions and embeddings are semantic rep-
resentations of words. But, what information
from the original word remains in these repre-
sentations? Or more importantly, which infor-
mation about a word do these two representa-
tions share? Definition Modeling and Reverse
Dictionary are two opposite learning tasks that
address these questions. The goal of the Defini-
tion Modeling task is to investigate the power
of information laying inside a word embedding
to express the meaning of the word in a hu-
manly understandable way – as a dictionary
definition. Conversely, the Reverse Dictionary
task explores the ability to predict word embed-
dings directly from its definition. In this paper,
by tackling these two tasks, we are exploring
the relationship between words and their se-
mantic representations. We present our find-
ings based on the descriptive, exploratory, and
predictive data analysis conducted on the COD-
WOE dataset. We give a detailed overview
of the systems that we designed for Defini-
tion Modeling and Reverse Dictionary tasks,
and that achieved top scores on SemEval-2022
CODWOE challenge in several subtasks. We
hope that our experimental results concerning
the predictive models and the data analyses we
provide will prove useful in future explorations
of word representations and their relationships.

1 Introduction

The COmparing Dictionaries and WOrd Em-
beddings (CODWOE) task (Mickus et al., 2022) is
aimed at explaining two different types of seman-
tic descriptions of words: dictionary glosses and
word embeddings. A dictionary gloss is a brief tex-
tual explanation of a word and a word embedding
is a vector representation that captures the word’s
semantic and syntactic properties (Smith, 2020).

⇤Equal contribution.

In order to investigate the relationship between
these two types of descriptions, two complemen-
tary subtracks were put together: 1. Definition
Modeling (DEFMOD) track, where correct glosses
need to be generated from word embedding vectors
(Noraset et al., 2017); and 2. Reverse Dictionary
(REVDICT) track, where correct embedding vec-
tors should be generated from dictionary glosses
(Hill et al., 2016). The datasets for both tracks
cover five different languages: English (EN), Span-
ish (ES), French (FR), Italian (IT), and Russian
(RU).

The key challenge of the CODWOE task is that it
needs to be performed without external data, which
precludes the use of pretrained models and vectors.
Additionally, the training dataset is relatively small
in comparison to the datasets on which models are
typically trained.

Our strategy was to adapt an RNN-based de-
coder model (Noraset et al., 2017) for the DEFMOD
track, and to use a transformer-based encoder (De-
vlin et al., 2019) for the REVDICT track. With the
limited amount of available data in mind, we hy-
pothesized that models should not be large. There-
fore we aimed to limit the model complexity by
reducing the number of parameters, for example
by using a subword tokenizer (Kudo and Richard-
son, 2018), which yields a smaller dictionary of
optimized subword fragments. All of the models
we used were built for a single language, and their
structure and parameters were optimized either it-
eratively or by way of Bayesian hyperparameter
optimization (BHO) (Snoek et al., 2012).

We conducted data analyses of the CODWOE
datasets and analyses of the developed machine
learning models. We performed a statistical and
visual analysis of the pretrained CODWOE embed-
dings, i.e., of their distributions and relationships.
DEFMOD analyses include an analysis of model per-
formance factors and a qualitative analysis of gener-
ated glosses. In the REVDICT predictive analysis,

36

Table 1: Aggregated language-level ranks of our team
for the DEFMOD (DM) and REVDICT (RD) tracks (and
the number of teams competing in a subtask).

TASK EN ES FR IT RU
DM-all 2 (9) 1 (7) 1 (6) 5 (7) 5 (6)
RD-sgns 3 (9) 1 (7) 1 (6) 1 (7) 2 (6)
RD-char 4 (7) 3 (5) 4 (5) 2 (6) 2 (5)
RD-electra 5 (6) 3 (4) 3 (4)

we investigate the impact of many different settings
on models’ performance defined in terms of dis-
tance and similarity scores between predicted and
target vectors.

We show that our adaptation of the DEFMOD ar-
chitecture (Noraset et al., 2017) can perform com-
petitively and that the use of multiple word embed-
dings can clearly improve the generation of word
glosses. For REVDICT, we demonstrate that our
approaches achieve top performance in terms of
ranking, which makes them suitable for informa-
tion retrieval applications. Our models perform
competitively and our results on the CODWOE chal-
lenge can be found in Table 1. We make the code of
our models and data analyses publicly available1.

2 Background

2.1 Related Work

Definition Modeling The Definition Modeling
(DEFMOD) task, first introduced in Noraset et al.,
2017, is focused on the prediction of dictionary
word glosses from word embeddings. Noraset et al.
(2017) experimented on two English dictionaries
and proposed a successful architecture based on
RNN.

Subsequent work on Definition Modeling fo-
cused on variations of the problem of prediction
of a word gloss from the word sense. These ap-
proaches consider gloss prediction based on sense-
specific word embeddings (Gadetsky et al., 2018;
Kabiri and Cook, 2020; Zhu et al., 2019), and on
a word-based context indicating the word sense
(Bevilacqua et al., 2020; Gadetsky et al., 2018;
Mickus et al., 2019; Yang et al., 2020; Zhang et al.,
2020). The proposed approaches are based ei-
ther on RNNs (Gadetsky et al., 2018; Kabiri and
Cook, 2020; Zhang et al., 2020; Zhu et al., 2019)
or Transformers (Bevilacqua et al., 2020; Mickus
et al., 2019). All of the previous approaches rely
on word embeddings pre-trained on large corpora,
most commonly word2vec (Mikolov et al., 2013).

1https://github.com/dkorenci/
codwoe-irb-nlp/

Sense-aware approaches that take embeddings as
input make use of either sense-aware word em-
beddings (Gadetsky et al., 2018; Kabiri and Cook,
2020) or of decomposition of word embeddings
into sense-specific vectors (Zhu et al., 2019).

The initially proposed architecture of Noraset
et al. (2017) is often used as a baseline solution.
The most commonly used measure of model perfor-
mance is the BLEU (Papineni et al., 2002) metric.
Although there is some overlap in used datasets,
most experiments rely on a specific dataset. The
reported model performances vary greatly. Noraset
et al. (2017) report BLEU of 31 and 23, depending
on the dictionary. Subsequent experiments report,
for the same approach, BLEU scores that range
from as little as 11 (Gadetsky et al., 2018) to as
much as 60 (Kabiri and Cook, 2020). The varia-
tion can be great even for the same language and
experimental setup (Kabiri and Cook, 2020). The
original approach of Noraset et al. (2017) remains
competitive in the sense-aware setting, with the
sense-aware approaches achieving BLEU increases
that range between 1 � 2 (Gadetsky et al., 2018;
Kabiri and Cook, 2020; Zhang et al., 2020) and
5 � 6 (Kabiri and Cook, 2020; Yang et al., 2020;
Zhang et al., 2020), depending on the setting.

While we view the Definition Modeling pri-
marily as a theoretically interesting task, poten-
tial applications include explainability of word em-
beddings and automatic generation of dictionaries,
which might be of interest in low-resource settings.

Reverse Dictionary The Reverse Dictionary
(REVDICT) is a task of finding the right word when
a word description is given (Bilac et al., 2004; Du-
toit and Nugues, 2002; Zock and Bilac, 2004). It
is the formulation of the tip-of-the-tongue prob-
lem (TOT) (Brown and McNeill, 1966) that occurs
during text synthesis. It is a condition in which a
person knows a lot about the word, such as its mean-
ing and origin, but is unable to recall it. REVDICT
is a complex task. There are countless variations of
input definitions that should lead to the same one-
word concept. This complexity comes in part from
the representation of the one-word concepts in the
human mind. People tend to relate concepts on
the conceptual and lexical level and form a highly
connected network of abstractions (Zock and Bilac,
2004).

Therefore, a natural approach to solving
REVDICT is to form a semantic network with
nodes (one-word concepts) and edges (associ-

37

ations) to search for the target word (Thorat
and Choudhari, 2016; Zock and Bilac, 2004).
REVDICT can be realized directly by compar-
ing the input definitions with all the definitions
in the dictionary and returning the most similar
ones, without taking into account any semantic or
grammatical information (El-Kahlout and Oflazer,
2004). However, REVDICT systems that include
semantics give better results, such as in Méndez
et al., 2013 and Calvo et al., 2016 where words are
represented as vectors in a semantic space.

Recent REVDICT approaches utilize deep learn-
ing (DL) to map arbitrary-length definition phrases
to the vector representation of the target word (Hill
et al., 2016; Malekzadeh et al., 2021; Qi et al., 2020;
Yan et al., 2020). The success of DL approaches in-
dicates that REVDICT can be solved implicitly, i.e.
by directly learning from given data, and doesn’t
require an explicit injection of domain knowledge.
According to this observation, the DL approach is
a good choice for solving the REVDICT task.

2.2 Dataset

The CODWOE datasets (Mickus et al., 2022) cover
five languages (EN, ES, FR, IT, RU) and are de-
rived from the Dbnary lexical data2. Each data
point corresponds to a single word and contains
word embedding vectors and the word gloss. Three
types of embedding are used, labeled as sgns
(pretrained word2vec), electra (contextual pre-
trained embeddings) and char (character-based
embeddings). Pretrained embeddings are based on
large corpora containing approximately 1B tokens.

Each dataset is divided into three sections: train-
ing, validation (development), and test. Datasets
for training and validation have 43.608 and 6.375
samples, respectively. Each track also has a sep-
arate set of test data. The DEFMOD test dataset
has 6.221 samples while the REVDICT has 6.208
samples.

More detailed statistics and analyses of the
dataset can be found in the Appendices, including
the gloss statistics (Table 5) and embedding vector
statistics (Table 11). Descriptive analysis of the em-
bedding vectors shows large variation in values that
depend on a language and an embedding type (Fig-
ures 3 and 4). Additionally, an exploratory analysis
showed that the embeddings for different languages
are easily separable (Figures 6 and 5). Interestingly,
patterns of vector-based word similarity seem to

2http://kaiko.getalp.org/about-dbnary/

differ significantly across embedding types, and in
this regard there are no visible relations between
different embeddings (Figure 7).

3 System overview

Both the DEFMOD and the REVDICT models rely
on unigram subword tokenizers (Kudo, 2018)
trained on glosses from the train datasets.

3.1 Definition Modeling

Our approach to the challenging task of Definition
Modeling on a limited dataset consists of prepro-
cessing the input data, extracting the semantic infor-
mation from the dataset, and controlling the model
size and complexity.

The inspection of the learning data revealed that
the gloss texts are often long since they consist of
several alternative definitions. We opted to include
only one definition per learning example. Our in-
tuition is that this approach, also taken in (Noraset
et al., 2017), alleviates the learning problem by
inducing the model to learn shorter and atomic def-
initions. The approach should also reduce noise
(since the number of alternative definitions in a
gloss is arbitrary).

The inspection of glosses also revealed the pres-
ence of lexicographic labels that precede the gloss
definitions. These labels, present for all languages
except English, convey data about, for example,
word semantics (ex. geography, history) or tem-
poral category (ex. archaic). We chose to remove
these labels since they introduce noise (the pres-
ence and the amount of labels appears arbitrary),
increase the dictionary size, and thus make the
learning problem harder.

To construct the dictionary we use the unigram
subword tokenizer (Kudo, 2018) implemented as
part of the SentencePiece tool (Kudo and Richard-
son, 2018). The reasons for using the subword
tokenization were the expected improvement in per-
formance for low-resource tasks (Kudo, 2018) and
the reduction in the number of model parameters
corresponding to token embeddings.

Since we opted for a deep learning model de-
pending on token embeddings, we initialized the
token embeddings with GloVe vectors (Pennington
et al., 2014) trained on the dataset of normalized
and cleaned atomic glosses. To demonstrate that
the GloVe vectors capture a degree of word seman-
tics, we aggregated the vectors on a gloss level
using tf-idf weighting. Then we inspected, for each

38

“target” gloss from a sample of English glosses,
other dataset glosses ordered by cosine similarity
to the target. This revealed that GloVe similarity
corresponds to the similarity in gloss meaning. Ad-
ditionally, we found that the models initialized with
GloVe vectors achieve a lower final loss.

Machine learning model We decided to use an
adaptation of the RNN-based model of (Noraset
et al., 2017), that proved competitive in a num-
ber of experimental settings. In the context of the
DEFMOD task, the model takes as input one or more
word embeddings (sgns, electra or char) and
produces a gloss (a sequence of tokens) that should
correspond to the word’s correct gloss.

From the input embeddings, we form two vec-
tors, the seed vector s that is used to initialize the
RNN, and the context vector c. For both the seed
and the context vectors we consider using a single
embedding, concatenation of embeddings, and a
nonlinear transformation of the concatenation. At
each position in the sequence the context vector is
passed as input, together with the RNN’s output,
to the special GRU-like gated cell (Noraset et al.,
2017). The output of the gated cell is then trans-
formed (via linear transformation and softmax ac-
tivation) to produce token-level probabilities. The
gated cell can learn to effectively combine the se-
mantic context with the RNN-level features in guid-
ing the generation process (Noraset et al., 2017).
The network architecture we use is labeled as S+G
in Noraset et al. (2017).

The described model performs conditional gen-
eration of tokens in a sequence, which is a standard
approach in RNN-based language modeling. The
probability of a gloss g is factorized under the as-
sumption that each token gi depends on the previ-
ous tokens, the seed embbedding s, and the context
c :

p(g|s, c) =

|g|Y

i=1

p(gi|g0:i�1, s, c)

In (Noraset et al., 2017), the context is equal to
the seed, i.e., the input word embedding. In our
case, both the seed and the context can either be
a single embedding or a function of multiple em-
beddings. This approach enables us to leverage the
information from several word embeddings in a
flexible way. For example, sgns embeddings can
be used as a seed while the context can be formed
by passing all the embeddings through a multilayer
perceptron. Another important difference is that

we use the unigram subword tokenization (Kudo,
2018). Finally, we experiment with using both
LSTM and GRU as the network’s RNN compo-
nents.

3.2 Reverse Dictionary

We approach REVDICT as a supervised vector re-
gression task and employ an end-to-end deep learn-
ing solution. Our model is based on a transformer
architecture (Vaswani et al., 2017) used as a def-
inition sentence encoder, and a fully connected
feed-forward network used as an output regression
module.

The transformer is used to produce useful rep-
resentations from given inputs, where the inputs
are tokenized definition sentences. For each sub-
word token in the input sequence, the transformer
gives a representation in the form of a vector. Our
REVDICT systems implement three different ap-
proaches for aggregating the output vectors pro-
duced by the transformer: 1. sum, where we sum
the representations given for each token in the in-
put sequence; 2. average, where we average the
representations given for each token in the input
sequence; and 3. eos, where we use only the repre-
sentation of the last token in the input sequence, i.e.
end-of-sequence (eos) token. The output module
further transforms these representations into word
embedding vectors.

Additionally, we utilize a multi-task learning
(Caruana, 1997; Ruder, 2017) approach. To sup-
port multi-task learning, we implemented multiple
output regression modules that simultaneously pre-
dict different types of embedding vectors from the
same representations produced by a single encoder.
Multi-task learning is used during the model train-
ing phase and only output from one output module
makes final predictions. The motivation for using a
multi-task learning approach is to benefit from in-
ductive transfer between tasks that could improve
the results of predicting a single task (Caruana,
1997).

4 Model Selection and Experimental
Setup

In this section we describe the technical details of
data preprocessing and model selection that com-
prise our methods of constructing the DEFMOD and
REVDICT models. The conceptual description of
the methods is given in Section 3.

39

4.1 Definition Modeling
Our choices regarding the technical details of data
preprocessing and model construction were guided
by what we will call development experiments.
These experiments consisted of training the model
on the train set, and observing both the final de-
velopment set loss and the quality of the produced
glosses.

Output gloss quality was assessed using a sep-
arate “trial” dataset - a small dataset of 200 items
provided by the organizers, containing gloss in-
formation consisting of the embedding vector, the
original word, and the gloss text. The assessment
was performed for English glosses only and aimed
to assess the quality of the generated text, and the
similarity of the output and the original glosses.
A choice was deemed an improvement if it led
to the improvement of development loss and ei-
ther improved the generated glosses or caused no
degradation in gloss quality. The development of
the final algorithm was performed iteratively and
heuristically. However, the overall improvement
over the iterations is confirmed by the results of the
test set evaluations.

Dataset transformation The transformation of
the original dataset is performed by creating un-
ambiguous training examples and removing the
uninformative data that makes the problem harder.

In the original dataset a gloss definition of-
ten consists of several equivalent but differently
phrased definitions. We divided the dictionary
glosses into atomic definitions by splitting the text
strings around the “;” character. This heuristic was
motivated by gloss sample analysis and the inspec-
tion of a sample of atomic glosses revealed that it
works in the majority of cases. Each atomic gloss
in the new dataset was paired with all the embed-
ding vectors of the original gloss.

In order to remove lexicographical labels from
the beginning of the glosses’ text, simple language-
specific regular expressions and removal rules were
formed based on gloss sample analysis. This ap-
proach proved to be effective for a large majority
of glosses.

To perform further normalization we addition-
ally lowercased all the glosses and removed the
punctuation from the end of texts. The code used
to preprocess the original dataset, the new dataset,
and the transformation log can be found in the code
repository. We note that both the SentencePiece dic-
tionary and the GloVe vectors used for DEFMOD are

derived from the transformed dataset. The statistics
of the transformed glosses are presented in Table 6

Dictionary We used the unigram subword tok-
enizer (Kudo, 2018) available as part of the Sen-
tencePiece tool (Kudo and Richardson, 2018). and
trained it using the default parameters. Experi-
ments in Gowda and May (2020) suggest that a vo-
cabulary of 8000 subwords is a good default choice
for several languages in the case of machine trans-
lation. Additionally, our development experiments
showed that English models using a vocabulary
of 8000 subwords are superior to 10000 subword
models. Therefore we decided to set the number
of unigram tokens to 8000 in case of English, and
to 8500 in case of other, highly inflected languages
expected to have a higher number of distinct suf-
fixes.

Pretrained token embeddings GloVe embed-
dings (Pennington et al., 2014) of the subword
tokens, introduced to initialize the tokens with
corpus-level semantic information, were con-
structed as follows. The model was trained on
the set of transformed glosses, and the embedding
size was fixed to 256 (the size of the gloss embed-
dings). The number of training iterations was set
to 50, the “cutoff” parameter xmax was set to 10,
while all the other parameters retained their default
values. No frequency-based vocabulary pruning
was performed.

Machine learning model We fixed the maxi-
mum sequence length of the RNN models to 64
subword tokens. Our intuition is that this allevi-
ates the learning problem and could lead to mod-
els focused on generating shorter but more correct
glosses.

The models were optimized using the AdamW
algorithm (Loshchilov and Hutter, 2017) and the
standard categorical cross-entropy loss. The train-
ing process was stopped after a fixed number of
epochs, or if the best solution did not improve by
more than 0.1% over 10 epochs. During inference,
the optimal solution was constructed using the
beam search algorithm implementation provided
by the competition organizers3.

We iteratively improved the models using the
described development experiments, i.e., relying
on the development set loss and analysis of model

3https://github.com/TimotheeMickus/
codwoe/

40

Table 2: Characteristics of our REVDICT (RD) ap-
proaches (BS = batch size; ME = max epochs; HP =
hyperparameter optimization points; S = scheduler; L =
loss; MT = multi-task learning).

RD BS ME HP S L MT
1 1024 20 30 CS MSE no
2 2048 20 30 CS MSE no
3 4096 20 30 CS MSE no
4 8192 20 30 CS MSE no
5 2048 150 10 PS MSE no
6 2048 150 10 PS MSE yes

glosses produced for the trial dataset. We experi-
mented with several architectural elements and hy-
perparameters: the formulation of the seed (RNN
init. value) and context (gate input) of the network,
RNN cell type, dropout, learning rate (LR) and LR
scheduler, and the number of training epochs.

The most successful variant is constructed by
using the concatenation of all the gloss embeddings
as the context and the sgns embedding as the seed.
This variant uses input dropout of 0.1 and network
dropout of 0.3. The input dropout is applied to the
seed and context vectors, as well as to the word
embeddings. The network dropout is applied to the
output of the RNN (final layer) and to the output
of the gate cell. The chosen learning rate is 0.001,
and the “plateau” LR scheduler is used – LR is
multiplied by 0.1 if there is no improvement over
5 epochs.

For the context vector, we tried single embed-
dings and the combined embeddings merged via a
multilayer perceptron. Both variants proved infe-
rior to the concatenation of all vectors. The merged
seed vector proved no different from the single em-
bedding seed, so we opted for the simpler solution.
Both the development experiments and the results
showed no difference between the LSTM and the
GRU cell.

Analysis of errors revealed that models some-
times produce a deformed output (very short or non-
alphabetic string), and that this almost never occurs
simultaneously for two distinct models. Therefore
a way of heuristic model improvement is to com-
bine it with another fallback model to be used in
case of deformed outputs. We combined a model
with a concatenated context and a model with a
single-embedding context, or two models with dis-
tinct RNN cell types. A more detailed analysis of
the model variants can be found in Appendix A.2.

4.2 Reverse Dictionary

We conducted various development experiments
before deciding on the final configuration of our
REVDICT solutions. In all of the experiments, we
used the entire set of train data to train the model,
and the entire set of validation (development) data
for scoring. We used Mean Squared Error (MSE)
as a loss function during training. We tested the
effect of cosine loss if added to MSE with differ-
ent coefficients, but we obtained the best results
without cosine loss. We also used MSE for scoring
models during Bayesian hyperparameter optimiza-
tion (BHO).

To determine the optimal model size, we
searched the space of two transformer hyperpa-
rameters: the number of heads and the number of
layers. We used a grid search approach with these
values v 2 {1, 2, 4, 8} for both hyperparameters.
Additionally, we used BHO (Snoek et al., 2012) to
find the optimal model for each grid point. How-
ever, the increase in model size did not increase the
performance of the model. These results were in
line with the expectations we had due to the small
size of the datasets. Accordingly, we decided to
use a transformer with two heads and two layers.
Additionally, we experimented with the maximum
length of the input sequence and achieved better
validation performance with 256 tokens than 512
with tokens.

We compared performance with and without to-
ken embeddings initialization with GloVe vectors.
Contrary to our expectations, there was no signifi-
cant difference in validation performance between
these two options, so we skipped the GloVe ini-
tialization in the REVDICT system settings. An-
other development experiment we conducted was
to find the optimal method for aggregating the out-
put vectors produced by the transformer, described
in Section 3.2. We found that the average method
gives the best results in all cases. Furthermore, we
examined the influence of the number of layers in
the output module on the final prediction. Accord-
ing to the results, there is no benefit in increasing
the number of layers in the output module, so we
chose a single-layer fully connected network. We
also chose Rectified Linear Unit (ReLU) activation
function for the output regression module, because
it yielded better performance than hyperbolic tan-
gent (Tanh) activation.

Finally, we made six different solutions for
REVDICT task. All of these solutions used a two-

41

Table 3: Results for the IRB-NLP team systems on the DEFMOD task. MoverScore, BLEU, and lemma-BLEU
results are given for each of the five languages. Best result across all teams and models is given, followed by the
results of our two best systems. Overall best results of our team are bolded and the rankings can be found in Table 1.

EN ES FR IT RU

MVR BLEU lBLEU MVR BLEU lBLEU MVR BLEU lBLEU MVR BLEU lBLEU MVR BLEU lBLEU

BEST 0.135 0.033 0.043 0.128 0.045 0.064 0.075 0.029 0.038 0.117 0.066 0.099 0.148 0.049 0.072
IRBv3 0.089 0.032 0.040 0.093 0.045 0.064 0.055 0.026 0.032 0.074 0.009 0.014 0.080 0.027 0.035
IRBv4 0.094 0.033 0.042 0.092 0.044 0.062 0.056 0.028 0.033 0.077 0.010 0.015 0.078 0.027 0.036

head transformer architecture, where each head
consists of two layers. We used a vocabulary size
of 8000 tokens and a maximum sequence length of
256 tokens. The unigram SentencePiece tokenizers
used were trained on lowercased but otherwise un-
modified glosses contained in a train set. We used
the average method for combining an encoder’s
output representations and fed them to the output
module, which is a single fully-connected layer
with RELU activation functions. We varied five hy-
perparameters between solutions (Table 2): batch
size, max. epochs, number of BHO points, sched-
uler type, and learning approach. We used the Co-
sine Annealing with Linear Warmup scheduler (CS)
for the first four solutions, and the Plato scheduler
(PS) for the final two solutions. We utilized BHO
(Snoek et al., 2012) to automatically search for op-
timal hyperparameters and submitted for testing
only models with the best MSE validation scores.

5 Results

Definition Modeling On the DEFMOD task, the
models were evaluated using three metrics: BLEU
score (Papineni et al., 2002), lemma-level BLEU
score, and MoverScore (Zhao et al., 2019). While
the BLEU score is based on matching token
n-grams between the reference and the model-
produced text, MoverScore calculates a measure
of distance between texts embedded in a semantic
space, i.e., between two sets of contextual word
embeddings computed using a transformer model.

Table 3 contains scores for two of our best model
configurations, “version 3” and “version 4”. Both
model configurations are described in detail at the
end of Section 4.1. While version 3 models are
based on GRU RNN and trained using 300 training
epochs, version 4 models are built with either GRU
or LSTM and 450 epochs. The fallback strategy,
which yields slight performance gains, is also used.
These results are presented and analyzed in a more
detailed manner in Appendix A.2.

Results in Table 3 show that our models are com-
petitive with other teams’ models on English, Span-

ish and French, especially in terms of the BLEU
scores. MoverScore results are weaker than those
produced by the top models, but rank among the
upper half of the systems except for Italian and Rus-
sian, languages for which our models’ performance
is below average. Rankings aggregated across all
the scores, displayed in Table 1, reflect the above
observations and show that the models we produced
can perform quite competitively.

Our approach shows inter-language variation,
both in relative (ranks) and absolute (score values)
terms. The full results provided by the organizers4

show that this is also true for other teams – for ex-
ample, few of the high-performing models perform
markedly better for Italian and Russian than for
other languages. However, some approaches yield
more stable results across all languages.

All of the models yielded by the CODWOE shared
task perform weakly in terms of BLEU. Namely,
the BLEU scores of the existing DEFMOD ap-
proaches commonly achieve BLEU scores in the
range of 20 to 30 (Kabiri and Cook, 2020; Noraset
et al., 2017), with some settings yielding BLEU
as high as 60 (Kabiri and Cook, 2020). The ex-
periments with the weakest reported BLEU scores
(Gadetsky et al., 2018; Kabiri and Cook, 2020) re-
ports BLEU scores of approx. 12, while the best
CODWOE scores are below BLEU 10.
CODWOE DEFMOD models perform better in

terms of MoverScore, a metric designed for ma-
chine summarization (Zhao et al., 2019). An analy-
sis of a number of summarization systems showed
that MoverScore values range between 15 and 24,
with an absolute minimum of 10 and an average
slightly below 20 (Fabbri et al., 2021). In compar-
ison, top CODWOE systems reach scores between
12 and 15, except in the case of French, which puts
them on the lower end of the summarization scale.

We hypothesize that the main reason for the de-
scribed weak performance is comparatively small
amount of CODWOE training data (for each indi-

4https://github.com/TimotheeMickus/
codwoe/

42

Table 4: Results for the IRB-NLP team systems on the REVDICT task. The best result over all teams and models is
given (BEST), followed by the best results of our team (IRB-all) and results of our two specific approaches, IRB-v1
and IRB-v6. Finally, the ranks of our team are given (and the number of teams competing in a subtask).

EN ES FR IT RU

MSE COS RNK MSE COS RNK MSE COS RNK MSE COS RNK MSE COS RNK

sgns

BEST 0.854 0.260 0.231 0.858 0.403 0.167 1.026 0.342 0.193 1.031 0.380 0.165 0.528 0.424 0.150
IRB-all 0.964 0.260 0.231 0.883 0.367 0.197 1.068 0.342 0.193 1.076 0.380 0.165 0.568 0.421 0.150
IRB-v1 1.024 0.250 0.247 0.941 0.362 0.197 1.068 0.342 0.214 1.076 0.380 0.165 0.568 0.412 0.161
IRB-v6 1.119 0.214 0.262 1.020 0.354 0.201 1.319 0.255 0.262 1.318 0.339 0.187 0.653 0.381 0.150
IRB-rnk 9 (9) 1 (9) 1 (9) 3 (7) 2 (7) 2 (7) 3 (6) 1 (6) 1 (6) 3 (7) 1 (7) 1 (7) 4 (6) 2 (6) 1 (6)

char

BEST 0.141 0.798 0.419 0.467 0.839 0.403 0.335 0.789 0.416 0.334 0.747 0.383 0.116 0.852 0.357
IRB-all 0.162 0.770 0.419 0.526 0.819 0.403 0.390 0.756 0.421 0.366 0.724 0.383 0.140 0.824 0.357
IRB-v1 0.169 0.761 0.438 0.526 0.819 0.407 0.409 0.744 0.425 0.366 0.724 0.397 0.145 0.818 0.361
IRB-v6 0.172 0.765 0.444 0.635 0.784 0.420 0.434 0.734 0.421 0.399 0.711 0.383 0.144 0.821 0.357
IRB-rnk 5 (7) 7 (7) 1 (7) 3 (5) 5 (5) 1 (5) 3 (5) 4 (5) 2 (5) 5 (6) 5 (6) 1 (6) 3 (5) 4 (5) 1 (5)

electra

BEST 1.301 0.847 0.432 1.066 0.862 0.429 0.828 0.735 0.345
IRB-all 1.685 0.828 0.432 1.339 0.847 0.429 0.911 0.724 0.345
IRB-v1 1.723 0.821 0.438 1.339 0.847 0.447 0.911 0.724 0.350
IRB-v6 1.988 0.792 0.432 1.566 0.825 0.429 1.049 0.702 0.345
IRB-rnk 6 (6) 6 (6) 1 (6) 4 (4) 4 (4) 1 (4) 4 (4) 3 (4) 1 (4)

vidual language), as well as the lack of word em-
beddings pre-trained on a large outside corpus.
Namely, most of the other DEFMOD approaches
use at least 2–3 times more training data, both in
terms of the number of (embedding, text) examples,
and the overall number of tokens (Bevilacqua et al.,
2020; Gadetsky et al., 2018; Mickus et al., 2019;
Noraset et al., 2017; Yang et al., 2020; Zhang et al.,
2020; Zhu et al., 2019). Additionally, these ap-
proaches make use of the pre-trained word embed-
dings that carry the semantic information extracted
from a huge corpus.

As for the representativeness of the test data, the
visual analysis performed in A.1 shows that the
distribution of test gloss embeddings matches the
train distribution well. Another factor that poten-
tially influences performance is word rarity. We
observed that the English test examples contain a
significant amount of rare words (such as “pelta”,
“akimbo”, “gothy”, or “dungarees”), while some
DEFMOD experiments explicitly focus on the most
frequent words (Noraset et al., 2017).

The greatest performance gains for the models
we used come from using all three vector embed-
dings to form a context vector. This suggests that
future approaches can benefit from leveraging sev-
eral distinct embeddings types as input for gloss
generation.

We believe that the question of the influence
of various factors on the performance of DEFMOD
systems is important and under-explored. These
factors include model structure and parameters, per-
formance metric, dataset size (both for training and

pre-training), and the semantic relation between
training and test data. Closely related is the ques-
tion of the nature of semantic generalization that
DEFMOD systems are capable of – what kind of ex-
amples (and relations contained within them) can
inform a successful inference of glosses for unseen
embeddings.

Further performance-related analyses can be
found in Appendix A.2. Appendix A.3 contains a
qualitative analysis of glosses that shows that gener-
ated glosses can capture varying levels of semantic
properties of the correct glosses. We hypothesize
that these variations in similarity are hard to capture
with metrics such as MoverScore and BLEU.

Reverse Dictionary We used the following met-
rics for internal validation of our REVDICT solu-
tions (described in Section 4.2): Mean Squared
Error (MSE), Cosine Similarity (COS), and Cen-
tral Kernel Alignment (CKA) (Cortes et al., 2012;
Kornblith et al., 2019). COS measure has noted
drawbacks (Heidarian and Dinneen, 2016). There-
fore, we use the linear CKA similarity measure
to gain another perspective on model performance.
Validation scores can be found in Appendix B.2, Ta-
ble 12. It is evident that each subsequent approach
gives better validation results than the previous
ones.

Test predictions were scored by the following
metrics: MSE, COS, and Cosine-Based Ranking
(RNK). The RNK measure is defined as the propor-
tion of test samples with cosine similarity to the
model output embedding higher than the ground

43

Figure 1: Example of two different predictions for
ground truth vector VGT , where predicted vector V1

has better MSE and COS scores than V2, and V2 has bet-
ter RNK score than V1. The rest of the points represent
vectors of other test samples.

truth embedding. The final results of our solutions
can be found in Table 13 (see Appendix B.2). Here,
each subsequent approach has lower scores than the
previous ones, which is the complete opposite of
the validation results. This suggests potential over-
fitting to the dev dataset that could be the result of
BHO. However, this is contrary to expectations as
the last two solutions have three times fewer BHO
points and should not overfit to the dev dataset. The
reason for this phenomenon is unclear and needs
further investigation. Finally, the best REVDICT
results for each team can be found in Appendix B.2
(Table 14 for MSE, Table 15 for COS, and Table
16 for RNK). The test results and overall rankings
of our solutions are summarized in Table 4.

Compared to other solutions, our systems have
average or below-average performance in terms of
MSE and COS test scores. However, they perform
significantly better than the other approaches in
terms of RNK test scores, from which we conclude
that our solutions are better suited for the retrieval
task. This is an interesting situation which we elab-
orate with the following example, shown in Figure
1. It depicts two different predictions, V1 and V2,
the first with better MSE and COS scores, and the
second with a better RNK score. The second solu-
tion prefers a vector subspace with a lower density
of test samples even if the absolute distance from
the correct vector is greater. With a smaller set of
possible surrounding solutions, retrieving the vec-
tor VGT from the vector V2 is more precise than
retrieving it from the vector V1.

6 Conclusion

Definition Modeling and Reverse Dictionary are
two opposite learning tasks for exploring the rela-
tionship between different semantic representations
of words. CODWOE SemEval task (Mickus et al.,
2022) is designed to investigate these tasks on five
different languages using three different types of
word embeddings.

We propose an adaptation of an existing
DEFMOD model and analyze its performance and
the glosses generated by the model. We believe
that DEFMOD is a theoretically interesting problem
and that further investigations should focus on dis-
covering which types of semantic generalization
the models are able to perform, and how this gen-
eralization ability is influenced by both the data
and the models’ structure. The existing DEFMOD
experiments are largely incomparable since they
are based on different data and setups. We believe
that a contribution of the CODWOE task is the cre-
ation of a multilingual evaluation setting, as well as
the use of the flexible MoverScore as an evaluation
metric.

Our REVDICT systems are based on deep re-
gression models based on transformer architecture
that achieved top scores for the difficult-to-predict
sgns (word2vec) embeddings. In most cases our
REVDICT solutions perform significantly better
then the other systems in terms of the RNK score.
These results imply that our solutions could be the
appropriate approach for retrieving the right word
from its description, a problem crucial for solving
the TOT problem (Brown and McNeill, 1966) in
machine-assisted text synthesis.

In summary, the models that we produced for
the CODWOE task perform competitively when com-
pared to other participants’ models, and can there-
fore serve as a reasonable starting point for future
tackling of DEFMOD and REVDICT problems. We
believe that the promising directions for future op-
timizations include the construction of multilingual
and multi-task models, as well as investigations of
the influence of the external data, primarily in the
form of huge pre-training corpora.

Acknowledgments

We would like to thank the anonymous review-
ers for the useful comments, as well as Timothee
Mickus for the help with challenge-related ques-
tions. We would also like to thank Miha Keber and
Tomislav Lipić for helpful discussions and advice.

44

References
Michele Bevilacqua, Marco Maru, and Roberto Navigli.

2020. Generationary or “how we went beyond word
sense inventories and learned to gloss”. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
7207–7221, Online. Association for Computational
Linguistics.

Slaven Bilac, Wataru Watanabe, Taiichi Hashimoto,
Takenobu Tokunaga, and Hozumi Tanaka. 2004. Dic-
tionary search based on the target word description.
In Proc. of the Tenth Annual Meeting of The Associ-
ation for Natural Language Processing (NLP2004),
pages 556–559.

Roger Brown and David McNeill. 1966. The “tip of
the tongue” phenomenon. Journal of verbal learning
and verbal behavior, 5(4):325–337.

Hiram Calvo, Oscar Méndez, and Marco A Moreno-
Armendáriz. 2016. Integrated concept blending with
vector space models. Computer Speech & Language,
40:79–96.

Rich Caruana. 1997. Multitask learning. Machine
learning, 28(1):41–75.

Corinna Cortes, Mehryar Mohri, and Afshin Ros-
tamizadeh. 2012. Algorithms for learning kernels
based on centered alignment. The Journal of Ma-
chine Learning Research, 13:795–828.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training
of Deep Bidirectional Transformers for Language
Understanding. arXiv:1810.04805 [cs]. ArXiv:
1810.04805.

Dominique Dutoit and Pierre Nugues. 2002. A lexical
database and an algorithm to find words from defini-
tions. In ECAI, volume 45, pages 0–454. Citeseer.

Ilknur Durgar El-Kahlout and Kemal Oflazer. 2004. Use
of wordnet for retrieving words from their meanings.
In Proceedings of the global Wordnet conference
(GWC2004), pages 118–123.

Alexander R. Fabbri, Wojciech Kryściński, Bryan Mc-
Cann, Caiming Xiong, Richard Socher, and Dragomir
Radev. 2021. SummEval: Re-evaluating Summariza-
tion Evaluation. Transactions of the Association for
Computational Linguistics, 9:391–409.

Artyom Gadetsky, Ilya Yakubovskiy, and Dmitry Vetrov.
2018. Conditional generators of words definitions.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 2:
Short Papers), pages 266–271, Melbourne, Australia.
Association for Computational Linguistics.

Thamme Gowda and Jonathan May. 2020. Finding the
Optimal Vocabulary Size for Neural Machine Trans-
lation. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pages 3955–3964,
Online. Association for Computational Linguistics.

Arash Heidarian and Michael J Dinneen. 2016. A
hybrid geometric approach for measuring similar-
ity level among documents and document clustering.
In 2016 IEEE Second International Conference on
Big Data Computing Service and Applications (Big-
DataService), pages 142–151. IEEE.

Felix Hill, Kyunghyun Cho, Anna Korhonen, and
Yoshua Bengio. 2016. Learning to understand
phrases by embedding the dictionary. Transactions
of the Association for Computational Linguistics,
4:17–30.

Arman Kabiri and Paul Cook. 2020. Evaluating a multi-
sense definition generation model for multiple lan-
guages. In International Conference on Text, Speech,
and Dialogue, pages 153–161. Springer.

Simon Kornblith, Mohammad Norouzi, Honglak Lee,
and Geoffrey Hinton. 2019. Similarity of neural
network representations revisited. In International
Conference on Machine Learning, pages 3519–3529.
PMLR.

Taku Kudo. 2018. Subword Regularization: Improving
Neural Network Translation Models with Multiple
Subword Candidates. In Proceedings of the 56th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 66–75,
Melbourne, Australia. Association for Computational
Linguistics.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for Neural Text Processing.
In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

Ilya Loshchilov and Frank Hutter. 2017. Decoupled
weight decay regularization.

Arman Malekzadeh, Amin Gheibi, and Ali Mohades.
2021. Predict: Persian reverse dictionary. arXiv
preprint arXiv:2105.00309.

Oscar Méndez, Hiram Calvo, and Marco A Moreno-
Armendáriz. 2013. A reverse dictionary based on
semantic analysis using wordnet. In Mexican Inter-
national Conference on Artificial Intelligence, pages
275–285. Springer.

Timothee Mickus, Denis Paperno, Mathieu Constant,
and Kees van Deemter. 2022. SemEval-2022 Task
1: Codwoe – comparing dictionaries and word em-
beddings. In Proceedings of the 16th International
Workshop on Semantic Evaluation (SemEval-2022).
Association for Computational Linguistics.

Timothee Mickus, Denis Paperno, and Matthieu Con-
stant. 2019. Mark my Word: A Sequence-to-
Sequence Approach to Definition Modeling. In
Proceedings of the First NLPL Workshop on Deep
Learning for Natural Language Processing, pages 1–
11, Turku, Finland. Linköping University Electronic
Press.

45

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositionality.
Advances in neural information processing systems,
26.

Thanapon Noraset, Chen Liang, Larry Birnbaum, and
Doug Downey. 2017. Definition modeling: Learning
to define word embeddings in natural language. In
Proceedings of the Thirty-First AAAI Conference on
Artificial Intelligence, AAAI’17, page 3259–3266.
AAAI Press.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global Vectors for Word
Representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1532–1543, Doha, Qatar.
Association for Computational Linguistics.

Fanchao Qi, Lei Zhang, Yanhui Yang, Zhiyuan Liu, and
Maosong Sun. 2020. Wantwords: An open-source
online reverse dictionary system. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 175–181.

Sebastian Ruder. 2017. An overview of multi-task
learning in deep neural networks. arXiv preprint
arXiv:1706.05098.

Noah A. Smith. 2020. Contextual word representa-
tions: Putting words into computers. Commun. ACM,
63(6):66–74.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams.
2012. Practical bayesian optimization of machine
learning algorithms. Advances in neural information
processing systems, 25.

Sushrut Thorat and Varad Choudhari. 2016. Implement-
ing a reverse dictionary, based on word definitions,
using a node-graph architecture. In Proceedings of
COLING 2016, the 26th International Conference on
Computational Linguistics: Technical Papers, pages
2797–2806, Osaka, Japan. The COLING 2016 Orga-
nizing Committee.

Laurens Van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of machine
learning research, 9(11).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Yingfan Wang, Haiyang Huang, Cynthia Rudin, and
Yaron Shaposhnik. 2020. Understanding how dimen-
sion reduction tools work: an empirical approach to
deciphering t-sne, umap, trimap, and pacmap for data
visualization. arXiv preprint arXiv:2012.04456.

Hang Yan, Xiaonan Li, Xipeng Qiu, and Bocao Deng.
2020. BERT for monolingual and cross-lingual re-
verse dictionary. In Findings of the Association for
Computational Linguistics: EMNLP 2020, pages
4329–4338, Online. Association for Computational
Linguistics.

Liner Yang, Cunliang Kong, Yun Chen, Yang Liu, Qinan
Fan, and Erhong Yang. 2020. Incorporating sememes
into chinese definition modeling. IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing,
28:1669–1677.

Haitong Zhang, Yongping Du, Jiaxin Sun, and Qingxiao
Li. 2020. Improving interpretability of word embed-
dings by generating definition and usage. Expert
Systems with Applications, 160:113633.

Wei Zhao, Maxime Peyrard, Fei Liu, Yang Gao, Chris-
tian M. Meyer, and Steffen Eger. 2019. MoverScore:
Text generation evaluating with contextualized em-
beddings and earth mover distance. In Proceedings
of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 563–578, Hong
Kong, China. Association for Computational Lin-
guistics.

Ruimin Zhu, Thanapon Noraset, Alisa Liu, Wenxin
Jiang, and Doug Downey. 2019. Multi-sense Defini-
tion Modeling using Word Sense Decompositions.

Michael Zock and Slaven Bilac. 2004. Word lookup on
the basis of associations : from an idea to a roadmap.
In Proceedings of the Workshop on Enhancing and
Using Electronic Dictionaries, pages 29–35, Geneva,
Switzerland. COLING.

46

A Appendix - Analysis of DEFMOD Data and Models

A.1 Train and Test Data

Motivated by the weak performance of DEFMOD models (see Section 5), we examined whether the
distributions of train and test data are comparable. To this end we created 2D projections of sgns and
electra embedding for all five languages using the t-SNE method (Van der Maaten and Hinton, 2008).

The projections, depicted in Figure 2, show that the train and test distributions of the embeddings match
well. It is therefore reasonable to expect that the distributions of the gloss texts are similar as well, as the
gloss semantics expectedly matches the semantics of the corresponding words. However, this conjecture
should be confirmed experimentally, for example by per-gloss aggregation of pretrained word embeddings
extracted from huge corpora.

Figure also shows that the electra vectors are more separable than the sgns vectors. The separability
of the embedding vectors varies across languages, probably influenced by the corpora used for pre-training
of the embeddings. We note that the observations about the train and test embedding distributions are also
applicable to the REVDICT problem aimed at the prediction of the embeddings from gloss texts.

Basic gloss statistics can be found in Table 5. There exists a large variation in gloss size between
languages, e.g., the longest gloss from the ES dataset is almost twice the size of the longest EN gloss. In
addition, the longest glosses in the validation (development) datasets are significantly smaller then those
in the train datasets, on average 42.55% smaller. The ’dictionary size’ column in the table is the number
of distinct tokens in each dataset. Dictionary sizes vary, for example, EN dictionary is approximately
half the size of the RU dictionary. Differences between the gloss and dictionary sizes suggest that it is
reasonable to use a separate model for each language.

Basic statistics of the transformed dataset can be found in Table 6. As expected, the transformed glosses
are significantly smaller then the glosses in the original dataset. For example, the median transformed
gloss size is on average 29.25% smaller.

Lang. Split Dict. size #Tokens #Glosses Gloss size
mean st.dev min q25 median q75 max

EN train 29.046 511.531 43.608 11.73 7.98 1 6.0 10.0 15.0 129
EN dev 9.478 76.073 6.375 11.93 7.98 1 6.0 10.0 15.0 70
ES train 46.765 647.093 43.608 14.84 13.07 1 7.0 11.0 18.0 257
ES dev 15.464 91.943 6.375 14.42 12.22 1 7.0 11.0 17.0 159
FR train 40.032 623.978 43.608 14.31 9.74 1 8.0 12.0 18.0 159
FR dev 12.760 91.475 6.375 14.35 9.91 1 8.0 12.0 18.0 113
IT train 40.130 592.409 43.608 13.58 11.01 1 6.0 11.0 18.0 202
IT dev 14.069 87.531 6.375 13.73 11.61 1 6.0 11.0 18.0 130
RU train 57.141 492.978 43.608 11.30 7.78 1 6.0 9.0 14.0 169
RU dev 15.498 70.392 6.375 11.04 7.22 1 6.0 9.0 14.0 74

Table 5: Statistics of the gloss and dictionary sizes for the original train and validation (development) datasets. Sizes
are calculated by counting the number of whitespace-delimited tokens.

A.2 DEFMOD Models’ Performance

Here we append Section 5 with a more fine-grained analysis of the DEFMOD models. Table 8 contains
the models’ performances. As can be seen, the largest gains are achieved by using all of the embedding
vectors as input for gloss generation (context=allvec). There exists a negligible difference between the
LSTM and GRU RNNs, with GRU performing slightly better. Using a fallback model always slightly
improves the MoverScore of a model. In Table 8 the architecture of the fallback model is the architecture
of the main model with the corresponding parameter replaced with the value in the ’fallback’ column.
Interestingly, using contextual electra vectors does not help, i.e., the sgns (word2vec) vectors which
are not context-aware perform comparably. This is true even when only a single embedding is used, i.e.,

47

Lang. Split Dict. size #Tokens #Glosses Gloss size
mean st.dev min q25 median q75 max

EN train 25.921 456.673 58.792 7.77 6.97 1 3.0 6.0 10.0 128
EN dev 8.892 68.145 8.403 8.11 7.06 1 3.0 6.0 11.0 69
ES train 40.024 595.879 44.543 13.38 12.01 1 6.0 10.0 16.0 168
ES dev 13.723 84.303 6.493 12.98 11.32 1 6.0 10.0 16.0 158
FR train 33.963 487.013 46.537 10.47 9.18 1 4.0 8.0 14.0 155
FR dev 11.216 71.021 6.786 10.47 9.22 1 4.0 8.0 14.0 101
IT train 39.124 452.028 45.080 10.03 9.03 1 4.0 7.0 13.0 195
IT dev 13.805 67.211 6.621 10.15 9.40 1 4.0 7.0 13.0 109
RU train 56.467 428.787 50.843 8.43 6.99 1 4.0 7.0 11.0 142
RU dev 15.241 61.074 7.509 8.13 6.44 1 4.0 6.0 11.0 72

Table 6: Statistics of the gloss and dictionary sizes for the transformed train and validation (development) datasets.
Sizes are calculated by counting the number of whitespace-delimited tokens.

when context equals electra. The equality of sgns and electra is unexpected since both the train
and test datasets contain polysemous electra vectors and words with multiple senses.

It is also interesting to consider the influence of the training data on the model’s performance. We
hypothesize that a DEFMOD model’s score on a single test example is positively correlated with the
semantic closeness of the example to the examples in the train set. To test this hypothesis we calculate
Spearman correlation between test MoverScore and BLEU on one, and the cosine similarity of the test
embedding and most similar train embeddings. This is done for the best-performing submitted model
from Table 8. We also calculate the average scores on two sets of 10% test examples that are least similar
and most similar to the train examples. Since the embeddings (sgns and electra) were built on large
outside corpora, it is reasonable to believe that they capture semantic similarity of the associated words
and glosses. Surprisingly, the results show a lack of consistent and strong correlation and the correlations
range from weakly negative to weakly positive, depending on both the language and the embedding type.
This lack of correlation could be caused by many factors, including the nature of the model, the nature of
the pretrained embeddings, and the semantics of the cosine similarity measure.

The future extensions and improvements of the proposed analysis could reveal the nature of the train
data necessary for the DEFMOD models to successfully generalize, and perhaps point to a similarity
measure that reveals more fine-grained properties of such a generalization.

Table 7: Correlation between the best DEFMOD model’s scores on one, and the closeness of the test examples to the
train set on the other side. The unit of correlation is an example from the test set, and its similarity to the train set is
calculated as the average cosine similarity with the 10 most similar train embeddings. The last two columns contain
average model scores on 10% of the least and most train-similar test examples.

Correlation of Score and Similarity Avg. Score for Similarity Percentile

MVR BLEU MVR BLEU

LANG-EMB spearman ⇢ p-value spearman ⇢ p-value bottom 10% top 10% bottom 10% top 10%

EN-SGNS 0.0458 0.0003 0.0019 0.8831 0.0852 0.1004 0.0328 0.0297
EN-ELKT 0.0096 0.4508 0.0186 0.1414 0.0889 0.1182 0.0293 0.0503
FR-SGNS -0.0625 0.0000 -0.1270 0.0000 0.0801 0.0427 0.0363 0.0222
FR-ELKT 0.0433 0.0006 0.0838 0.0000 0.0387 0.0760 0.0214 0.0322
RU-SGNS 0.0758 0.0000 0.0353 0.0054 0.0754 0.0947 0.0310 0.0279
RU-ELKT 0.0000 0.9979 -0.0063 0.6217 0.0748 0.0677 0.0279 0.0244
ES-SGNS 0.0458 0.0003 0.0019 0.8831 0.1084 0.1052 0.0523 0.0552
IT-SGNS -0.0528 0.0000 0.0047 0.7084 0.1082 0.0783 0.0111 0.0128

48

Figure 2: t-SNE projections of the sgns and electra vectors from the train (green) and test (red) datasets. Color
intensity is proportional to data density.

EN-SGNS EN-ELECTRA

FR-SGNS FR-ELECTRA

RU-SGNS RU-ELECTRA

ES-SGNS IT-SGNS

49

Ta
bl

e
8:

Pe
rf

or
m

an
ce

of
be

st
D
E
F
M
O
D

m
od

el
s.

O
ve

ra
ll

be
st

m
od

el
s

fr
om

al
lt

he
pa

rt
ic

ip
an

ts
ar

e
in

cl
ud

ed
fo

r
co

m
pa

ri
so

n.
Su

bm
itt

ed
m

od
el

s
ar

e
co

lo
re

d
gr

ay
an

d
th

e
be

st
su

bm
itt

ed
re

su
lts

ar
e

bo
ld

ed
.T

he
be

st
ov

er
al

lr
es

ul
ts

ar
e

co
lo

re
d

re
d.

O
th

er
m

od
el

s
ar

e
in

cl
ud

ed
to

ill
us

tr
at

e
th

e
in

flu
en

ce
of

de
si

gn
ch

oi
ce

s.

M
O

D
E

L
PA

R
A

M
S

E
N

E
S

FR
IT

R
U

co
nt

ex
t

se
ed

rn
n

fa
llb

ac
k

#e
po

ch
s

M
V

R
B

L
E

U
lB

L
E

U
M

V
R

B
L

E
U

lB
L

E
U

M
V

R
B

L
E

U
lB

L
E

U
M

V
R

B
L

E
U

lB
L

E
U

M
V

R
B

L
E

U
lB

L
E

U

B
E

ST
0.

13
5

0.
03

3
0.

04
3

0.
12

8
0.

04
5

0.
06

4
0.

07
5

0.
02

9
0.

03
8

0.
11

7
0.

06
6

0.
09

9
0.

14
8

0.
04

9
0.

07
2

s
g
n
s

s
g
n
s

g
r
u

30
0

0.
07

0
0.

02
7

0.
03

4
0.

08
3

0.
03

9
0.

05
8

0.
03

9
0.

02
4

0.
02

8
0.

07
3

0.
00

9
0.

01
4

0.
07

3
0.

02
3

0.
03

1
a
l
l
v
e
c

s
g
n
s

g
r
u

30
0

0.
08

5
0.

03
1

0.
04

0
0.

09
2

0.
04

5
0.

06
4

0.
04

8
0.

02
6

0.
03

2
0.

07
2

0.
00

9
0.

01
4

0.
07

7
0.

02
7

0.
03

5
a
l
l
v
e
c

s
g
n
s

g
r
u

s
g
n
s

30
0

0.
08

9
0.

03
2

0.
04

0
0.

09
3

0.
04

5
0.

06
4

0.
05

5
0.

02
6

0.
03

1
0.

07
4

0.
00

9
0.

01
4

0.
08

0
0.

02
7

0.
03

5

s
g
n
s

s
g
n
s

g
r
u

45
0

0.
07

7
0.

02
9

0.
03

8
0.

08
0

0.
03

7
0.

05
7

0.
04

8
0.

02
6

0.
03

1
0.

07
1

0.
00

9
0.

01
4

0.
07

3
0.

02
2

0.
02

9
s
g
n
s

s
g
n
s

l
s
t
m

45
0

0.
07

5
0.

02
8

0.
03

5
0.

08
2

0.
03

8
0.

05
6

0.
05

2
0.

02
5

0.
03

0
0.

07
0

0.
01

5
0.

00
9

0.
07

3
0.

02
2

0.
03

0
a
l
l
v
e
c

s
g
n
s

g
r
u

45
0

0.
09

3
0.

03
3

0.
04

2
0.

08
9

0.
04

4
0.

06
2

0.
04

9
0.

02
8

0.
03

3
0.

07
6

0.
01

0
0.

01
5

0.
07

5
0.

02
7

0.
03

6
a
l
l
v
e
c

s
g
n
s

l
s
t
m

45
0

0.
09

1
0.

03
3

0.
04

1
0.

09
2

0.
04

4
0.

06
1

0.
05

1
0.

02
7

0.
03

2
0.

07
6

0.
01

0
0.

01
5

0.
07

6
0.

02
6

0.
03

3
a
l
l
v
e
c

s
g
n
s

g
r
u

s
g
n
s

45
0

0.
09

6
0.

03
3

0.
04

2
0.

09
6

0.
04

4
0.

06
3

0.
06

1
0.

02
8

0.
03

3
0.

07
7

0.
01

0
0.

01
5

0.
08

2
0.

02
8

0.
03

7
a
l
l
v
e
c

s
g
n
s

l
s
t
m

s
g
n
s

45
0

0.
09

5
0.

03
3

0.
04

2
0.

09
3

0.
04

4
0.

06
1

0.
05

7
0.

02
7

0.
03

2
0.

07
7

0.
01

0
0.

01
5

0.
07

9
0.

02
6

0.
03

4
a
l
l
v
e
c

s
g
n
s

l
s
t
m

g
r
u

45
0

0.
09

4
0.

03
3

0.
04

2
0.

09
2

0.
04

4
0.

06
1

0.
05

6
0.

02
7

0.
03

2
0.

07
7

0.
01

0
0.

01
5

0.
07

8
0.

02
6

0.
03

3

e
l
e
c
t
r
a
e
l
e
c
t
r
a
g
r
u

45
0

0.
07

9
0.

02
8

0.
03

4
0.

05
0

0.
02

9
0.

02
4

0.
07

2
0.

02
4

0.
03

1
a
l
l
v
e
c

e
l
e
c
t
r
a
g
r
u

45
0

0.
09

1
0.

03
2

0.
04

1
0.

04
7

0.
02

7
0.

03
2

0.
07

3
0.

02
7

0.
03

5
e
l
e
c
t
r
a
e
l
e
c
t
r
a
g
r
u

s
g
n
s

45
0

0.
09

4
0.

03
3

0.
04

1
0.

05
8

0.
02

6
0.

03
1

0.
08

2
0.

02
8

0.
03

6

50

A.3 Qualitative Analysis of Generated Glosses

The DEFMOD models achieve weak results in comparison to the previous state-of-art approaches, which is
probably due to the comparably small amount of training and pretraining data. Here we demonstrate that
the generated glosses can nevertheless capture a degree of the semantics of the correct glosses.

Table 9 shows four categories of semantic similarity between the correct and model-generated glosses,
in descending order (highest similarity first). These categories include hits or near hits (correct glosses),
“near misses” (glosses that capture a significant amount of the original meaning), somewhat similar
glosses, and complete misses. Several examples demonstrate that the subword-based models can produce
syntactically incorrect glosses.

Table 10 contains generated glosses for different senses of the word “consider”, which demonstrate that
the model was able to approximate, to a degree, the semantics of the senses.

A principled analysis of the generated and correct glosses, based on a well defined semantic annotation
scheme, might prove revealing but it would be time-consuming and impractical. Therefore it would be
of interest to automatize such efforts. It would be interesting to explore if this can be done using large
pretrained transformers able to measure fine-grained semantic similarity.

Table 9: Glosses generated by the top submitted DEFMOD model, alongside the correct glosses. The examples are
ordered by descending semantic similarity between the correct and the generated gloss.

Word True Gloss / Generated Gloss

lamebrain A fool
A fool , idiot

sentiment A general thought , feeling , or sense
A feeling or feeling of thinking

available Capable of being used for the accomplishment of a purpose
Able to be used

model A representation of a physical object , usually in miniature
An act of designing

supernumerary Of an organ or structure : additional to what is normally present
Having four wings

navy Belonging to the navy ; typical of the navy
To be armed

fuzzy Vague or imprecise
lacking

co-opt To absorb or assimilate into an established group
To conceal

misinformation Information that is incorrect
prejudice

cutthroat Ruthlessly competitive , dog-eat-dog
Very large

discretional discretionary
Of or pertaining to

abundantly In an abundant manner ; in a sufficient degree ; in large measure
In a very manner

51

Glosses generated by the top submitted DEFMOD model, alongside the correct glosses, for the multiple
senses of the word “consider”.

Table 10

Word True Gloss (describing the sense) / Generated Gloss

consider To assign some quality to
To hold the opinion

consider To look at attentively
To make something certain

consider To have regard to ; to take into view or account ; to pay due attention to ; to respect
To hold into

consider To think of doing
To permit

consider To debate (or dispose of) a motion
To make something certain

B Appendix - Analysis of REVDICT Data and Models

B.1 Data Analysis

Here we analyze the properties of the pretrained embedding vectors assigned to the words defined by
the glosses. We start by analyzing the numeric values contained in the vectors. Basic statistics of vector
elements can be found in Table 11. It is noticeable that there are large variations in value depending on
the language and the embedding type. For example, there is a significant difference between maximum
values, especially between electra and sgns. To further investigate the vector elements, we visualize
the shapes of their distributions for train datasets (Figure 3 and 4). Distribution shapes look similar for
dev datasets.

Next, we explore the vector data by reducing dimensionality to the 2D space using the Pairwise
Controlled Manifold Approximation Projection (PaCMAP) algorithm (Wang et al., 2020). Figure 5 shows
the distributions of all three types of embeddings in the train and validation (development) datasets for
English, French, and Russian. We also visualize distributions of sgns (word2vec) and char embeddings
for all languages, in Figure 6. As can be seen, the vector distributions vary greatly between the embedding
types. Additionally, for all the embedding types, the vectors of different languages occupy a distinct area
and are easily separable.

We further investigate the relationships between different embeddings in the following way. We first
cluster the values of the electra vectors with k-means algorithm. We set the number of clusters to five
and assign a different color to each cluster. We retain the electra cluster-based color of the samples
(glosses) while visualizing the vectors of other embedding types, as shown in Figure 7. It can be clearly
seen that the electra-based clusters are not preserved for other embedding types.

B.2 Model Performance

Here we present validation and test scores for our six REVDICT solutions described in Section 4.2. We
use the following metrics for internal validation of our REVDICT solutions: Mean Squared Error (MSE),
Cosine Similarity (COS) and Central Kernel Alignment (CKA) (Cortes et al., 2012; Kornblith et al., 2019).
Validation scores for each REVDICT approach can be found in Table 12. The last three rows contain the
total scores for each metric and each of our REVDICT solutions. A total score is the sum of the values of
all datasets and we use it for a simple comparison of solutions. It is evident that each subsequent approach
gives better validation results than the previous ones.

Test predictions are scored by these metrics: MSE, COS, and Cosine-Based Ranking (RNK). The RNK
measure is defined as the proportion of test samples with cosine similarity to the model output embedding
higher than the ground truth embedding. The final results for all our solutions can be found in Table 13.
Here, each subsequent approach has lower scores than the previous ones, which is the complete opposite

52

lang split vector min mean max abs-min abs-mean abs-max
en train sgns -8.66 0.012 8.33 2.40-08 0.641 8.66
en train char -5.48 0.081 31.10 6.60-09 0.341 31.10
en train electra -126.26 0.033 85.62 1.00-10 0.598 126.26
en dev sgns -7.02 0.013 7.30 9.51-08 0.657 7.30
en dev char -5.48 0.083 7.31 8.75-08 0.341 7.31
en dev electra -48.24 0.028 52.19 1.00-09 0.587 52.19
it train sgns -9.41 -0.014 9.72 6.60-09 0.700 9.72
it train char -13.37 0.013 20.02 1.62-07 0.553 20.02
it dev sgns -8.22 -0.013 7.82 1.02-07 0.706 8.22
it dev char -9.95 0.008 16.23 3.96-07 0.551 16.23
fr train sgns -10.38 -0.013 9.39 1.59-08 0.682 10.38
fr train char -23.42 0.306 11.07 1.12-08 0.574 23.42
fr train electra -46.24 0.045 89.07 3.00-10 0.644 89.07
fr dev sgns -7.57 -0.017 7.81 3.51-07 0.666 7.81
fr dev char -14.60 0.307 7.80 2.62-07 0.574 14.60
fr dev electra -42.73 0.045 51.29 9.00-10 0.655 51.29
es train sgns -9.79 -0.018 9.72 2.15-08 0.653 9.79
es train char -15.03 0.577 13.37 2.27-07 0.822 15.03
es dev sgns -9.32 -0.021 7.22 8.86-08 0.658 9.32
es dev char -13.19 0.577 11.40 2.28-06 0.820 13.19
ru train sgns -7.82 0.002 8.08 1.17-07 0.446 8.08
ru train char -16.87 0.139 8.04 8.00-10 0.311 16.87
ru train electra -30.24 -0.017 22.56 1.75-08 0.788 30.24
ru dev sgns -8.06 0.002 7.91 7.94-08 0.439 8.06
ru dev char -11.86 0.140 8.01 3.05-07 0.310 11.86
ru dev electra -22.53 -0.017 21.70 4.75-08 0.789 22.53

Table 11: Statistics of the elements of the embedding vectors from the train and validation (development) datasets.

of the validation results. This suggests potential overfitting to the dev dataset that could be the result of
Bayesian hyperparameter optimization (BHO). However, this is contrary to expectations as the last two
solutions have three times fewer BHO points and should not overfit to the dev dataset. The reason for this
phenomenon is unclear and needs further investigation.

The best REVDICT results for each team can be found in Table 14 for MSE score, Table 15 for
COS score, and Table 16 for RNK score. When compared to other solutions, our systems have low to
average performance according to the MSE scores. For the COS scores, our systems have very good
performance on sgns (word2vec) vectors, and low performance on other embedding types. In terms of
the RNK (ranking) our systems almost always yield the top performance, and this result is consistent
across languages and embedding types.

53

Figure 3: Distributions of vector elements in train datasets.

Figure 4: Distributions of vector elements in train datasets within the interval [-3,3].

54

METRICS RD 1 RD 2 RD 3 RD 4 RD 5 RD 6 BEST
mse-en-sgns 0.521 0.632 0.521 0.428 0.348 0.343 0.343
mse-en-char 0.088 0.091 0.051 0.098 0.058 0.090 0.051
mse-en-electra 0.611 0.683 0.612 0.560 0.439 0.295 0.295
mse-it-sgns 0.846 0.700 0.783 0.650 0.670 0.485 0.485
mse-it-char 0.264 0.235 0.253 0.258 0.224 0.222 0.222
mse-fr-sgns 0.773 0.671 0.629 0.585 0.514 0.443 0.443
mse-fr-char 0.210 0.205 0.211 0.246 0.180 0.178 0.178
mse-fr-electra 0.634 0.616 0.518 0.651 0.400 0.360 0.360
mse-es-sgns 0.627 0.764 0.675 0.560 0.543 0.562 0.543
mse-es-char 0.341 0.338 0.323 0.353 0.291 0.265 0.265
mse-ru-sgns 0.363 0.236 0.268 0.207 0.162 0.109 0.109
mse-ru-char 0.053 0.060 0.062 0.060 0.038 0.051 0.038
mse-ru-electra 0.544 0.481 0.519 0.497 0.313 0.421 0.313
cos-en-sgns 0.483 0.453 0.492 0.537 0.571 0.549 0.571
cos-en-char 0.875 0.871 0.927 0.860 0.918 0.873 0.927
cos-en-electra 0.895 0.887 0.896 0.900 0.915 0.938 0.938
cos-it-sgns 0.470 0.510 0.482 0.527 0.521 0.580 0.580
cos-it-char 0.801 0.824 0.810 0.807 0.834 0.836 0.836
cos-fr-sgns 0.457 0.490 0.508 0.522 0.544 0.556 0.556
cos-fr-char 0.866 0.870 0.866 0.843 0.886 0.887 0.887
cos-fr-electra 0.894 0.894 0.904 0.892 0.921 0.929 0.929
cos-es-sgns 0.501 0.450 0.486 0.531 0.539 0.538 0.539
cos-es-char 0.881 0.883 0.887 0.878 0.899 0.908 0.908
cos-ru-sgns 0.525 0.599 0.582 0.618 0.662 0.674 0.674
cos-ru-char 0.933 0.925 0.922 0.925 0.952 0.935 0.952
cos-ru-electra 0.807 0.821 0.811 0.817 0.872 0.841 0.872
cka-en-sgns 0.755 0.776 0.879 0.939 0.889 0.895 0.939
cka-en-char 0.991 0.994 0.998 0.996 0.996 0.994 0.998
cka-en-electra 0.993 0.995 0.997 0.998 0.997 0.998 0.998
cka-it-sgns 0.608 0.773 0.811 0.905 0.780 0.857 0.905
cka-it-char 0.979 0.989 0.992 0.993 0.989 0.990 0.993
cka-fr-sgns 0.647 0.779 0.860 0.916 0.838 0.866 0.916
cka-fr-char 0.981 0.989 0.993 0.991 0.990 0.991 0.993
cka-fr-electra 0.991 0.995 0.997 0.996 0.997 0.997 0.997
cka-es-sgns 0.685 0.698 0.826 0.909 0.802 0.795 0.909
cka-es-char 0.982 0.989 0.993 0.992 0.991 0.992 0.993
cka-ru-sgns 0.611 0.821 0.850 0.927 0.880 0.927 0.927
cka-ru-char 0.995 0.997 0.998 0.998 0.997 0.997 0.998
cka-ru-electra 0.978 0.989 0.992 0.994 0.994 0.991 0.994
TOTAL mse 5.875 5.712 5.425 5.153 4.180 3.824 3.824
TOTAL cos 9.388 9.477 9.573 9.657 10.034 10.044 10.044
TOTAL cka 11.196 11.784 12.186 12.554 12.140 12.290 12.554

Table 12: Validation scores for all our REVDICT (RD) approaches. For each score, comparative results are shown
in color. Green is used for the best and red for the worst-performing solution per row (a metric defines whether
higher or lower values are better). The total score is the sum of the values over all datasets and embeddings.

55

METRICS RD 1 RD 2 RD 3 RD 4 RD 5 RD 6 BEST
mse-en-sgns 1.024 0.964 1.021 1.085 1.170 1.119 0.964
mse-en-char 0.169 0.169 0.186 0.162 0.195 0.172 0.162
mse-en-electra 1.723 1.685 1.690 1.768 1.863 1.988 1.685
mse-it-sgns 1.076 1.160 1.100 1.156 1.211 1.318 1.076
mse-it-char 0.366 0.383 0.376 0.370 0.399 0.399 0.366
mse-fr-sgns 1.068 1.119 1.134 1.147 1.250 1.319 1.068
mse-fr-char 0.409 0.419 0.418 0.390 0.447 0.434 0.390
mse-fr-electra 1.339 1.347 1.414 1.358 1.554 1.566 1.339
mse-es-sgns 0.941 0.883 0.924 0.965 1.031 1.020 0.883
mse-es-char 0.526 0.545 0.546 0.532 0.582 0.635 0.526
mse-ru-sgns 0.568 0.604 0.596 0.601 0.667 0.653 0.568
mse-ru-char 0.145 0.141 0.142 0.140 0.170 0.144 0.140
mse-ru-electra 0.911 0.944 0.956 0.961 1.105 1.049 0.911
cos-en-sgns 0.250 0.260 0.250 0.245 0.231 0.214 0.260
cos-en-char 0.761 0.761 0.743 0.770 0.734 0.765 0.770
cos-en-electra 0.821 0.828 0.824 0.818 0.812 0.792 0.828
cos-it-sgns 0.380 0.358 0.370 0.361 0.361 0.339 0.380
cos-it-char 0.724 0.713 0.717 0.721 0.709 0.711 0.724
cos-fr-sgns 0.342 0.336 0.333 0.330 0.319 0.255 0.342
cos-fr-char 0.744 0.738 0.739 0.756 0.725 0.734 0.756
cos-fr-electra 0.847 0.842 0.837 0.844 0.828 0.825 0.847
cos-es-sgns 0.362 0.367 0.361 0.349 0.350 0.354 0.367
cos-es-char 0.819 0.812 0.812 0.816 0.803 0.784 0.819
cos-ru-sgns 0.412 0.421 0.411 0.406 0.399 0.381 0.421
cos-ru-char 0.818 0.822 0.820 0.824 0.788 0.821 0.824
cos-ru-electra 0.724 0.712 0.715 0.712 0.683 0.702 0.724
rnk-en-sgns 0.247 0.234 0.246 0.231 0.252 0.262 0.231
rnk-en-char 0.438 0.439 0.419 0.448 0.438 0.444 0.419
rnk-en-electra 0.438 0.446 0.437 0.444 0.438 0.432 0.432
rnk-it-sgns 0.165 0.177 0.178 0.169 0.188 0.187 0.165
rnk-it-char 0.397 0.390 0.400 0.402 0.397 0.383 0.383
rnk-fr-sgns 0.214 0.203 0.212 0.193 0.229 0.262 0.193
rnk-fr-char 0.425 0.429 0.427 0.435 0.431 0.421 0.421
rnk-fr-electra 0.447 0.463 0.448 0.450 0.444 0.429 0.429
rnk-es-sgns 0.197 0.214 0.203 0.199 0.217 0.201 0.197
rnk-es-char 0.407 0.409 0.403 0.412 0.407 0.420 0.403
rnk-ru-sgns 0.161 0.153 0.175 0.154 0.166 0.150 0.150
rnk-ru-char 0.361 0.365 0.376 0.372 0.378 0.357 0.357
rnk-ru-electra 0.350 0.355 0.351 0.359 0.351 0.345 0.345
TOTAL mse 10.266 10.363 10.504 10.634 11.645 11.817 10.266
TOTAL cos 8.004 7.971 7.931 7.951 7.742 7.677 8.004
TOTAL rnk 4.248 4.276 4.275 4.268 4.337 4.293 4.248

Table 13: Test results for all our REVDICT (RD) approaches. For each score, comparative results are shown in
color. Green is used for the best and red for the worst-performing solution per row (a metric defines whether higher
or lower values are better). The total score is the sum of the values over all datasets and embeddings.

56

Figure 5: Distributions of all three embedding types in train (2nd row) and validation (development, 1st row) datasets
after dimensionality reduction to 2D space. sgns (word2vec, 1st column), char (2nd column), and electra
(3rd column) embeddings are depicted for English (orange), French (green), and Russian (blue).

TEAM EN ES FR IT RU
sgns char electra sgns char sgns char electra sgns char sgns char electra

0 0.909 0.913 1.122 1.196 0.615
1 0.964 0.162 1.685 0.883 0.526 1.068 0.390 1.339 1.076 0.366 0.568 0.140 0.911
2 0.911
3 0.854
5 0.864 0.143 1.310 0.860 0.467 1.026 0.335 1.066 1.031 0.334 0.538 0.116 0.828
6 0.900 0.143 1.340
7 0.915 0.168 0.906 0.557 1.100 0.391 1.097 0.364 0.578 0.156
10 0.875 0.141 1.301 1.087 0.355
12 0.895 0.143 1.326 0.910 0.510 1.107 0.366 1.112 1.111 0.359 0.566 0.132 0.864
13 0.862 0.176 1.509 0.858 0.583 1.030 0.411 1.271 1.039 0.438 0.528 0.184 0.828

Table 14: MSE test scores for each team in REVDICT task. The results of our team are bold (team 1). For each
task, comparative results are shown in color. Green is used for the best and red for the worst-performing solution
per column.

TEAM EN ES FR IT RU
sgns char electra sgns char sgns char electra sgns char sgns char electra

0 0.156 0.223 0.216 -0.004 0.006
1 0.260 0.770 0.828 0.367 0.819 0.342 0.756 0.847 0.380 0.724 0.421 0.824 0.724
2 0.403
3 0.248
5 0.241 0.795 0.847 0.347 0.839 0.312 0.789 0.862 0.374 0.747 0.383 0.852 0.735
6 0.185 0.796 0.846
7 0.194 0.792 0.262 0.820 0.228 0.769 0.260 0.739 0.335 0.836
10 0.204 0.798 0.843 0.274 0.734
12 0.166 0.795 0.844 0.252 0.824 0.212 0.770 0.858 0.246 0.728 0.298 0.830 0.721
13 0.243 0.782 0.846 0.353 0.824 0.328 0.752 0.859 0.360 0.681 0.424 0.791 0.734

Table 15: COS test scores for each team in REVDICT task. The results of our team are bold (team 1). For each
task, comparative results are shown in color. Green is used for the best and red for the worst-performing solution
per column.

57

Figure 6: Distributions of sgns (1st column) and char (2nd column) embeddings in train (2nd row) and validation
(development, 1st row) datasets after dimensionality reduction to 2D space. The embeddings are depicted for
English (blue), Spanish (orange), French (green), Italian (red), and Russian (violet).

TEAM EN ES FR IT RU
sgns char electra sgns char sgns char electra sgns char sgns char electra

0 0.499 0.495 0.498 0.499 0.499
1 0.231 0.419 0.432 0.197 0.403 0.193 0.421 0.429 0.165 0.383 0.150 0.357 0.345
2 0.167
3 0.319
5 0.326 0.500 0.490 0.271 0.424 0.302 0.428 0.476 0.197 0.428 0.247 0.389 0.417
6 0.500 0.500 0.500
7 0.374 0.478 0.375 0.410 0.439 0.416 0.384 0.438 0.291 0.377
10 0.394 0.483 0.478 0.386 0.478
12 0.312 0.450 0.434 0.253 0.412 0.314 0.428 0.442 0.247 0.417 0.290 0.410 0.399
13 0.329 0.486 0.478 0.251 0.500 0.282 0.502 0.478 0.230 0.496 0.187 0.472 0.420

Table 16: RNK test scores for each team in REVDICT task. The results of our team are bold (team 1). For each
task, comparative results are shown in color. Green is used for the best and red for the worst performing solution per
column.

58

Figure 7: Projection of the clusters in the electra embedding space (3rd column) to the spaces of the other
two embedding types sgns (1st column) and char (2nd column). The analysis if performed for English (rows
1–2), French (rows 3–4), and Russian (rows 5–6) train and validation (development) datasets, after dimensionality
reduction to 2D space.

59

