@inproceedings{goot-2022-machamp,
title = "{M}a{C}h{A}mp at {S}em{E}val-2022 Tasks 2, 3, 4, 6, 10, 11, and 12: Multi-task Multi-lingual Learning for a Pre-selected Set of Semantic Datasets",
author = "van der Goot, Rob",
editor = "Emerson, Guy and
Schluter, Natalie and
Stanovsky, Gabriel and
Kumar, Ritesh and
Palmer, Alexis and
Schneider, Nathan and
Singh, Siddharth and
Ratan, Shyam",
booktitle = "Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)",
month = jul,
year = "2022",
address = "Seattle, United States",
publisher = "Association for Computational Linguistics",
url = "https://preview.aclanthology.org/jlcl-multiple-ingestion/2022.semeval-1.233/",
doi = "10.18653/v1/2022.semeval-1.233",
pages = "1695--1703",
abstract = "Previous work on multi-task learning in Natural Language Processing (NLP) oftenincorporated carefully selected tasks as well as carefully tuning ofarchitectures to share information across tasks. Recently, it has shown thatfor autoregressive language models, a multi-task second pre-training step on awide variety of NLP tasks leads to a set of parameters that more easily adaptfor other NLP tasks. In this paper, we examine whether a similar setup can beused in autoencoder language models using a restricted set of semanticallyoriented NLP tasks, namely all SemEval 2022 tasks that are annotated at theword, sentence or paragraph level. We first evaluate a multi-task model trainedon all SemEval 2022 tasks that contain annotation on the word, sentence orparagraph level (7 tasks, 11 sub-tasks), and then evaluate whetherre-finetuning the resulting model for each task specificially leads to furtherimprovements. Our results show that our mono-task baseline, our multi-taskmodel and our re-finetuned multi-task model each outperform the other modelsfor a subset of the tasks. Overall, huge gains can be observed by doingmulti-task learning: for three tasks we observe an error reduction of more than40{\%}."
}
Markdown (Informal)
[MaChAmp at SemEval-2022 Tasks 2, 3, 4, 6, 10, 11, and 12: Multi-task Multi-lingual Learning for a Pre-selected Set of Semantic Datasets](https://preview.aclanthology.org/jlcl-multiple-ingestion/2022.semeval-1.233/) (van der Goot, SemEval 2022)
ACL