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Abstract

In this paper, we present a system for detect-
ing complex named entities in multilingual
and code-mix settings. We discuss the results
obtained in task 11 (MultiCoNER) of the Se-
mEval 2022 competition. The model is an en-
semble of various transformer-based language
models combined with a Conditional Random
Field (CRF) layer. Our model ranks fourth in
track 12 (multilingual track) and fifth in track
13 (code-mixed track). We describe the de-
tails of our model implementation and discuss
the effect of different aggregation methods. Fi-
nally, we conduct additional analyses to under-
stand the performance differences between lan-
guages.

1 Introduction

Named Entity Recognition (NER) is the task of
identifying proper names in a text and categorizing
them into predefined entity types such as person
(PER), location (LOC), or creative work (CW).
For example, given a sentence "Michael Jeffrey
Jordan was born in Brooklyn, New York" the goal
is to label entities correctly with their correspond-
ing category using the BIO-scheme:

"Michael [B-PER], Jeffrey [I-PER], Jor-
dan [I-PER] was born in Brooklyn [B-
LOC], New [I-LOC] York [I-LOC]"

Existing systems are often trained on standard
news text and strongly rely on surface form
features such as capitalization and punctuation.
These approaches do not scale well to user-
generated content because of the increased varia-
tion in language and context in an ever-expanding
domain (Meng et al., 2021; Fetahu et al., 2021;
Augenstein et al., 2017).

Examples of challenging scenarios for named
entity recognition are: (a) Entities in very short
text inputs such as search queries with limited or

no context (Meng et al., 2021) (b) Structurally
complex entities such as movie or book titles rang-
ing from complex noun phrases to full clauses (c)
Recognizing named entities in dynamically evolv-
ing contexts in which novel entities emerge (Au-
genstein et al., 2017; Aguilar et al., 2019).

Although many named entities are shared be-
tween languages, named entity recognition sys-
tems usually rely on language-specific cues (e.g.
capitalization of nouns in German, compound-
ing phenomena in agglutinative languages such
as Korean, Japanese and Turkish (Agerri and
Rigau, 2016)). Such kind of detection cues do
not scale well to other languages. As a conse-
quence, most models need to be fine-tuned for
each language separately on manually annotated
high-quality training data which is a costly pro-
cess.

Task 12 of SemEval 2022 provides a test bench
for more robust systems which can detect complex
named entities in 11 languages (Malmasi et al.,
2022b). The dataset intentionally contains seman-
tically ambiguous entities with limited contexts.
We focus on the multilingual tracks of the compe-
tition which requires the prediction of named en-
tities in all 11 languages by a single model (track
12). As an additional challenge, the model is also
evaluated on code-mixed data (track 13).

We summarize the main finding of our analysis
as follows:

• In Sec 4.2, we show that the choice of the
tagging scheme affects model performance.
We observe that BILOU Tagging is more ef-
fective than BIO Tagging in our experiment
albeit the total number of training is reduced
when annotation is changed to BILOU. We
hypothesize that this is due to explicit distinc-
tion between single and multi-token entities
in BILOU which might help model perfor-
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mance.

• In Sec 6.1, we compare the performance dif-
ferences across languages and find a surpris-
ingly large difference between German and
Russian (10-point difference in f1). This is
contrary to what is expected since the size
of the training data and the label distribution
across languages are comparable. We hypoth-
esize that linguistic factors such as script and
typology or factors relating to the pre-trained
phase contribute to this difference.

• In Sec 6.3, we further expand on this hypoth-
esis and experiment with a zero-shot model
to examine patterns of transfer between pairs
of languages. We observe higher transfer be-
tween English, Dutch and German. These are
also the languages for which the model yields
the highest scores individually.

In the rest of the paper, we discuss related work,
experimental setup and model training, and exten-
sive error analysis.

2 Related Work

Named entity recognition can be modeled as a
sequence labeling problem. Deep-learning based
approaches learn suitable representations in an
end-to-end fashion and outperform rule-based
and handcrafted feature-based approaches (Akbik
et al., 2018; Wang et al., 2020).

(Huang et al., 2015) proposed a BiLSTM-CRF
architecture for sequence tagging which is used
by most state-of-the-art models. These models
combine long short-term memory layers in a bidi-
rectional fashion to use both past and future in-
put and predict named entity sequences using a
conditional random field layer. Significant per-
formance gains have been obtained by initializing
the model with pre-trained contextual embedding
models such as BERT (Devlin et al., 2019), Flair
(Akbik et al., 2018) and LUKE (Yamada et al.,
2020).

Subsequent works explore some of the limita-
tion of using a vanilla transformer. (Guo et al.,
2019) show that a transformer architecture is
less effective for modeling sequence labeling that
strongly relies on left and right context and long-
range dependencies which is the case for named
entity recognition. LUKE (Yamada et al., 2020)
is the state of the art in the CoNLL-03 NER

dataset. It is pre-trained by contextualized repre-
sentations based on bi-directional transformers on
entity-annotated corpus of words and entities.

The complexity of the task and its multilingual
nature are the main factors in choosing our mod-
eling approach. The task complexity entails that
our approach should rely on token context and in
capturing relationships between labels since the
surface form cues (e.g capitalization ) are nor-
malized in the training data. The multilingual
aspect entails choosing a crosslingual pre-trained
model which can handle the target languages. We
choose XLM-RoBERTa-large (Conneau et al.,
2019) and Microsoft/infoxlm-large (Chi
et al., 2020). XLM-RoBERTa-large model
is a cross-lingual version of RoBERTa. XLM-
RoBERTa has outperformed cross-lingual BERT
and it is the state of the art on many cross-
lingual tasks including Named Entity Recognition.
Microsoft/infoxlm-large is similarly a
multilingual pre-trained model for over 100 lan-
guages with a new cross-lingual pre-training task
named cross-lingual contrast (XLCO).

A comparison of the two pre-trained models
shows both to be competitive on tasks such as
cross-lingual natural language inference (XNLI)
and Microsoft/infoxlm-large to be sig-
nificantly better on cross-lingual question answer-
ing (MLQA) and cross-lingual sentence retrieval
on the Tatoeba dataset. We provide a direct com-
parison of these two models for named entity
recognition (which was previously missing in the
literature) and explore an ensemble of the two
models.

3 Data analysis

We use the training dataset provided as part of Se-
mEval 2022 Task 11 MultiCoNER: Track 12 (Mul-
tilingual) and Track 13 (Code-mixed) (Malmasi
et al., 2022a). The dataset consists of training and
development data in 11 languages annotated with
six named entity types. Table 1 provides statisti-
cal characteristics of the dataset. We observe that
overall 18% of the tokens are labeled as a named
entity which is comparable to other datasets. In
terms of entity types, Person (PER), Group (GRP)
and Creative Works (CW) occur more frequently
across languages. We notice that the absolute num-
ber of entity tokens is twice as high for Chinese
as for the other languages. This can be explained
by the character-level tokenization of the Chinese
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texts. As a consequence, 98% of all Chinese enti-
ties are multi-token entities compared to 55% for
Korean and 85% for English. Figure 1 visualizes
the entity density across languages showing a large
difference for Chinese but only small variations
for the other languages. This difference may be
smoothed by subtoken representations of the lan-
guage models. The Chinese characters can not be
broken any further, whereas the other language to-
kens can.

Multilingual Code-Mixed

NER Entity(#) 6 6
Language (#) 11 N/A
Sentences (#) 168.3 K 1.5 K
Tokens (#) 2750.9 K 17.5 K
Part of Entity (%) 18 30
Outside of Entity (%) 82 70

Table 1: Summary of training data statistics

4 System Description

The system that we proposed for both track 12
and track 13 is based on an ensemble of two
pre-trained transformer models (PTMs). The first
one is the XLM-RoBERTa-large model (Liu
et al., 2020; Conneau et al., 2019) which is a
cross-lingual version of RoBERTa.The second one
is Microsoft/infoxlm-large (Chi et al.,
2020) which is also multilingual pre-trained model
that supports over 100 languages and includes a
new cross-lingual pre-training.

4.1 Fine-tuning
Both the selected pre-trained model takes as input
a sequence of tokens and encodes them to the em-
bedding space. During fine-tuning. These embed-
dings are passed to a dense layer that predicts class
scores. On top of the class scores, we used a CRF
layer.

4.2 Tagging Schemes
Several NER tagging schemes have been used in
the literature. However, choosing the ideal scheme
is a complex problem (Konkol and Konopík,
2015). The two most popular NER tagging
schemes are BIO and BILOU. In BIO, sometimes
referred to as IOB (Sang and Buchholz, 2000), a
different tag is assigned to each word in the text
depending on whether it is the beginning (B − y),
inside (I−y), or outside (O) a named entity phrase

y. In case of BILOU, in addition to the previous
(B − y), (I − y) and (O) tags, words at the end of
an entity phrase get an end tag (E − y) and single-
token entities get a unit-length tag (U−y). BILOU
annotations increase the amount of information re-
lated to the boundaries of named entities compared
to BIO but reduce the amount of training cases per
tag.

4.3 Ensemble

In our experiments on the development set, we
get the best performance using an ensemble of
seven models. Four of them are based on
XLM-RoBERTa-large, and the other three are
based on Microsoft/infoxlm-large. Fur-
thermore, to make the set of models more diverse,
we used a different random seed to initialize their
weights and while we kept the same set of hyper-
parameters as defined in Table 2. Finally, we used
two different ensemble techniques, explained in
more detail in the following sections. We provide
additional information about the ensemble models
in Appendix A.

4.4 Voting and Score Fusion

A hard voting ensemble involves summing the
votes for crisp (discretized) class labels from our
models and predicting the class with the most
votes. While soft voting is an ensemble that in-
volves summing the predicted probabilities for
class labels and predicting the class label with the
largest sum probability. To consider the context of
the labels, we employed a CRF layer on top of the
aggregated scores. See Figure 2.

5 Experiment and Result

All our models were implemented with PyTorch
(Paszke et al., 2019), on top of the pre-trained
transformer models provided by HuggingFace
(Wolf et al., 2019). For the PTMs, the output
of the last attention layer was used as input for
the classifier layer. The CRF classifier was im-
plemented using the AllenNLP library (Gardner
et al., 2017). Adam optimizer (Kingma and Ba,
2014) was used to update model parameters. Fi-
nally, cosine annealing decay with T_max = 20
and eta_min = 1.0e−8 was applied for the learn-
ing rate after (early_stopping_patience / 2) consec-
utive epochs without improving (Loshchilov and
Hutter, 2016).
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Figure 2: Voting

Hyperparameter value

Attention output Last layer
Curriculum learning Sorting by # of tokens
Padding Batch padding
Tagging scheme BILOU
Max sequence length 128
Batch size 32
Learning rate 5.0e-6
Learning rate decay cosine annealing
Early stopping patience 6
Early stopping metric Macro span-F1
Optimizer Adam
Loss Viterbi

Table 2: Optimizer and hyperparameters used to fine-
tune our model

5.1 Model Training and Evaluation

We train our model using only the official training
data. We used the development data to evaluate the
performance of the models. Models were evalu-
ated at the end of every epoch. Early stopping and
cosine annealing decay were determined using the
macro average span-F1 score. In the evaluation
phase, task organizers provided an unlabelled test
dataset. We used the pre-trained model to make
the predictions without retraining and uploaded it
to Codalab. The ensemble of models with score fu-
sion provides the best results on the development
and test datasets. See tables 3 and 4.

Hyperparameter selection impact During the
training phase, we tested several combinations of
the hyperparameters, and we used a greedy ap-
proach to select the best individual hyperparame-
ters. Table 2 shows the most important parameters
that have a significant impact on the performance
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Track → Track 12 (Multilingual) Track 13 (Code-Mixed)
Model ↓ P R F1 P R F1

Baseline 64.5 65.6 64.2 60.0 61.7 59.0
Best infoxlm-large 86.4 87.1 86.8 76.9 76.5 76.7
Best XLM-R-large 86.4 86.4 86.4 78.2 76.8 77.3
Ensemble voting 87.7 87.4 87.6 79.4 78.1 78.7
Ensemble fusion 88.6 87.0 87.8 81.8 78.5 80.0

Table 3: NER results on the development datasets in span-level precision (P), recall (R) and F1 in %.

of our models.
A crucial first step was the application of cur-

riculum learning which reduced the training time
by 50%. That was crucial since training our model
on such a big dataset takes about one hour per
epoch.

The tagging scheme is one of the most criti-
cal parameters that impact the performance of our
model. For example, using BILOU scheme im-
proved the performance about 1.5% on span-F1
score compared with the BIO scheme.

Max sequence length and batch size played
a primary role in the training speed and perfor-
mance. At the same time, a small value for the
learning rate prevented the model from over-fitting
rapidly. Finally, learning rate decay made the
model convergence smoother before the early stop-
ping occurrence.

PTM Impact As shown in Table 3,
Microsoft/infoxlm-large and
XLM-RoBERTa-large have almost the same
performance. To the best of our knowledge, they
share the same structure and are pre-trained on the
same data. However, their pre-training objective
functions differ. On the other hand, model size
impact can be clearly seen by comparing the
above large models with the baseline model
which is based on XLM-RoBERTa-base.

Ensemble Impact The score fusion (Sect. 4.3)
ensemble outperforms the individual models and
the vote-based ensemble on almost all metrics.
This improvement was due to the soft score ag-
gregation, which gives the model better control to
select the correct class than the crisp vote-based
class aggregation.

CRF Impact Applying CRF on model scores
gives better results than using argmax only. How-
ever, it was a bit hard to apply it in the score fu-
sion ensemble model. In this type of ensemble, we

aggregated the scores, not the output of the CRF
layer. There were two options to solve this prob-
lem, i) take the CRF layer of one of the ensem-
ble models and use it directly on top of the aggre-
gated scores without fine-tuning, or ii) fine-tune a
new CRF layer on the aggregated scores. We tried
both solutions, and our finding was that the sec-
ond option gives better performance, about 0.1%
improvement in span-F1 score compared with the
first option. See last row in Table 3.

6 Analysis and Conclusion

In this section, we analyze our model output for
the multilingual task and the code-mixed task on
the development dataset because the gold labels
for the test data were not released. Table 5 shows
the performance averaged over six entity types
ranked by language.

We see that the model performance varies
strongly between languages. The best result is
obtained for German and is 10 percentage points
higher than the lowest result which is obtained for
Russian. When we compare the different entity
types, we observe the highest variance for Chi-
nese.

The large differences are surprising as the train-
ing data size is equal for all languages and the en-
tity types are roughly evenly distributed (with the
exception of Chinese). We therefore analyse these
differences further below.

6.1 Variation Across Language

We first clustered languages into three groups
based on their model performance: Group-1 has a
score of 0.9 or higher and includes German, Dutch
and English. Group-2 has a score between 0.85
and 0.9 and includes Turkish, Chinese, Spanish,
Korean, Hindi and Bangla. Group-3 has a score
lower than 0.85 and includes Farsi and Russian.
With a single language model and a comparable
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Track → Track 12 (Multilingual) Track 13 (Code-Mixed)
Model ↓ P R F1 P R F1

Ensemble voting 74.64 75.84 74.92 79.72 79.58 79.57
Ensemble fusion 75.96 75.78 75.49 81.10 79.72 80.29

Table 4: NER results on the test datasets in span-level precision (P), recall (R) and F1 in %.

Language DE NL EN TR ZH ES KO HI BN FA RU

Macro-F1 92.28 91.43 90.26 88.71 88.11 87.62 86.47 86.19 86.11 84.54 82.92

Table 5: Macro-F1 (in %) averaged over NEs (evaluated on development dataset)
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0.29% 2.54% 0.95% 90.05% 1.58% 0.49% 4.10%

0.33% 0.64% 0.39% 1.13% 92.50% 0.41% 4.59%

0.15% 0.33% 0.53% 0.73% 0.27% 94.07% 3.93%

0.31% 0.14% 0.38% 0.20% 0.26% 0.21% 98.51%
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Figure 3: Confusion Matrices on the development datasets (Multilingual + Code-Mixed)

fine-tuning dataset across languages, the disparity
in the result could possibly be attributed to
(a) Representational quality: differences in lan-
guage representations in XLM-R, as some lan-
guages are represented better than others
(b) Typological properties: typological difference
between languages as languages that are related
tend to take advantage of transfer during fine-
tuning
(c) Script characteristics: languages with similar
scripts tend to take advantage of shared subtokens
during fine-tuning.

We observe that all group-1 languages are com-

monly categorized as high-resource languages for
which XLM-RoBERTa-base performs well on
downstream tasks (Conneau et al., 2019; Joshi
et al., 2020). Liu et al. (2020); Hu et al. (2020)
give evidence for this effect in downstream tasks.

In terms of typological properties, although
group-1 and group-3 languages are members of
the same language family, they differ in their
scripts which to some extent negatively influ-
ence transfer at least during the fine-tuning phase
(Muller et al., 2021).
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6.2 Confusion Matrix

Figure 3, shows a confusion matrix for coarse-
grained entity types. From these results, we ob-
serve a stronger ambiguity between the O label
and the entity types than across entity types. A
possible explanation can be lexical overlap in the
training data. The highest confusion can be ob-
served between Creative Work (CW) and the Out
Label (O). CW often consists of titles of movies
and other creative work that include words that
also occur in regular expressions annotated as O.

Frequency Analysis As a follow-up, we carried
out a more-detailed frequency analysis of the to-
kens that are annotated as entity tokens and O. Fre-
quency analysis on the token shows a long tail dis-
tribution with more than 90% of the errors occur-
ring only once. Table 6 shows the most frequently
misclassified tokens, which are the English and
Dutch definite determiner and the Chinese symbol
for Sri Lanka.

Token Frequency
De 36
the 22
斯 22

Table 6: Tokens which are misclassified most fre-
quently

From the misclassified tokens, we observed sub-
stantial overlap between false negative and false
positive tokens. Among these, determiners (arti-
cles such as ‘a’, ‘the’, ‘de’) and words
that stand for the type of products are common
("movie", "series", "municipal"). These words are
typically expected at the border of named entity
expressions. There may be two explanations for
these cases:

Inconsistent Annotations where a token is
sometimes included in the named entity expres-
sion and sometimes it is not. This issue most likely
occurs on border labels. To show this we take an-
notation examples from the training data e.g., the
oculus quest as the name of a product can be an-
notated as [O, B-PROD, I-PROD] or [B-PROD, I-
PROD, I-PROD] where the is annotated as outside
of entity type in the first case and inside on the sec-
ond case which creates inconsistency on the token.

Variable Contexts where the same token truly
occurs both within entity phrases in some context

and outside as the context change. For example
in the communist party of great britain is anno-
tated as [O, B-GRP, I-GRP, I-GRP, I-GRP, I-GRP]
where the token great is annotated as GRP and in
a different context - the great sum of 1,000 pounds
it is annotated as outside of entity. Both cases are
difficult to resolve for a model.

Token Annotated Labels Label Distribution

his I-CW, O, I-PER [0.01, 0.99, 0.00]
songs I-CW, O, B-CW [0.05, 0.83, 0.12]
since I-CW, O, B-CW [0.01, 0.99, 0.01]

Table 7: Examples for label variation

We explored the first cause where the issue
might arise from an inconsistent annotation in the
training data. We first extract tokens from the train-
ing data with multiple labels along with their corre-
sponding label proportion. In Table 7 some exam-
ples are given, where "songs" also tend to occur
at the beginning of a CW. We then use this pro-
portion to create a post processing filter where we
"correct" the model output at the borders of entity
phrases for tokens with overlapping False Positive
and False Negative cases in case the model output
deviates from the bias.
We experimented with different thresholds for the
bias to apply where the maximum value represents
a bias value and the minimum value represents the
exception value. Although this approach did not
result in a performance gain or loss, we observe
that closed class words such as articles but also
proper names for locations, product names, proper
nouns and symbols are often affected by this fil-
ter. A possible explanation for lack of effect could
be that the same annotation inconsistency also ap-
plies to the test data.

6.3 Transferability

To analyze how transfer plays out be-
tween the group-1 languages, we fine-tuned
XLM-RoBERTa-base on the English dataset
and evaluated it in a zero-shot setting on the
rest of the languages. Figure 4 shows the result
of this experiment. Though other factors might
play a role, we can infer from this result that
group-1 languages (German and Dutch) have a
more positive transfer from English than the other
languages, although Spanish also benefits from
English.
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Figure 4: English Zero shot performance across lan-
guages

NL NL-DE NL-ZH NL-Rand ZH Den-ZH Den-DE

GRP 0.82 0.8 0.76 0.76 0.02 0.11
CW 0.72 0.68 0.67 0.71 0.14 0.09

PROD 0.69 0.62 0.61 0.69 0.14 0.08
LOC 0.87 0.88 0.84 0.86 0.13 0.09
PER 0.88 0.82 0.86 0.84 0.05 0.12

CORP 0.84 0.78 0.77 0.76 0.12 0.09

Table 8: Bilingual Models evaluated on Dutch Devel-
opment Dataset (Macro F1)
The last two Column (Den-ZH and Den-DE) shows
Named entity density measures

Next to zero-shot transferability, we also ex-
perimented with bilingual transfer. We selected
one language as the target language, in this case,
Dutch, and we measured the contribution of all
other languages as training data in addition to half
of the Dutch training data. We combine half of
the dutch training data with half of German (Col-
umn NL-DE), half of Chinese(Column NL-ZH)
and randomized Chinese (Column NL-Rand ZH)
where we randomize Chinese tokens with a to-
ken from XLM vocabulary. The first four column
shows bilingual models evaluated on Dutch devel-
opment set measured in macro-averaged F1. The
total set of training sentences was kept the same
across all experiments.
We observe that contrary to the zero-shot results,
Chinese contributes overall only just a bit lower
than German when tested on the Dutch test set.
This is remarkable because German and Dutch are
typologically very close and use the same script.
Apparently, the observed density of entities for
Chinese is a factor that may compensate for the
difference in script and language typology. We
can see in Table 8 that the contributions of Chi-
nese lag behind when the density is lower than
German (GRP) but is almost the same when it is

higher (CW, PROD, LOC, CORP). The only ex-
ception is PER which has the lowest density for
Chinese but still a higher contribution. To test
the assumption that just the label density plays a
role, we even replaced the Chinese tokens with ran-
dom tokens. The results show that even partially
randomized Chinese training data outperforms the
German contribution on most entity types.

6.4 Conclusion
In this paper, we proposed a single named en-
tity recognition system that can process multilin-
gual and code-mixed text based on an ensemble
of transformer-based models. We have accom-
plished fourth and fifth positions in the test phase
for track 12 (Multilingual) and track 13 (Code-
Mixed). Even though the proposed system per-
forms pretty well on the development dataset,
there is a considerable performance drop in track
12 on the test dataset. Further study needs to be
done to address that performance change.

Summarising the results from the error analysis
and the statistics on the training data, we can con-
clude that there are four factors that play a role in
the cross-lingual performance of this task, given
that an equal amount of training data is available
for fine-tuning in all languages. We provided ev-
idence that transfer from the XLM pre-training,
typological relatedness, and shared scripts can be
factors that contribute to transfer but on the other
hand the density of the entities in the training data
is another factor.

Our system does not include external gazetteers
or targeted unsupervised learning on difficult en-
tity types such as products and creative works. In
future work, we would like to include them, which
could help to improve the performance due to the
extra information they include.
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A Ensemble Models

In Table 9 and Table 10, we provide score distribu-
tion of all models that form our ensemble on the
development datasets.

# PTM Random Seed P R F1
1 microsoft/infoxlm-large 102 87.6 85.6 86.6
2 microsoft/infoxlm-large 2022 86.4 87.1 86.8
3 microsoft/infoxlm-large 2033 87.5 85.7 86.6
4 xlm-roberta-large 2044 85.8 86.5 86.2
5 xlm-roberta-large 2055 86.4 86.4 86.4
6 xlm-roberta-large 2066 85.9 86.8 86.4
7 xlm-roberta-large 2077 86.2 86.4 86.3

Table 9: Ensemble models - Multilingual

# PTM Random Seed P R F1
1 microsoft/infoxlm-large 102 77.6 75.4 76.5
2 microsoft/infoxlm-large 2022 76.9 76.5 76.7
3 microsoft/infoxlm-large 2033 78.1 74.9 76.5
4 xlm-roberta-large 2044 78.2 76.8 77.3
5 xlm-roberta-large 2055 78.2 76.8 77.3
6 xlm-roberta-large 2066 77.3 77.1 77.2
7 xlm-roberta-large 2077 77.1 76.1 76.6

Table 10: Ensemble models - Code-Mixed
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