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Abstract

Building real-world complex Named Entity
Recognition (NER) systems is a challenging
task. This is due to the complexity and ambi-
guity of named entities that appear in various
contexts such as short input sentences, emerg-
ing entities, and complex entities. Besides,
real-world queries are mostly malformed, as
they can be code-mixed or multilingual, among
other scenarios. In this paper, we introduce
our submitted system to the Multilingual Com-
plex Named Entity Recognition (MultiCoNER)
shared task. We approach the complex NER
for multilingual and code-mixed queries, by re-
lying on the contextualized representation pro-
vided by the multilingual Transformer XLM-
RoBERTa. In addition to the CRF-based to-
ken classification layer, we incorporate a span
classification loss to recognize named entities
spans. Furthermore, we use a self-training
mechanism to generate weakly-annotated data
from a large unlabeled dataset. Our proposed
system is ranked 6th and 8th in the multilingual
and code-mixed MultiCoNER’s tracks respec-
tively.

1 Introduction

Recent named entity recognition (NER) models
have achieved great performance for many lan-
guages and using various benchmark datasets such
as CoNLL2003 and OntoNotes 5.0 (Devlin et al.,
2019). However, it is unclear whether or not these
systems can handle ambiguous and complex enti-
ties, especially in the case of short and low-context
settings (Augenstein et al., 2017). It is also un-
clear weather these systems can be deployed in
real-world scenarios where the input data can be
in different languages or code-mixed (Luken et al.,
2018; Hanselowski et al., 2018). In fact, to illus-
trate these issues, if consider the example of com-
plex named entities such as the titles of creative
works (movies, songs, books ...), they are hard to
be recognized by simple NER systems. This is

due to their syntactic ambiguity and the form they
can take from one context to another. For instance,
they can be as an imperative clause ("Dial M for
Murder") or a proposition ("On the beach") which
refers to the name of a movie. Thus, it is important
to check the performance of NER systems in these
scenarios.

The complexity of named entities can be due to
three main reasons:

1. Complex entities: These entities can be repre-
sented as complex infinitives (To Kill a Mock-
ingbird) or full clauses (Mr.Smith Goes to
Washington). Additionally, they can be rep-
resented as noun phrases or gerunds. State-
of-the-art systems (Aguilar et al., 2017) have
shown that it is hard to recognize such entities.

2. Ambiguous entities and contexts: These
types of entities are context-dependent as they
can refer to named entities in some contexts,
but not in others. “Among Us” which refers to
the name of a video game is an example of this
challenge. This situation is even more chal-
lenging (Mayhew et al., 2019) in the case of
short sentences with minimal context such as
questions or search queries, which most of the
time lack some features such as capitalization
or punctuation.

3. Emerging entities: This challenge mimics
the real-world scenario with many unseen enti-
ties, as new named entities are always appear-
ing due to the release of new books, songs, or
movies within a short period of time.

It is well known that the state-of-the-art perfor-
mance reached by current NER systems is mainly
due to the presence of easy entities and well-formed
input texts (Augenstein et al., 2017). Neverthe-
less, they yield weak performance when applied
in multilingual/code-switched input texts having
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complex or unseen entities. It is also worth men-
tioning that the reached state-of-the-art results by
current NER systems have been achieved using
Transformers-based pre-trained language models
(Devlin et al., 2019) that are known to encode the
context of input texts and tokens.

In this paper, we introduce our participating sys-
tem to the MultiCoNER shared task (Malmasi et al.,
2022b), in particular, the complex MultiCoNER
tracks of multilingual and code-switched queries.
Our system relies on a deep learning model based
on the multilingual Transformer-based pre-trained
language model XLM-RoBERTa (Conneau et al.,
2020). To handle the complexity of the two tracks,
our model is trained using two optimization ob-
jectives, as well as for self-training. The main
components of our system can be summarized as
follow:

• Optimization of entities span loss: We train
our model to recognize entities spans as an
auxiliary task. The aim is to help the model
detect the full entities expressions in an input
sentence.

• Incorporation of Conditional Random
Field (CRF) (Lafferty et al., 2001) layer:
We incorporate a CRF layer on top of the
Transformer representations to fully exploit
the mutual information between tokens in an
input sentence.

• Self-training on unlabeled data: we create
a weakly-supervised data based on the model
predictions on unlabeled data.

The rest of this paper is organized as follows.
Section 2 presents the related work. Section 3 de-
scribes the dataset and the sub-tasks of SemEval-
2022 Task 11 (Malmasi et al., 2022b). In section
4, we present our system overview. Section 5 sum-
marizes and discusses the obtained results for both
multilingual and code-mixed tracks. Finally, Sec-
tion 5 concludes the paper.

2 Related Work

During the last years, neural network-based ap-
proaches have contributed to improving the per-
formance of NER systems (Panchendrarajan and
Amaresan, 2018; Devlin et al., 2019). This was
mainly achieved thanks to word embeddings. Static
word embeddings are fed to BiLSTM-CRF models

and have helped eliminate manual feature engineer-
ing while achieving better performance. On the
other hand, Transformer-based Language Models
(Devlin et al., 2019; Conneau et al., 2020) have
greatly improved the NER results thanks to their
contextualized word representations.

However, these models may fail when recogniz-
ing new or complex entities (Luken et al., 2018;
Hanselowski et al., 2018). These challenges are
reflecting the real-world setting. Recently, Meng
et al. (2021) have proposed an approach to tackle
these challenges by using a contextual Gazetteer
Representation encoder which can be fused with
word-level models. The results have shown that
this method enhances the F1-score by +49% in
the uncased setting. This work has been mainly
applied to the English language. Finally, in an-
other work, Fetahu et al. (2021) have explored
the code-mixed NER scenario using multilingual
Transformers. They have combined the Mixture-
of-Experts model with existing multilingual Trans-
formers models to incorporate the multi-lingual
gazetteers. The experiments have demonstrated
that their proposed approach enhances the F1-score
by +31% in the Code-Mixed NER over the baseline
model.

3 Data

The dataset of the MultiCoNER (Multilingual Com-
plex Named Entity Recognition) shared task (Mal-
masi et al., 2022a) is provided to tackle thirteen
different tracks, eleven tracks cover the monolin-
gual cases, while the remaining two tracks cover
code-mixed and multilingual data. In this paper,
we focus on the last two tracks.

The multilingual track covers eleven languages
(English, Spanish, Dutch, Russian, Turkish, Ko-
rean, Farsi, German, Chinese, Hindi, and Bangla),
while the code-mixed track covers a subset of these
languages. In both tracks, the entities are annotated
into six types: PER, LOC, GRP, CORP, PROD,
and CW. Table 1 presents the size of the train and
test datasets provided for these tracks. We notice
that the multilingual track has more data than the
code-mixed track, and the test datasets are larger
than the train datasets for both tracks.

The provided datasets are labeled using the IOB
format which is used for sequence labeling tasks.
Table 2 presents the distribution of the entities and
the spans in the train datasets for both tracks.
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Multilingual Code-mixed
Train 168300 1500
Test 471911 100000

Table 1: The size of the train and the test datasets for
the multilingual and code-mixed tracks.

4 Methodology

Before discussing the methodology of our pro-
posed system, we assume that we have n labeled
sentences with named-entities D = {(xti, yti)}n1
and m unlabeled sentences U = {(xui )}m1 , where
xi = {xi,1, xi,2, ..., xi,l} represents a sentence con-
taining l tokens, while yi = {yi,1, yi,2, ..., yi,l} are
the l labels corresponding to these l tokens.

The proposed system incorporates 4 components
used on top of the pre-trained Transformer encoder.
In the following, we describe each component of
our system.

4.1 Multilingual Transformer encoder

To encode each word in the input sentence, we
use the XLM-RoBERTa (XLM-R) (Conneau et al.,
2020). It is a multilingual pre-trained transformer
encoder network. We choose to use this encoder
for the following reasons: 1) XLM-R is the state-
of-the-art encoder in the multilingual and code-
mixed settings, and 2) It has been trained on 100
languages including the languages covered in the
multilingual and code-mixed tracks. This ensures
a good contextualized representation for the input
sentences despite their language.

This model was mainly trained using the Mask
Language Modeling (Devlin et al., 2019). For an
input sentence, 15% of the words are randomly
masked, then the model tries to predict the masked
words. As a result of this training process, the
model learns the representations of dimension d for
the input words of 100 languages that can be fine-
tunned on a downstream tasks such as sequence
classification or sequence labeling.

4.2 Span classification module

Span classification is a span-wise classifier, where
the aim is to classify whether or not, a sequence of
tokens are representing a named entity span based
on their semantics. It is a binary classification task
as the model predicts 1 if the span is a named entity
while it predicts 0 if not.

Given H = [h1, h2, ..., hk], the vector represen-
tations of the k sub-tokens contained in a span S, to

learn a representation that encodes all the span to-
kens, we follow the same approach used in (Essefar
et al., 2021; El Mekki et al., 2021b; El Mahdaouy
et al., 2021), where an attention layer (Bahdanau
et al., 2015) learns the span representations SH
based on its tokens, as follows:

C = tanh(HW a)

α = softmax(CTWα)

SH = α ·HT

where W a ∈ Rd×1, Wα ∈ Rk×k are the train-
able parameters of the attention layer, C ∈ Rk×1

and α ∈ [0, 1]k weights the word representations
according to their importance for the task at hand.

The vector representations SH of all the spans
in an input sentence are then fed to a feed-forward
neural network which classifies whether or not, the
input representation refers to a named-entity span.

As illustrated in table 2, we notice that the ma-
jority of spans do not represent a named entity. To
tackle this imbalanced data issue, we follow (Li
et al., 2020) in using the Focal Loss (FL) (Lin et al.,
2017). The FL is given by:

FL(y, p̂) = −αy (1− p̂y)
γ log(p̂y) (1)

where, y ∈ {0, 1} denotes the span’s label,
p̂ = (p̂0, p̂1) is a vector representing the predicted
probability distribution over the labels, αy is the
weight of label y, and γ controls the contribution
of high-confidence predictions in the loss. The per-
formed experiments showed that γ = 0.5 gives the
best result.

As the provided dataset in this shared task has
been annotated based on named entities, we adjust
it for the span classification task. Therefore, we
label all the named entities spans as 1 while the rest
of spans has been labeled as 0.

4.3 NER classification using CRF-Layer

Most NER systems using Transformers rely on
using the first sub-token of each word as input to
the classification layer (Devlin et al., 2019). In our
system, we follow the work of (Ács et al., 2021) in
using a pooling of the sub-tokens of each word in
the input sentence.

Given H = [h1, h2, ..., hp], the vector represen-
tations of the all the sub-tokens contained in a word
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Classification tasks
Named entity Entity Span

Class LOC PER PROD GRP CORP CW Entity Span Not Entity
Span

Mutilingual % 22.02 18.76 15.0 14.0 14.11 16.12 38.82 61.17
Code-Mixed % 18.27 16.63 17.88 13.9 16.63 16.69 41.71 58.28

Table 2: The distribution of named entities and entities spans in the train dataset for the multilingual and code-mixed
tracks

w, an attention layer learns the word pooled rep-
resentations based on its sub-tokens following the
same method explained in section 4.2.

The pooled representations are then fed to the
classification layer which is a Conditional Random
Field (CRF) layer in our system. We opt for CRF
mainly because the Softmax layer does not take
into consideration the dependencies between to-
kens. The self-attention mechanism, performed
by the Transformer encoder, encodes these depen-
dencies in the output vectors of the input sentence.
While the CRF which is common in sequence label-
ing tasks ensures output consistency, it transforms
the sequence of input word representations to a se-
quence of probability distributions, therefore, each
label prediction depends on the other predictions
in the same input sentence.

4.4 Self-training

To take profit from the provided unlabeled dataset
in this shared task, we generate a weakly-annotated
dataset and re-train the developed model on it.
This method has been applied differently in sev-
eral works (Khalifa et al., 2021; El Mekki et al.,
2021a; Huang et al., 2021). In our work, we apply
the following pipeline:

1. We train a model M (based on span classifica-
tion and NER-CRF explained in the previous
subsections) using the provided labeled data
D.

2. We use the trained model M to predict the
labels of the provided unlabeled data. Then
we build a weakly-annotated data U

3. We concatenate the datasets T and U and re-
train the sequence labeling model.

It is worth mentioning that during the self-
training phase, we remove the span classification
module.

5 Experiments and results

5.1 Experimental setup

We use the PyTorch framework and the Transform-
ers libraries for the implementation of our proposed
system. The training of the model is performed
on a server with a single Nvidia Tesla P100 with
16GB of RAM. XLM-RoBERTa Large is used as
our multilingual Transformer encoder. Adam op-
timizer with a learning rate of 1e − 5 is used for
all experiments. The system is trained with a batch
size of 16 and for 20 epochs.

For the multilingual track, we train our model on
the provided labeled multilingual data, then we use
the best epoch’s model to leverage pseudo-labels
from the unlabeled test data, and we re-train the
model again from scratch. Besides, for the code-
mixed track, we combine the provided data with the
training data of the multilingual track and we fol-
low the same training pipeline of the multilingual
track.

5.2 Results

Table 3 presents the submitted results for the mul-
tilingual and code-mixed tracks using our system.
The first row in the table presents the baseline re-
sults on the test set published by the shared task
organizers. The performance achieved by our best
submission largely outperforms the baseline results
in both tracks. In fact, the performance using our
model boosts the baseline score by 18.39 and 21.11
F1-score points in the multilingual track and the
code-mixed track, respectively. The table also re-
ports the performance of our system during the
three stages (ablation study):

• The BERT-CRF model that incorporates the
named-entity recognition classification layer
with CRF,

• The span classification objective, and

• The self-training.
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Multilingual track Code-mixed track
Precision Recall F1 Precision Recall F1

Baseline - - 54.10 - - 58.10
BERT-CRF 68.59 69.30 68.00 78.47 78.92 78.78

+ Span Classification 70.71 70.56 70.25 78.30 78.77 78.52
+ Self-training 73.21 72.51 72.49 79.38 79.08 79.21

Table 3: Official Complex NER F1-scores on the multilingual and code-mixed tracks using the proposed system.

Multilingual track Code-mixed track
Precision Recall F1 Precision Recall F1

LOC 72.24 81.41 76.01 80.37 83.04 81.68
PER 85.20 81.40 83.13 88.02 88.67 88.35
PROD 70.54 70.24 70.00 82.68 80.51 81.58
GRP 69.78 63.6 66.26 70.85 73.02 71.92
CW 67.58 68.74 67.95 75.00 74.27 74.63
CORP 73.91 69.68 71.60 79.36 74.99 77.11

Table 4: Official Complex NER F1-scores per entity on the multilingual and code-mixed tracks using the proposed
system.

The results show that the span classification stage
enhances the performance of both tracks: the F1-
scores achieved using the span classification are
70.25% for multilingual track and 78.52 % for the
code-mixed track. However, we notice that the span
classification has significantly boosted the F1-score
compared to the BERT-CRF model for the multi-
lingual track, while there is a small performance
loss in the case of the code-mixed track. When per-
forming self-training on the predictions extracted
from the model using the span classification stage,
a large gain has been achieved in both tracks. For
the multilingual track, the F1-score obtained using
self-training is 72.49% with a gain of 3.18% com-
pared to the system without self-training. For the
code-mixed track, our system has achieved the F1-
score of 79.21% with a gain of 0.87% compared to
the system without self-training.

Finally, Table 4 presents the performance of
our best submission for the multilingual and code-
mixed tracks. The proposed system fails the most
in predicting the GRP entities for both tracks,
meanwhile, it gives its best performance when pre-
dicting the PER entities.

6 Conclusion

In this paper, we present our Named Entity Recog-
nition (NER) system for complex scenarios on mul-
tilingual and code-mixed queries. Our system relies
on 4 components: a multilingual transformer en-

coder, an entity span classification module, a CRF-
layer, and a self-training mechanism that leverages
information from unlabeled data. We use our sys-
tem to submit our predictions in the SemEval-2022
Task 11 within the multilingual and code-mixed
tracks. The results show that the use of multilingual
Transformer and self-training enhances the results
in both multilingual and code-mixed cases. More-
over, the incorporation of the span classification
module and the CRF layer allow better recognition
of complex named entities.
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