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Abstract
In this paper, we describe our system for
SemEval-2022 Task 2: Multilingual Idiomatic-
ity Detection and Sentence Embedding. The
task aims at detecting idiomaticity in an input
sequence (Subtask A) and modeling represen-
tation of sentences that contain potential id-
iomatic multiword expressions (MWEs) (Sub-
task B) in three languages. We focus on the
zero-shot setting of Subtask A and propose two
span-based idiomaticity classification methods:
MWE span-based classification and idiomatic
MWE span prediction-based classification. We
use several cross-lingual pre-trained language
models (InfoXLM, XLM-R, and others) as our
backbone network. Our best-performing sys-
tem, fine-tuned with the span-based idiomatic-
ity classification, ranked fifth in the zero-shot
setting of Subtask A and exhibited a macro F1
score of 0.7466.

1 Introduction

SemEval-2022 Task 2 (Tayyar Madabushi et al.,
2022) involves detecting idiomaticity in a given
sentence (Subtask A) and learning effective repre-
sentations of sentences that may contain idiomatic
multiword expressions (MWEs) (Subtask B) in
three languages: English, Portuguese, and Galician.
Processing idiomaticity in a sequence correctly is
an essential task in natural language processing
(NLP), as idiomatic expressions are a key compo-
nent of natural languages. Its high performance
will contribute to various downstream tasks, such
as sentiment analysis, information retrieval, and
machine translation (Hashempour and Villavicen-
cio, 2020; Tayyar Madabushi et al., 2021).

In this work, we propose two different ap-
proaches for multilingual idiomaticity detection
(Subtask A) that take advantage of MWE span-
based features. We use several cross-lingual pre-
trained language models (InfoXLM (Chi et al.,
2021a), XLM-R (Conneau et al., 2020), and others)
and exploit their MWE span representations for

classification, instead of using a special classifica-
tion token ([CLS]), which typically corresponds
to the first input token. Our concept is that these
models should be able to focus more on the id-
iomaticity of an MWE in a given sequence by using
its span representation rather than using the [CLS]
token for classification, potentially resulting in a
better detection performance.

Our main findings in the shared task are in three-
fold.

1. The span-based idiomaticity classification
method is highly effective compared to the
standard [CLS]-based sequence classifica-
tion approach adopted in various BERT (De-
vlin et al., 2019)-like models (Liu et al., 2019;
Lan et al., 2020; Clark et al., 2020).

2. Detecting idiomaticity in Galician with no
training data available is challenging even
with state-of-the-art cross-lingual pre-trained
language models.

3. Utilizing adjacent contexts with a target sen-
tence is not always the best option for id-
iomaticity detection, even though it improves
the baseline performance.

Consequently, our best-performing system, using
the span-based classification, ranked fifth among
20 systems in the zero-shot setting of Subtask A
and showed a macro F1 score of 0.7466 on the test
set.

2 Background

Idiomaticity Detection While the task of id-
iomaticity detection with respect to MWEs is not
new, it is still considered challenging because state-
of-the-art language representation models heavily
depend on the principle of compositionality (Pel-
letier, 1994), which idioms do not follow, due to
their tokenization methods (Kudo, 2018; Sennrich
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Figure 1: Overview of two proposed approaches for detecting idiomaticity.

et al., 2016). To overcome this problem, some stud-
ies (Hashempour and Villavicencio, 2020; Garcia
et al., 2021) have regarded an MWE as a single
token motivated by the assumption that people rec-
ognize an idiom as a single token (Sinclair et al.,
1991). Alternatively, others have tried to utilize
the adjacent contexts of MWEs as inputs and have
demonstrated the effectiveness of this against tasks
targeting verb-noun constructions (Sporleder and
Li, 2009; Salton et al., 2016; King and Cook, 2018)
and noun compounds (Tayyar Madabushi et al.,
2021). This paper also utilizes adjacent contexts
for classification but proposes new idiomaticity de-
tection approaches in which the span information
of an MWE plays an important role.

Cross-lingual Pre-trained Language Models
Cross-lingual pre-trained language models have
shown promising results in multilingual NLP
tasks since the emergence of multilingual BERT
(mBERT) (Devlin et al., 2019). In general, they
are pre-trained with either multilingual masked
language modeling (Devlin et al., 2019; Conneau
and Lample, 2019; Conneau et al., 2020; Chung
et al., 2021) or translation language modeling (Con-
neau and Lample, 2019). The difference between
the two is that the former uses monolingual sen-
tences while the latter utilizes concatenated par-
allel sentences for inputs. The state-of-the-art In-
foXLM (Chi et al., 2021a) further utilized con-
trastive learning, where a model needs to distin-
guish a correct translated sample from negative
ones. Our approach uses several cross-lingual
pre-trained language models, including InfoXLM,
XLM-R, XLM-Align (Chi et al., 2021b), and Rem-
BERT (Chung et al., 2021), to utilize multilingual
idiomaticity data efficiently.

3 Task Description

We briefly describe a multilingual idiomaticity de-
tection task (Subtask A). Given a sentence com-
posed of n words Starget = [w1, . . . , wn] that con-
tains an m-word MWE W = [wMWE

1 , . . . , wMWE
m ],

S’s preceding sentence Sprev, and succeeding sen-
tence Snext, the task is to classify if W is idiomatic
(0) or not (1). The task dataset is based on Tay-
yar Madabushi et al. (2021) and contains Galician
in addition to English and Portuguese. Each sam-
ple consists of S = [Sprev;Starget;Snext], W , a lan-
guage type lang ∈ {“EN”, “PT”, “GL”}, and an
idiomaticity label yMWE ∈ {0, 1}. In the zero-shot
setting, participants do not have any training sam-
ples for Galician and are only allowed to use the
officially provided training and development sets
for training. They must also use the same approach
for all samples except language and can submit up
to five systems for evaluation.

4 System Overview

Our system relies on cross-lingual pre-trained lan-
guage models (InfoXLM and XLM-R and others)
and classifies samples using either span-based clas-
sification or span prediction-based classification.
We fine-tune several pre-trained language models
and obtain final predictions by using an ensemble
method. Figure 1 visualizes our approach for mul-
tilingual idiomaticity detection.1

4.1 Span-based Classification

There have been several attempts to utilize span hid-
den representations from a Transformer (Vaswani
et al., 2017)-based pre-trained language model in
various NLP tasks that can be formulated as span
classification, including named entity recognition

1Appendix A describes our approaches in detail using
equations.
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(Yamada et al., 2020; Eberts and Ulges, 2020), rela-
tion classification (Baldini Soares et al., 2019) and
propaganda technique classification (Da San Mar-
tino et al., 2020; Dimov et al., 2020; Jurkiewicz
et al., 2020). These studies have all demonstrated
the effectiveness of the span representations.

Here, we utilize this approach to solve the task
of idiomaticity detection. We first pick up the
span hidden representations of an MWE from the
Transformer-based model, take their average, and
feed the resulting vector into a linear layer for final
classification (Figure 1 (a)).

Our concept with this approach is that the model
should be able to focus more on the usage of an
MWE in terms of idiomaticity in context rather
than using a special [CLS] token for classification.
Although we do not regard an MWE as a single
token to encode, it is true that our approach is in-
spired by the idiom principle (Sinclair et al., 1991)
in the sense that our model classifies a single av-
eraged MWE span hidden representation for final
classification.

4.2 Span Prediction-based Classification

For the second approach, we propose span
prediction-based idiomaticity classification, in-
spired by BERT (Devlin et al., 2019)’s fine-tuning
approach against the SQuAD v2.0 dataset (Ra-
jpurkar et al., 2016, 2018), which contains some
unanswerable questions. In BERT’s approach, the
answer text span in a given text for answerable
questions is predicted, and the position of a [CLS]
token for questions that do not have an answer is
output. In our case, the task is to predict the MWE
span in a given sequence for idiomatic MWEs and
to output the position of a [CLS] token for non-
idiomatic MWEs. This approach is illustrated in
Figure 1 (b).

Our concept with this approach lies in the gen-
eralizability over unseen data. Predicting an id-
iomatic MWE span requires a model to differen-
tiate non-idiomatic MWEs from idiomatic ones.
This should force the model to learn semantic
knowledge on MWEs in terms of idiomaticity and
subsequently help the model to deliver a better per-
formance on the test data.

5 Experimental Setup

Models We mainly utilized InfoXLM and XLM-
R for our system submission, but we also tested
several other cross-lingual pre-trained language

Model Identifier

InfoXLM (Chi et al., 2021a) microsoft/infoxlm-large
XLM-R (Conneau et al., 2020) xlm-roberta-large
XLM-Align (Chi et al., 2021b) microsoft/xlm-align-base
RemBERT (Chung et al., 2021) google/rembert
mBERT (Devlin et al., 2019) bert-base-multilingual-cased

Table 1: List of cross-lingual pre-trained language mod-
els tested in this paper. Each identifier corresponds to
the model name in the transformers library.

models. Table 1 shows the list of models tested
in this paper.2 We selected these models because
they are easy-to-use thanks to their availability on
the HuggingFace Hub.3

Data and Preprocessing We utilized the offi-
cial training and development sets4 for training,
and no additional data was used, as stipulated
by the competition rules. We tokenized sam-
ples using pre-trained tokenizers provided by the
transformers library (Wolf et al., 2020) and
set the sequence length to 256. When using an
MWE as an additional input feature, we added it to
the second sentence following Tayyar Madabushi
et al. (2021).

Evaluation Metrics The evaluation metric for
Subtask A is a macro F1 score with respect to id-
iomaticity labels.

Fine-tuning We implemented our approaches
using PyTorch (Paszke et al., 2019) and the
transformers library. We fine-tuned all mod-
els for ten epochs each using one NVIDIA Tesla
V100 (SXM2 - 32GB) with a batch size of 16 and
automatic mixed precision applied. We used an
Adam optimizer (Kingma and Ba, 2014) and saved
a checkpoint of each model every ten steps. To
minimize the effect of random seeds, we trained
all models for ten times each with different ran-
dom seeds. We then selected the best-performing
models on the basis of the macro F1 scores on the
development set.5

Ensemble We fused the outputs of the fine-tuned
pre-trained language models to further boost perfor-

2We provide a brief explanation of the five cross-lingual
pre-trained language models in Appendix B and the perfor-
mance comparison in Appendix E.

3https://huggingface.co/models
4https://github.com/H-TayyarMadabushi/

SemEval_2022_Task2-idiomaticity
5For more details on hyperparameters, please refer to Ap-

pendix C.
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System Ensemble Method Models Used

System 1 No Ensemble InfoXLM for EN, XLM-R for PT & GL
System 2 Stacking InfoXLM × 4, XLM-R × 1
System 3 Majority Vote InfoXLM × 5, XLM-R × 1
System 4 Stacking InfoXLM × 5, XLM-R × 1
System 5 Majority Vote InfoXLM × 5, XLM-R × 1

Table 2: Configurations of our submitted systems. For ensemble methods, we used predicted labels from pre-trained
language models as an input feature. For systems with stacked generalization, we trained a logistic regression model
as a meta estimator.

mance on unseen data. For submission, we use ei-
ther stacked generalization (Wolpert, 1992), where
we train a machine learning model using predic-
tions from pre-trained language models and cor-
responding idiomaticity labels and then make a
final decision with it, or naïve majority voting on
predicted labels. We implemented stacked general-
ization using scikit-learn (Pedregosa et al., 2011).
Prediction labels on the development set were used
as training data for a meta estimator. To train
the estimator, we first divided the training data
into 90% for training and 10% for hold-out. We
then trained the estimator using three-fold cross-
validation (CV). We tested both a ridge classi-
fier and a logistic regression and chose the best-
performing model based on the average CV score
over the three validation folds. We subsequently
picked up the best estimator from the resulting
three models using the hold-out set. Finally, the
best estimator predicted labels for the test set using
the predictions of the pre-trained language models.

Submitted Systems We submitted the five mod-
els listed in Table 2 to the evaluation phase.6 Note
that all models were fine-tuned with the span-based
classification approach following our preliminary
experiments on the development and evaluation
sets.

6 Results

Table 3 shows the official test set results for
the zero-shot setting of Subtask A. Our best-
performing model (System 2), using four InfoXLM
models and one XLM-R model with stacked gener-
alization, achieved a macro F1 score of 0.7466 and
was ranked fifth among 20 teams.

Ensemble We utilized ensemble methods in four
out of five submissions, of which two use stacked

6For the detailed configurations of each model, please see
Appendix D.

Rank Team Macro F1

1 clay 0.8895
2 yxb 0.8498
3 NER4ID 0.7740
4 HIT 0.7715
5 Hitachi (Ours) 0.7466

Baseline 0.6540

Table 3: Top five macro F1 scores on test set in zero-shot
setting of Subtask A. Baseline uses mBERT following
Tayyar Madabushi et al. (2021).

Approach Macro F1

No Ensemble System 1 0.7354

Majority Vote System 3 0.7354
System 5 0.7448

Stacking System 2 0.7466
System 4 0.7452

Table 4: Macro F1 test scores for our five submitted
systems. All models were trained with the span-based
classification approach. Bold indicates the best result.

generalization and the others adopt a naïve majority
voting approach. Table 4 lists the results of our five
submissions on the test set. The results indicate the
effectiveness of the ensemble methods, which out-
perform the model with no ensemble methods by
0.0112 for the best-performing model using stacked
generalization. Even for the naïve majority voting
approach, the performance improved or did not fall
below the result without ensembling.

Classification Approaches We verified the
efficacy of three idiomaticity classification
approaches—span-based classification, span
prediction-based classification, and conventional
[CLS]-based classification—using the same
pre-trained model (InfoXLM). We can see in
Table 5 that the span-based classification approach
exhibited by far the best average macro F1 score
of 0.7303 on the test set, compared to average
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Approach Macro F1
Development Test

Span-based 0.7898 (.0138) 0.7303 (.0211)
Span prediction-based 0.7514 (.0086) 0.6245 (.0255)
[CLS]-based 0.7166 (.0675) 0.6333 (.0371)

Table 5: Average macro F1 development and test scores
of three classification approaches with standard devi-
ations over ten runs in parentheses. We fine-tuned In-
foXLM and used the same hyperparameter settings and
input features for all models.
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Figure 2: Average macro F1 scores of three idiomaticity
classification approaches on the test set grouped by lan-
guage. Error bars denote 95% confidence interval.

macro F1 scores of 0.6245 and 0.6333 for the
span prediction-based and the [CLS]-based
approaches, respectively. This huge difference
stems partly from the Galician classification
performance, since we have no associated training
or development sets for Galician.

Figure 2 shows the average macro F1 scores on
the test set grouped by language. The span-based
classification approach produced the highest perfor-
mance across the three languages, and the perfor-
mance variations among languages were relatively
small, with the maximum difference of 0.1245 be-
tween English and Galician. In contrast, the span
prediction-based and [CLS]-based approaches did
not perform well on Galician samples, exhibiting
average macro F1 scores of 0.4499 and 0.4858, re-
spectively. We assume that because idioms are gen-
erally language- and culture-specific7 (Aldahesh,
2013; Al-kadi, 2015), it is difficult for models fine-
tuned on English and Portuguese data to detect

7Although Portuguese and Galician have strong historical
ties, they are categorized as two different languages (Ramallo
and Rei-Doval, 2015; Garcia, 2021).

Feature Macro F1
Development Test

Plain 0.7859 (.0131) 0.7131 (.0196)
Plain + MWE 0.7835 (.0078) 0.7315 (.0179)
Plain + Context 0.7898 (.0138) 0.7303 (.0211)
Plain + MWE + Context 0.7918 (.0141) 0.7280 (.0212)

Table 6: Average macro F1 development and test scores
with standard deviations over ten runs in parentheses.
“Plain” denotes a target sentence, while “Context” rep-
resents the previous and next sentences. We fine-tuned
InfoXLM using the span-based classification approach
and used the same hyperparameter settings for all mod-
els.

idiomaticity in unseen Galician samples without
letting them know where they should be mainly
looking, as in the span-based approach.

Input Features Tayyar Madabushi et al. (2021)
reported that encoding a target sentence along with
its adjacent contexts showed the best classification
performance in the zero-shot setting among the
four possible input feature combinations: (i) a tar-
get sentence, (ii) a target sentence with its MWE
as a second sentence, (iii) a target sentence with
its adjacent contexts, and (iv) a target sentence, its
MWE and adjacent contexts. Here, we also inves-
tigated these combinations using the span-based
classification approach (Table 6). The results in-
dicate that considering a target sentence and its
adjacent contexts is not always the best option. In
our experiments, utilizing a target sentence and its
target MWE as inputs (Plain + MWE) achieved the
best average macro F1 score of 0.7315, followed by
Plain + Context with a macro F1 score of 0.7303.
While using only a target sentence showed compa-
rable performance to the other approaches on the
development set, it ended up producing the worst
result on the test set. These results suggest that
using an additional feature along with a target sen-
tence is likely to boost detection performance, but
it is not clear which combination of input features
yields the best performance given the standard de-
viations.

7 Conclusion

In this paper, we have proposed two approaches for
detecting idiomaticity in a given sequence: span-
based classification and span prediction-based clas-
sification. While the performance of the latter was
almost on par with that of the well-known standard
sequence classification approach using a [CLS]

139



hidden representation, the former outperformed it
and showed the best macro F1 score of 0.7466,
which ranked fifth in the zero-shot setting of Sub-
task A. We also found that it is essential to guide
a model on which tokens to look at when no train-
ing data is available for a particular language. In
future work, we will investigate a more effective
idiomaticity detection approach against unseen lan-
guage data.
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Appendices

A Approaches

Here, we describe our two approaches in detail
using mathematical notations.

A.1 Span-based Classification

Given S, W , and yMWE, we first tokenize S
and WMWE using a pre-trained tokenizer and
obtain their token-level representations: S ′ =
[t1, . . . , tn′∈N] and W ′ =

[
tMWE
1 , . . . , tMWE

m′∈N
]
. We

then feed S ′ into a Transformer-based pre-trained
language model and obtain the output hidden rep-
resentation H = [h1, . . . ,h

′
n]. We pick up only

the hidden representation of W ′ and compute their
average as hMWE = 1

|W ′|
(
hMWE
1 + · · ·+ hMWE

m′
)
.

Finally, we put hMWE into an output linear layer
and obtain the prediction. The training objective in
this task is the binary cross-entropy loss.

A.2 Span Prediction-based Classification
Given S ′, a start position of W ′ and an end po-
sition of W ′, we first feed S into a Transformer-
based model and then put the output representation
H to a linear classifier for classification, yielding
O ∈ Rn′×2 = [ostart;oend]. We finally apply the
softmax function to ostart and oend in order to ob-
tain the idiomatic MWE span probabilities. For
prediction, we first calculate the maximum scoring
span and obtain its score as s = ostart

i + oend
j , where

j must be greater than i, and ostart
i and oend

j are
the i-th and j-th values of ostart and oend, respec-
tively. We also calculate the non-idiomatic score
as s = ostart

1 + oend
1 , where index 1 refers to the

index of the [CLS] token. If s ≥ s, W is regarded
as idiomatic. Otherwise, W is predicted as a non-
idiomatic MWE. This task is trained with an aver-
age of the log-likelihoods of the correct start Lstart
and end Lend positions: Lspan = 1

2 (Lstart + Lend).

B Cross-lingual Pre-trained Language
Models

We briefly explain the five cross-lingual pre-trained
language models tested in this paper.

• mBERT (Devlin et al., 2019): Pre-trained with
multilingual masked language modeling using
Wikipedia. Its architecture follows that of
BERT-BASE.

• XLM-R (Conneau et al., 2020): Pre-trained
with multilingual masked language modeling
using CommomCrawl, which is much larger
than Wikipedia. The architecture generally
follows that of BERT-LARGE.

• InfoXLM (Chi et al., 2021a): Pre-trained
with multilingual masked language modeling,
translation language modeling, and the newly
proposed cross-lingual contrastive learning,
using CommonCrawl. The architecture fol-
lows that of XLM-R.

• XLM-Align (Chi et al., 2021b): Pre-trained
with multilingual masked language modeling,
translation language modeling and denoising
word alignment, using CommonCrawl and
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Wikipedia. The architecture generally follows
that of BERT-BASE.

• RemBERT (Chung et al., 2021): Pre-trained
with multilingual masked language model-
ing using both CommonCrawl and Wikipedia.
The architecture is completely different from
that of XLM-R, though it has the same number
of parameters (559M). It consists of 32 hidden
layers, 18 attention heads and Dimhidden =
1152.

Note that all models can accommodate the three
target languages (English, Portuguese, and Gali-
cian).

C Hyperparameter Settings

Table 8 shows the hyperparameter settings. We ex-
plored various hyperparameter combinations with
respect to a pre-trained language model, a peak
learning rate, and an input feature and selected the
models with a macro F1 score of 0.795 or above on
the development set. Note that we also tested XLM-
Align, RemBERT, and mBERT in our preliminary
experiments, but these did not perform well on the
development set (see Appendix E); therefore, we
did not use them in our submissions.

D Model Configurations

Table 9 lists the models used for our submissions,
while Table 10 shows the configurations of our five
submitted systems. For System 1, we used the
two different best-performing models for English
and Portuguese.8 For Galician, because we did not
have any training samples provided in the zero-shot
setting, we used the same model as Portuguese, as
both Galician and Portuguese have grammatical
and lexical similarities due to their shared histor-
ical background (Ramallo and Rei-Doval, 2015;
Cascallar-Fuentes et al., 2018; Garcia, 2021).

E Performance Comparison of Five
Cross-lingual Pre-trained Language
Models

Table 7 compares average macro F1 scores of five
cross-lingual pre-trained language models on the
development and test sets. Interestingly, RemBERT
produced the best result on the test set with an av-
erage macro F1 score of 0.7452, though it ranked

8We selected the best-performing models based on macro
F1 scores on the evaluation set.

Model Macro F1
Development Test

InfoXLM 0.7898 (.0139) 0.7304 (.0211)
XLM-R 0.7959 (.0110) 0.7116 (.0125)
XLM-Align 0.7600 (.0096) 0.7015 (.0119)
RemBERT 0.7833 (.0090) 0.7452 (.0192)
mBERT 0.7440 (.0125) 0.7014 (.0125)

Table 7: Average macro F1 development and test scores
of five cross-lingual pre-trained language models with
standard deviations over ten runs in parentheses. We
use the same hyperparameter settings for all models.
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Figure 3: Average macro F1 scores of five cross-lingual
pre-trained language models on the test set grouped by
language. Error bars denote 95% confidence interval.

third for the development set. This is presumably
because the Galician and English classification per-
formances of RemBERT are better than any other
cross-lingual pre-trained language models that we
tested (Figure 3).
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Hyperparameter Candidate

Batch size 16
Epochs 10
Model (InfoXLM, XLM-R)
Peak learning rate (0.5e-5, 1e-5, 1.5e-5, 2e-5, 2.5e-5, 3e-5)
Input feature (Plain + MWE, Plain + Context, Plain + MWE + Context)
Warmup steps 5% of steps
Weight decay 0.01
Adam ϵ 1e-8
Adam β1 0.9
Adam β2 0.999
Sequence length 256
Attention Dropout 0.1
Dropout 0.1

Table 8: Hyperparameters in our experiments. We explored various hyperparameter combinations with respect to
pre-trained language model, peak learning rate, and input feature. If not specifically mentioned in the paper, we
used hyperparameters denoted with an underline.

Model Type Hyperparameter Macro F1
Development Evaluation

LR Input Feature Seed EN PT All EN PT All

M1 InfoXLM 2e-5 Plain + Context 25 .800 .814 .814 .862 .678 .801
M2 InfoXLM 1e-5 Plain + MWE 25 .787 .796 .799 .858 .667 .797
M3 XLM-R 1e-5 Plain + Context 42 .814 .746 .797 .850 .743 .817
M4 InfoXLM 1e-5 Plain + Context 42 .799 .770 .797 .844 .679 .792
M5 InfoXLM 1e-5 Plain + MWE + Context 22 .788 .784 .796 .854 .696 .803
M6 InfoXLM 1.5e-5 Plain + Context 42 .837 .742 .810 .800 .665 .762
M7 InfoXLM 2e-5 Plain + MWE + Context 29 .808 .806 .818 .854 .708 .812

Table 9: List of models used in our submissions and their macro F1 scores on the development and evaluation sets.
Bold indicates the best result in each category, while underline indicates the second-best result.

System Approach Models Used Macro F1
EN PT GL All

System 1 No Ensemble M1 for EN, M3 for PT & GL .820 .733 .614 .735
System 2 Stacking M1,M2,M3,M4,M5 .783 .761 .663 .747
System 3 Majority Vote M1,M2,M3,M4,M5,M6 .785 .739 .647 .735
System 4 Stacking M1,M2,M3,M4,M5,M7 .785 .757 .660 .745
System 5 Majority Vote M1,M2,M3,M4,M5,M7 .769 .753 .685 .745

Table 10: Configurations of our submitted systems and their macro F1 scores on the test set. Bold indicates the best
result in each category, while underline indicates the second-best result.
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