
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022), pages 987 - 992
July 14-15, 2022 ©2022 Association for Computational Linguistics

LT3 at SemEval-2022 Task 6: Fuzzy-Rough Nearest Neighbor Classification
for Sarcasm Detection

Olha Kaminska
Computational Web Intelligence

Department of Applied Mathematics,
Computer Science and Statistics

Ghent University, Ghent, Belgium

Chris Cornelis
Computational Web Intelligence

Department of Applied Mathematics,
Computer Science and Statistics

Ghent University, Ghent, Belgium

Veronique Hoste
LT3 Language and Translation Technology Team

Ghent University, Ghent, Belgium
{Olha.Kaminska,Chris.Cornelis,Veronique.Hoste}@UGent.be

Abstract

This paper describes the approach developed
by the LT3 team in the Intended Sarcasm De-
tection task at SemEval-2022 Task 6. We con-
sidered the binary classification subtask A for
English data. The presented system is based
on the fuzzy-rough nearest neighbor classifi-
cation method using various text embedding
techniques. Our solution reached 9th place in
the official leader-board for English subtask A.

1 Introduction

Sarcasm (or irony) can be defined as a trope or figu-
rative language use whose actual meaning is differ-
ent from what is literally enunciated (Chandler and
Munday, 2011). The task of sarcasm detection can
be connected with various challenges in the Natural
Language Processing (NLP) field, from sentiment
analysis to hate speech detection. However, this
task is more complicated by its nature. Even for
a human, sarcasm detection could be a challeng-
ing issue. It can be represented in different shapes,
with voice, gestures, mimic, etc. So, text alone may
not be sufficient to detect whether a given utterance
is sarcastic or not. It makes the labeling of such
datasets quite complicated (Ghanem et al., 2020).

The SemEval competition is an annual event
that provides a set of challenges for researchers in
different aspects of the NLP field. This year we
participated in SemEval-2022 Task 6 called “iSar-
casmEval" that considers sarcasm detection in two
languages: English and Arabic (Abu Farha et al.,
2022). We tackled subtask A for English, where for
a given text, we should determine whether it is sar-
castic. As described by the authors of the dataset,
text writers provided the labels by themselves to
exclude subjective labeling. The dataset contains
text, its binary label for subtask A (sarcastic or not),

a non-ironical rephrase of the provided text with
an explanation of why is it sarcastic for subtask C
(we did not use it in our experiments), and a set
of binary classes for six types of sarcasm (irony,
satire, rhetorical question, etc.) for subtask B. We
note that the size of the non-irony class for subtask
A is three times bigger than the size of the irony
class (2,601 instances and 867 instances).

A task related to sarcasm detection is emotion de-
tection issue, which we considered in our previous
papers. In (Kaminska et al., 2021b) and (Kamin-
ska et al., 2021a), we addressed the intensity task
provided by SemEval-2018 Task 1 (Mohammad
et al., 2018). Our first paper used the weighted k
Nearest Neighbor (wkNN) classification approach
with corresponding text cleaning and embedding
steps. In the second paper, we tuned the prepro-
cessing steps and, instead of wkNN, we consid-
ered the Fuzzy-Rough Nearest Neighbor (FRNN)
classification model with Ordered Weighted Aver-
age (OWA) operators ((Jensen and Cornelis, 2011),
(Vluymans et al., 2019), (Lenz et al., 2019)). The
final approach has the shape of an ensemble of
FRNN models based on several strong embedding
techniques. The solution described in this paper is
based on the methodology presented in (Kaminska
et al., 2021a), but it is fine-tuned for the iSarcas-
mEval dataset and task. Our code is provided at
the GitHub repository1.

The remainder of this paper has the following
parts: in Section 2 we provide a step-by-step de-
scription of our system, including text preprocess-
ing and the used embedding methods, the classifi-
cation model and its ensemble, and the evaluation
metric. In Section 3 we provide results obtained
by cross-validation, and identify the best setup ap-

1https://github.com/olha-kaminska/
frnn_emotion_detection/tree/iSarcasmEval
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plied on the test data. It also provides an error
analysis of the output and post-competition experi-
ments for model improvement. Section 4 presents
conclusions and future steps.

2 System Description

Figure 1 gives an overview of our full method,
which encompasses the following steps: we em-
bed the raw text with the Twitter-roBERTa-base for
Irony Detection model (Barbieri et al., 2020), then
we use the output vectors in the OWA-FRNN clas-
sification method to obtain a prediction of classes.

Figure 1: Schematical overview of our architecture.

2.1 Text preprocessing

We manually explored part of the provided dataset
and concluded that it has attributes of regular so-
cial media posts, like tweets, including user tags,
emojis, hashtags, etc. Hence, the first step in our ex-
periments was text preprocessing before we applied
text embedding techniques. Initially, we considered
three options: no preprocessing, basic cleaning,
and extra stop-words removal.

The basic cleaning included deleting the "#" sym-
bol before hashtags and emojis transformation. We
did not delete the text of hashtags because it could
contain important information about the whole text.
Similarly, we kept emojis but replaced them with
textual descriptions provided by "emoji" package2.

2https://pypi.org/project/emoji/

The third approach of text preprocessing involves
the same steps, additionally deleting the stop-words
using the "NLTK" package3.

We tried all three text preprocessing setups for
each text embedding technique in order to detect
the most suitable for each.

2.2 Embedding methods

As a next step of text preparation before classi-
fication we investigate different text embedding
methods. This technique represents a fragment
of text (symbol, word, collocation, sentence, or
even paragraph) as a vector (or a set of them). The
obtained vector corresponds to the actual text in
multi-dimensional vector space with the idea that
neighboring vectors represent similar text pieces.

Embedding techniques came a long way from
simple bag-of-words and pre-trained dictionaries
in a word-vector format to the current state-of-the-
art transformer-based solutions and context-based
language models. In our method, we explored var-
ious types of text embedding techniques: vocabu-
lary Word2Vec from Gensim package4, sentiment-
based DeepMoji5, Universal Sentence Encoder
(USE) by the TensorFlow6, Bidirectional Encoder
Representations from Transformers (BERT), as pro-
posed by (Devlin et al., 2019) and two methods
related to BERT - Sentence-BERT (SBERT) by
(Reimers and Gurevych, 2019) and the Twitter-
roBERTa-based model for irony recognition pre-
sented by (Barbieri et al., 2020). As we will see in
Section 3.1, the latter performed much better than
the others, hence we will describe it in more detail.

The robustly optimized BERT pre-training ap-
proach (roBERTa) is comparable to the original
BERT model but has a few training technique and
architecture differences. In (Barbieri et al., 2020),
the authors described several roBERTa-based mod-
els for different tasks, for example, hate speech
recognition and emotion detection. We considered
the one for irony classification7 that was trained on
nearly 58M tweets and fine-tuned on the dataset
from Subtask A of the SemEval2018 challenge for
Irony Detection presented by (Van Hee et al., 2018).

3https://pypi.org/project/nltk/
4https://radimrehurek.com/gensim/

models/word2vec.html
5https://deepmoji.mit.edu/
6https://www.tensorflow.org/hub/

tutorials/semantic_similarity_with_tf_
hub_universal_encoder

7https://huggingface.co/cardiffnlp/
twitter-roberta-base-irony
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This model can perform classification directly, but
instead we used it to extract tweets’ weights from
the inner model’s layer as their embedding vectors.
We will discuss this further in Section 2.3.

2.3 OWA-FRNN classifier

Most state-of-the-art approaches for tasks such as
irony detection belong to the deep learning fam-
ily, and therefore remain black-box solutions. Our
idea was to try a more explainable technique based
on the Fuzzy-Rough Nearest Neighbor (FRNN)
method that already showed promising results in
our previous work (Kaminska et al., 2021a).

The FRNN classification model was introduced
in (Jensen and Cornelis, 2011). It is an instance-
based approach that uses lower (L) and upper (U )
fuzzy-rough approximations inside the classifica-
tion process. In (Vluymans et al., 2019) and (Lenz
et al., 2019), FRNN extensions were described
based on the Ordered Weighted Average (OWA)
operators with the aim of making the method more
robust. OWA operators are used to define the mem-
bership of a data instance to the lower and upper
approximation through an aggregation process.

We will use the following notation: V is the
set of OWA aggregation values, where v(i) is the
ith largest element of the set V ; the weight vec-
tor is denoted as −→

W = ⟨w1, w2, ..., w|V |⟩, where

(∀i)(wi ∈ [0, 1]) and
∑|V |

i=1wi = 1. Then, we will
have the following formula for the OWA operator:

OWA−→
W

(V ) =

|V |∑

i=1

(wiv(i)) (1)

We used additive OWA operators (Vluymans
et al., 2019), as they performed the best in our pre-
vious paper. They are linearly increasing for lower
and linearly decreasing for upper approximations.
Additive weights are presented by the Formulas (2)
and (3), where p denotes the length of the vector
(p > 1).
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OWA-FRNN assigns a test instance y to the class

C with the highest sum of C(y) and C(y):

C(y) = OWA−→
WL

{1−R(x, y) | x ∈ X \ C}) (4)

C(y) = OWA−→
W U

{R(x, y) | x ∈ C}) (5)

Here, R(x, y) corresponds to the similarity be-
tween vectors x and y. In our experiments, we
used cosine similarity:

cos_similarity(A,B) =
1 + cos(A,B)

2
. (6)

Where cos(A,B) is the cosine distance between
elements A and B:

cos(A,B) =
A ·B

||A|| × ||B|| (7)

For our setup, A and B denote tweet embedding
vectors, A·B is their scalar product, and ||A|| is the
vector norm of A. We considered similarity instead
of distance because Formula (6) provides values
that fit our classification method: 0 for opposite
vectors and 1 for identical ones.

One more parameter that we need for Formulas
(4) and (5) is k - the number of nearest neighbors
of test instance y. The difference between k in
Formulas (4) and (5) is that for the first, it corre-
sponds to the amount of training samples that are
y’s neighbors outside class C and for the second
- those inside class C. The parameter k is used to
limit the calculations and, just as for wkNN, there
are no general rules on how to choose it. Hence, we
will tune this parameter for each model separately.

We used the OWA-FRNN approach as the pri-
mary classification technique, with a Python imple-
mentation8 provided by (Lenz et al., 2020).

2.4 Ensembles
To improve our results, we considered the usage
of models’ ensembles. The ensemble combines
several classification models’ outputs to provide the
final prediction. The idea behind it is to improve
the performance of a single model by combining it
with other models to fuse their advantages.

We tuned the best setup for each embedding
method separately (with parameters as text prepro-
cessing and a number of neighbors k) and then
united them in an ensemble. As a combination
method for models outputs, or in other words, “a

8https://github.com/oulenz/
fuzzy-rough-learn
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voting function", we used the mean. We tuned the
set of the models used in the ensemble to prevent
weak models from decreasing the final score. All
obtained results are presented in Section 3.

2.5 Evaluation

To compare different approaches on the train data,
we used a 5-fold cross-validation technique by split-
ting the provided dataset into train and test data
with an 80/20 ratio.

As an evaluation metric for predicted labels and
actual labels, we used the F1-score (Formula (8))
calculated for the sarcastic class, as was suggested
by the competition organizers.

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
, (8)

where by Precision we mean the fraction of accu-
rately predicted sarcastic labels from all predicted
test labels, and by Recall we refer to the fraction
of accurately predicted sarcastic labels from all ac-
tual sarcastic test labels. The highest value of the
F1-score corresponds to the best model.

3 Results

This section consists of several parts. In Subsection
3.1 we provide an overview of our experiments, us-
ing cross-validation on the train data to identify
the best model for irony detection and evaluate its
result for test data. In Subsection 3.2, we describe
error analysis and illustrate the explainability of
our approach. We also performed additional experi-
ments after the competition was finished and labels
for the test data released to improve our scores and
present this process in Subsection 3.3.

3.1 The best setup

Firstly, we evaluated the OWA-FRNN classifica-
tion model on each embedding method separately
by tuning the number of neighbors k and text pre-
processing techniques. The best setup for each
embedding method with the best parameters and
corresponding F1-score for the sarcastic class is
shown in Table 1.

Table 1 lists all methods in decreasing order by
F1-score. The best result was obtained with the
roBERTa-based model with a noticeable gap for
the next method - DeepMoji. It can be seen that
for almost all embedding techniques, the value of
k is equal to 5, whereas for text preprocessing, no
particular pattern was observed.

Table 1: Cross-validation best F1-scores for different
embedding methods and corresponding setups.

Method Text k F1 sarcastic

roBERTa raw 5 0.3722
DeepMoji cleaned 5 0.3157
USE raw 5 0.2808

BERT cleaned,
no stop-words 5 0.2351

Word2Vec cleaned,
no stop-words 5 0.2050

SBERT raw 7 0.1618

Table 2: Cross-validation F1-scores for ensembles of
embedding methods.

Embeddings F1-score

All six 0.0995
TOP-5 0.1866
TOP-4 0.1317
TOP-3 0.2941
TOP-2 0.1866

Secondly, we combined different embedding
methods with their best setups as an ensemble. We
calculated the mean for all embedding methods,
then for the top-5 (excluding the weakest one -
SBERT), top-4 (excluding Word2Vec and SBERT),
and so on, until the single top model roBERTa is
left. The results are presented in Table 2.

From Table 2 we can see that ensembles pro-
vided lower scores than single models. The stand-
alone roBERTa performed better than in ensem-
bles with others, which could already be expected
from Table 1, where the gap between the roBERTa
method and the rest is remarkable.

Hence, we can conclude that the best setup has
the following components: no text preprocess-
ing, roBERTa-based embedding technique for vec-
tors extraction, and an OWA-FRNN classification
model with a number of neighbors k = 5. This
setup was applied to the test dataset.

We calculated labels for the test data using this
setup and submitted them to the competition to
obtain F1-score = 0.4242 for the sarcastic class,
leading to a 9th place in the leader-board. Mean-
while, we received higher places for some other
metrics: 7th place for averaged F-score = 0.6552
and precision = 0.6422, and 8th place for accuracy
= 0.8100.
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3.2 Error analysis

For the error analysis, we could rely on the fact
that the OWA-FRNN classifier we experimented
with has the advantage of being more explainable
compared to many other black box approaches. In
our case, we mean that we can trace back the test
instance and see which five instances from the train
data determined its class.

Initially, we traced back several correctly pre-
dicted test tweets to see if it was possible to notice
any patterns. For example, for the sarcastic test
tweet “So the Scottish Government want people to
get their booster shots so badly that the website
doesn’t even work", we got four sarcastic training
neighbors out of five. Four neighbors were con-
nected to the health topic and contained colloca-
tions such as “mental health", “health insurance",

“covid vaccine", and “healthcare". The fifth neigh-
bor was about emails that could be connected to

“website" word from the test tweet. From this sam-
ple, we could conclude that having a common topic
is an important feature for neighbors detection and
our model deals well with it, as we also noticed
from exploring other test samples.

As for wrong predictions, we also found an illus-
trative example for the sarcastic test tweet: “Some-
times I lay in bed and think about how today will
be the day I make my life better. Exercise, drinking
water, eating healthy. Then I wake up." It has four
training neighbors about daily routine and lifestyle
with mostly non-sarcastic labels, leading to the
wrong prediction. For example, the closest training
neighbor “me: I’m gonna wash my hair and shave
my legs! Me instead: I’m gonna dissociate in the
shower for 45 minutes" looks pretty similar to the
test sample but has a non-sarcastic label. Here,
we could highlight again the difficulty of sarcasm
dataset labeling and how subjective it could be.

In general, we can see that topic could be a
strong feature. However, the same concept could
have different meanings in different topics (for ex-
ample, “temperature" in weather or fever). Also,
some neighbors have the same emojis as a test in-
stance that can give a hint about emojis importance.

3.3 Model improvements

After the test labels were released, we experi-
mented with more setups to improve our final F1-
score.

First, we used other values of the parameter k
that showed mediocre results on cross-validation to

see how they perform on the test data. For example,
we observed that for k = 17, we receive an F1-
score with cross-validation equal to 0.3408, which
is lower than our best setup. However, on the test
data, this value of k provided us an F1-score equal
to 0.5, which is more than what we got in the leader-
board and would lead us to fourth place.

Secondly, we considered the usage of the
weighted k Nearest Neighbors (wkNN) algorithm
(Dudani, 1976). This approach is close to OWA-
FRNN, and we already worked with it in our previ-
ous paper (Kaminska et al., 2021b) for the emotion
detection task. The wkNN works with k closest
neighbors and puts weights based not on the OWA
operator but on the neighbors’ distances. As a sim-
ilarity function, we used cosine again.

To test the wkNN method, we applied it inside
our best setup - roBERTa-based embedding vectors
obtained from the raw tweets and k = 5. We got
an F1-score for the sarcastic class of 0.3569 with
cross-validation and 0.4299 for the test data. We
can see a minor improvement for the test data, com-
pared to our final scores from the leader-board.We
also checked this setup for k = 17 and obtained
a sarcastic F1-score for cross-validation equal to
0.2790 and 0.4969 for the test data. It would also
top us up to the fourth place, and so in general, we
can see that results for the OWA-FRNN and the
wkNN methods in our setups are pretty close.

4 Conclusion & Future Work

In this paper, we presented our model for the iS-
arcasmEval competition. Our solution uses the
instance-based classification method OWA-FRNN
and a roBERTa-based model for Irony Recogni-
tion as an embedding method. We fine-tuned the
best setup on the train data with cross-validation
and obtained the ninth place on the test data in the
competition leader-board.

Our approach is explainable in a way that we
can trace back the test instance and find the train-
ing instances that determined the predicted class to
explore some patterns. For example, we observe
the significance of the tweet topic and even of par-
ticular keywords.

In the future, the provided solution may be im-
proved by additional text preprocessing techniques
or roBERTa-based model fine-tuning using addi-
tional datasets.
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