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Abstract

Communicative functions are an important
rhetorical feature of scientific writing. Sen-
tence embeddings that contain such features
are highly valuable for the argumentative anal-
ysis of scientific documents, with applications
in document alignment, recommendation, and
academic writing assistance. Moreover, em-
beddings can provide a possible solution to
the open-set problem, where models need to
generalize to new communicative functions un-
seen at training time. However, existing sen-
tence representation models are not suited for
detecting functional similarity since they only
consider lexical or semantic similarities. To
remedy this, we propose a combined approach
of distant supervision and metric learning to
make a representation model more aware of the
functional part of a sentence. We first lever-
age an existing academic phrase database to
label sentences automatically with their func-
tions. Then, we train an embedding model to
capture similarities and dissimilarities from a
rhetorical perspective. The experimental results
demonstrate that the embeddings obtained from
our model are more advantageous than exist-
ing models when retrieving functionally similar
sentences. We also provide an extensive analy-
sis of the performance differences between five
metric learning objectives, revealing that tra-
ditional methods (e.g., softmax cross-entropy
loss and triplet loss) outperform state-of-the-art
techniques.1

1 Introduction

Scientific articles explain new ideas or discoveries
and attempt to convince readers of their validity
and importance. A key characteristic that distin-
guishes these articles from other texts is their spe-
cific rhetorical structures. The most well-known
example is the main section of a paper, organized

1Our code, data and trained models are publicly available
at https://github.com/kaisugi/rhetorical_
aspect_embeddings

Lexical similarity

Functional similarity

So far, however, there has been little discussion
about the explainability in machine learning.

In the following section, we will introduce an 
explainable machine learning framework.

So far, however, there has been little discussion
about the explainability in machine learning.

Up to now, little attention has been paid to neural
dependency parsing.

(a)

(b)

(a)

(c)

Figure 1: The upper panel shows an example of lexically
similar sentences. Sentence (a) conveys the commu-
nicative function of “showing lack of previous work”,
whereas (b) conveys a different function, “showing the
outline of the paper”. In contrast, the lower panel shows
a pair of functionally similar sentences.

as Introduction, Methods, Results, and Discussion.
Several attempts have also been made to identify
argumentative roles within a section (Swales, 1990;
Teufel et al., 1999; Lauscher et al., 2018). For ex-
ample, a sentence in a paper beginning with “little
attention has been paid to ...” shows the background
of the research, or more specifically, the lack of
previous research on that topic. In our work, we
collectively refer to this rhetorical aspect of scien-
tific writing as a communicative function, following
Kanoksilapatham (2005).

Although previous studies have mainly focused
on classifying sentences into a predefined set of
communicative-function labels (Hirohata et al.,
2008; Fisas et al., 2015; Cohan et al., 2019; Brack
et al., 2022), we shift the focus to developing a
sentence representation model for communicative
functions. In other words, we consider sentence
embeddings that can handle functional similar-
ity, as opposed to lexical or semantic similarities

https://github.com/kaisugi/rhetorical_aspect_embeddings
https://github.com/kaisugi/rhetorical_aspect_embeddings
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(Figure 1). There are two main reasons to prefer
this approach: (i) The embedding model serves as
an off-the-shelf tool to discover the most similar
sentences to a query from a rhetorical perspective,
which is beneficial for practical applications, in-
cluding scientific document alignment (Zhou et al.,
2020) and aspect-based scientific paper recommen-
dation (Kobayashi et al., 2018; Chan et al., 2018).
Such models can also contribute to writing assis-
tance systems (Liu et al., 2016; Shioda et al., 2017)
by suggesting sentences that have the same rhetor-
ical feature as a query. (ii) Embeddings obtained
from neural networks have shown the generaliza-
tion ability to deal with the cases in which train-
ing and test sets do not share the same labels (i.e.,
open-set settings) (Musgrave et al., 2020; Geng
et al., 2021). We argue that models for scholarly
document processing (SDP) should perform well
in open-set settings and generalize to unseen com-
municative functions, because there is no prepared
list that covers all functional categories used in
scientific articles.

In this paper, we introduce a new method
for training a sentence representation model
to capture functional similarity. We first ad-
dress the scarcity of fine-grained datasets with
communicative-function labels. Inspired by the
success of distant supervision on low-resource nat-
ural language processing (Hedderich et al., 2021),
we retrieve sentences from the Semantic Scholar
Open Research Corpus (S2ORC) (Lo et al., 2020)
and annotate labels based on simple text matching
using an academic phrase dictionary, Academic
Phrasebank (Davis and Morley, 2018). The result-
ing dataset, dubbed the Communicative-Function-
labeled Semantic Scholar Sentence Dataset (CFS3),
contains 100,016 sentences, classified into 77 func-
tion labels. We use this dataset to fine-tune SciB-
ERT (Beltagy et al., 2019) with a metric learning
loss so that functionally similar sentences come
close together and dissimilar sentences are sepa-
rated. As several recent studies (Musgrave et al.,
2020; Boudiaf et al., 2020; Coria et al., 2020) have
claimed that the performance of conventional met-
ric learning losses (e.g., softmax cross-entropy loss)
is comparable to or even better than that of state-
of-the-art methods (e.g., ArcFace loss (Deng et al.,
2019)), we also investigate whether these findings
are valid in our settings.

We evaluate the trained model, named SCI-

TORICSBERT2, on sentence retrieval tasks de-
signed to assess the rhetorical aspects of sentence
representations. The experimental results show
that our model is more suitable for retrieving func-
tionally similar sentences than existing sentence
representation models. We also observe that, in
most cases, softmax cross-entropy loss yields bet-
ter performance than other state-of-the-art methods.
Furthermore, we train the same model using a lim-
ited number of communicative-function labels to
better understand the generalizability of the trained
models in open-set settings. The results reveal that
the performance gain of conventional methods be-
comes even larger when the number of labels used
for training becomes smaller.

Our contributions are as follows:

• We release CFS3, a distantly-labeled sentence
dataset that includes 100K+ samples with 77
communicative-function labels.

• We present sentence embeddings that focus
on the functional part of a sentence. Our
model outperforms existing models in retriev-
ing functionally similar sentences.

• We empirically demonstrate that the state-of-
the-art metric learning methods do not im-
prove performance on learning task-specific
sentence embeddings.

2 Related Work

2.1 Argumentative Analysis of Scientific Texts
There is a large body of literature on assessing the
argumentative status of scientific articles. Some
notable schemes include move analysis (Swales,
1990) and argumentative zoning (Teufel et al.,
1999). Another area of study is the annotation of
communicative-function labels in abstracts using
structured abstracts (Dernoncourt and Lee, 2017) or
through crowdsourcing (Cohan et al., 2019; Huang
et al., 2020).

Machine learning algorithms, such as condi-
tional random fields (Hirohata et al., 2008), logis-
tic regression, and support vector machines (Fisas
et al., 2015), have been used to automatically clas-
sify sentences into function labels. Recently, SciB-
ERT, a pre-trained language model on scientific
texts, has pushed the limits of the classification
accuracy (Cohan et al., 2019; Huang et al., 2020).

2The term SCITORICS was coined by Lauscher et al. (2018)
to represent the rhetorical aspects of scientific writing.
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2.2 Sentence Representation Models

Work on sentence embeddings can be divided into
unsupervised and supervised methods. Conven-
tional unsupervised models produce sentence em-
beddings by averaging each word or subword em-
bedding from static or contextualized language
models. This approach allows us to assess the
lexical similarity of two sentences based on the
distributional hypothesis (Harris, 1954). Recent su-
pervised models trained on natural language infer-
ence (NLI) datasets (Conneau et al., 2017; Reimers
and Gurevych, 2019; Gao et al., 2021) have shown
significant improvements in semantic textual simi-
larity (STS) tasks. These models can compute the
semantic similarity of two sentences more faith-
fully than unsupervised models.

To the best of our knowledge, Iwatsuki et al.
(2022) is the only study that investigated sentence
representations for functional similarity. Their ap-
proach assigns different weights to word embed-
dings in the functional and non-functional parts of
a sentence, whereas our proposed model eliminates
the need to identify the functional part in advance.

2.3 Metric Learning

Metric learning (Kaya and Bilge, 2019) aims to
learn a new mapping function from samples to vec-
tors to reduce the distance between similar samples
while increasing the distance between dissimilar
samples. This training procedure is also called
contrastive learning when the training data are an-
notated with pairwise labels (positive and negative
pairs denote similar and dissimilar samples, respec-
tively).

Triplet loss (or triplet margin loss) is one of the
most studied learning methods. Neural networks
associated with a triplet loss are known as “triplet
networks”, and they have been used in several ap-
plications, such as face recognition (Schroff et al.,
2015), person re-identification (Hermans et al.,
2017), sentence-level similarity learning (Ein Dor
et al., 2018; Reimers and Gurevych, 2019), and
document-level similarity learning (Cohan et al.,
2020). Another classical approach is softmax cross-
entropy loss. Although this loss is typically chosen
for classification tasks, several studies have used
it to train embedding models (Sun et al., 2014;
Boudiaf et al., 2020).

Recently, much research has been devoted to
designing loss functions to learn effective visual
representations (Musgrave et al., 2020). These loss

functions have been successfully applied to learn-
ing textual information, such as sentences (Yan
et al., 2021; Giorgi et al., 2021; Kim et al., 2021;
Gao et al., 2021), dialogues (Liu et al., 2021a), so-
cial media behaviors (Andrews and Bishop, 2019),
and biomedical entities (Liu et al., 2021b). How-
ever, some studies have also shown that state-of-
the-art loss functions do not necessarily outperform
classical methods (Musgrave et al., 2020; Boudiaf
et al., 2020; Coria et al., 2020).

3 Methods

Our approach can be roughly divided into two parts:
phrase-guided distant supervision (Sections 3.1 and
3.2) and metric learning (Section 3.3), as illustrated
in Figure 2.

3.1 Acquisition of Labeled N-gram List

Academic Phrasebank3 is an online public database
of generic academic phrases (Davis and Morley,
2018). Based on the observation that specific (for-
mulaic) phrases serve as key markers for commu-
nicative functions (Swales, 1990), the database
identifies 80 functions according to the main sec-
tions of a paper and samples approximately 20
phrases for each.

Our motivation is to utilize Academic Phrase-
bank for annotating sentences with communicative
functions. Prior research has also leveraged this
database to label sentences (Iwatsuki and Aizawa,
2021). However, their study relied on manual
phrase extraction and annotation to maintain the
quality of the labeling process. In contrast, we pur-
sue a fully automated approach to create a larger,
finer-grained dataset.

As the number of phrases in Academic Phrase-
bank is relatively small, we first perform data aug-
mentation on the entire database using PPDB 2.0
(Pavlick et al., 2015) by randomly paraphrasing one
noun, adjective, or adverb in a phrase. This results
in a total of 30,505 phrases, which is approximately
20 times larger than the original.

The augmented phrases themselves are unsuit-
able for annotating sentences, because most of
them are too lengthy to include specific content
words that are irrelevant to communicative func-
tions (e.g., “metabolism” in the phrase “X plays
a vital role in the metabolism of ...”). We there-
fore extract every n-gram from the phrases. In

3https://www.phrasebank.manchester.ac.
uk/

https://www.phrasebank.manchester.ac.uk/
https://www.phrasebank.manchester.ac.uk/
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1. Phrase-guided distant supervision

Academic Phrasebank (augmented w/ PPDB)

01: Establishing the importance of
the topic for the world or society 

X plays a vital role in the
metabolism of …
In the new global economy, X has
become a central issue for …

labeled n-gram list

(plays, a, vital, role, in) 
(a, vital, role, in, the) 
(vital, role, in, the, metabolism)  
(role, in, the, metabolism, of) 
... 
(has, become, a, central, issue) 
...

01

sentences in S2ORC

Serine hydroxymethyltransferase 2
(SHMT2) plays a vital role in one-
carbon metabolism and drives
colorectal carcinogenesis. 
... 
In spite of noticeable progress in
the uptake of maternal health care
services, inequity has become a
central issue in Bangladesh in the
last decade [20, 24, 25]. 
...

(blue: sentence root)

01

01

sentence embedding space

01

02

03

2. Metric learning

01

Serine hydroxymethyltransferase 2
(SHMT2) plays a vital role in one-
carbon metabolism and drives
colorectal carcinogenesis.

In spite of noticeable progress in
the uptake of maternal health care
services, inequity has become a
central issue in Bangladesh in the
last decade [20, 24, 25].

Figure 2: Overview of a combined approach of phrase-guided distant supervision and metric learning.

this study, we set n = 5.4 We exclude from the
list the lemmatized n-grams that have more than
one label. As a result, we obtain 68,242 pairs of
n-grams and their corresponding function labels.
Although some of the n-grams (e.g., “vital role in
the metabolism”) still include content words, we
find that they are negligible because such n-grams
rarely retrieve sentences in Section 3.2.

3.2 Automatic Annotation of Sentences

We use the S2ORC (Lo et al., 2020) dataset to
draw example sentences that contain specific n-
grams. First, we randomly sample approximately
1M papers from S2ORC. Some are excluded during
the preprocessing phase (see Appendix A for de-
tails). Then, we split each paper’s abstract and body
text into sentences using the NLTK tokenizer (Bird
et al., 2009). This process produces approximately
19M sentences. Subsequently, for each labeled n-
grams in Section 3.1, we inherit the same label for
a sentence that satisfies the following constraints:
(i) the sentence includes the n-gram, and (ii) the
n-gram includes a root word in the dependency
tree. The latter condition is derived from the obser-

4We empirically determine that n = 5 is optimal. As we
observe, for the case of n < 5, n-grams (e.g., “has been shown
to”) tend to be too generic to convey a specific communicative
function. For the case of n > 5, on the other hand, n-grams
often fail to retrieve any sentence.

vation that the functional part of a sentence often
contains a sentence root (Iwatsuki et al., 2022). We
use the spaCy (Honnibal et al., 2020) dependency
parser to confirm whether the n-gram includes the
root. This automatic annotation provides us with
100,016 labeled sentences.

Of the 80 function classes in Academic Phrase-
bank, three classes are assigned to no sentence;
thus, the sentences are categorized into 77 classes.
We name our dataset the Communicative-Function-
labeled Semantic Scholar Sentence Dataset (CFS3).
Table 1 contains randomly selected samples from
CFS3. We find that the automatically-annotated
sentences have expected function labels overall,
except that, in the third sentence, the phrase “is in-
teresting to note that” is not necessarily connected
to the label “restating the result or one of several
results”, causing an annotation error.

3.3 Training with Metric Learning Loss
We train our embedding model using a metric learn-
ing framework to create a vector space in which
sentences with similar functions have smaller dis-
tances, and those with different functions have
longer ones. This trained model is referred to as
SCITORICSBERT.

We begin from the pre-trained checkpoint of
SciBERT (Beltagy et al., 2019) and take 768-
dimensional embeddings from the [CLS] token
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in the last layer as the output. Then, we train the
model with one of the five metric learning objec-
tives mentioned below (the first two losses are con-
ventional methods, while the rest are state-of-the-
art methods that have been initially introduced in
computer vision but also applied to natural lan-
guage processing):

Softmax Cross-entropy Loss Let xi ∈ Rd de-
notes the output embeddings of the i-th sample,
which belongs to the yi-th communicative-function
label (1 ≤ yi ≤ n). Here, d is set to 768. We then
minimize the following loss function:

L1 = − 1

N

N∑
i=1

log
exp(W⊤

yixi + byi)∑n
j=1 exp(W

⊤
j xi + bj)

,

(1)
where Wj is the j-th column vector of the linear
matrix, W ∈ Rd×n, and bj is the j-th element of
the bias term, b ∈ Rn. N denotes the batch size.

Triplet Loss Triplets {ai, pi, ni}Ni=1 are col-
lected from a training batch, provided that pi has
the same label as ai, and that ni has a different
label.5 We denote by xa

i ,x
p
i ,x

n
i ∈ Rd the corre-

sponding model outputs. Triplet loss is formulated
as follows:

L2 =
1

K

N∑
i=1

max (∥xa
i − xp

i ∥2 − ∥xa
i − xn

i ∥2 +m, 0) ,

(2)

where margin m denotes a hyperparameter, and K
denotes the number of cases in which ∥xa

i −xp
i ∥2−

∥xa
i − xn

i ∥2 +m > 0.

ArcFace Loss ArcFace loss (or additive angu-
lar margin loss) (Deng et al., 2019; Andrews and
Bishop, 2019) modifies the softmax cross-entropy
loss to make the learned embeddings more discrim-
inative between classes.

We define xi ∈ Rd and Wj ∈ Rd (1 ≤ j ≤ n),
which is similar to softmax cross-entropy loss. Let

θj = arccos

(
W⊤

j xi

∥Wj∥2∥xi∥2

)
be the angle between

the output vector and the j-th column vector of the
weight matrix. Then, ArcFace loss is defined as

5In our work, all possible triplets are used for training
without negative sampling.

Optical Flow: The estimation of optical flow
is a classic problem in computer vision [18, 24] . (02:
Establishing the importance of the topic for the disci-
pline)

Initial and final nutrient concentrations, and significance
between time points within each treatment group (t-test,
p < 0.05) are shown in Figure 1 . (48: Referring to data
in a table or chart)

It is interesting to note that one obtains Re J = 0 if cos
0̆3b1 e = 0 and U 0 is tri-bimaximal (t a = 1, (63: Restat-
ing the result or one of several results)

Method: A total of 104 participants (44 SZ patients
and 60 age-and gender-matched healthy controls (HC))
were recruited for this study. (36: Describing the char-
acteristics of the sample)

It has been suggested that dietary Zn is mostly absorbed
in the duodenum, ileum, and jejunum by active transport
through ZIP4 [48] . (22: Previous research: what has
been established or proposed)

It has been suggested that bacteria may use hemolysin to
obtain nutrients from the host cells (e.g., irons released
from lysed red blood cells) [35] . (22: Previous research:
what has been established or proposed)

This finding is consistent with other analyses, indicating
that Tu-138 cells are more sensitive to E2F-1-induced
apoptosis than are Tu-167 cells. (65: Comparing the
result: supporting previous findings)

The modified QPM and the Delta method
were used to analyse the data for each calendar
month. (47: Referring back to the research aims or
procedures)

It has been argued that the purposeful inclusion of social
work values in social work research is one of its distin-
guishing features (Shaw et al., 2006) . (22: Previous
research: what has been established or proposed)

Statistical analysis was performed using unpaired two-
tailed Student’s t-test where *P<0.05; **P<0.01. (45:
Describing the process: statistical procedures)

Table 1: Ten randomly-selected examples from the
CFS3 dataset. Function labels and corresponding n-
grams are shown in bold and underlined, respectively.

follows:

L3 =− 1

N

N∑
i=1

log
exp(s cos θ′yj )∑n
j=1 exp(s cos θ

′
j)
,

s.t. θ′j =

{
θj +m (j = yi)

θj (j ̸= yi)
,

(3)

where angular margin m and scale s are hyperpa-
rameters.

MS Loss Multi-similarity (MS) loss (Wang et al.,
2019; Liu et al., 2021b) considers multiple types of
similarities for a pair, aiming to generalize previous
loss functions.

Let S ∈ RN×N be a similarity matrix whose



59

Datasets #sentences #labels

CF-labeled

Introduction 773 11
Methods 468 6
Results 521 6
Discussion 781 9

CSAbstruct 1,349 5
PubMed-RCT 30,135 5

Table 2: Dataset statistics.

(i, j)-th element satisfies Sij =
x⊤
i xj

∥xi∥2∥xj∥2 , where
xi is the i-th model output in a N -sized training
batch.

We regard a pair of two in-batch samples with
the same label to be positive, and otherwise neg-
ative. We denote the sets of indices of positive
and negative pairs by P and N , respectively. The
training objective is formulated as follows:

L4 =
1

N

N∑
i=1

{
1

α
log

[
1 +

N∑
j=1,

(i,j)∈P

exp(−α(Sij − λ))
]

+
1

β
log

[
1 +

N∑
j=1,

(i,j)∈N

exp(β(Sij − λ))
]}

,

(4)

where α, β, and λ are hyperparameters.

NT-Xent Loss Normalized temperature-scaled
cross-entropy (NT-Xent) loss (Chen et al., 2020;
Giorgi et al., 2021) takes a form similar to softmax
cross-entropy loss, but it differs in that it maximizes
the similarity of a positive pair.

We define S ∈ RN×N ,P,N in the same manner
as MS loss. NT-Xent loss can be expressed as
follows:

L5 = − 1

|P|
∑

(i,j)∈P

log
exp(Sij/T )

exp(Sij/T ) +

N∑
k=1,

(i,k)∈N

exp(Sik/T )

,

(5)

where temperature T is a hyperparameter.

4 Experiments

4.1 Settings
Task Description We conduct sentence retrieval
tasks on communicative-function labeled datasets
to see how successfully SCITORICSBERT contains
rhetorical features. This task begins by converting
all the sentences in a dataset into embeddings using
a given representation model. We select one sen-
tence as a query and regard the others as references.

We then retrieve the nearest neighbors of the query
and evaluate whether the extracted sentences have
the same label as the query.6 This procedure is
repeated for the entire dataset, and the performance
scores are averaged.

Evaluation Datasets We employ three datasets:
the CF-labeled sentence dataset (Iwatsuki and
Aizawa, 2021), CSAbstruct (Cohan et al., 2019),
and PubMed-RCT (Dernoncourt and Lee, 2017).
The CF-labeled sentence dataset is manually anno-
tated with communicative-function labels for each
section of papers from multiple disciplines. The
other two datasets collect sentences from the ab-
stracts of the computer science and biomedical do-
mains, respectively. We report the dataset statistics
in Table 2. Note that with CSAbstruct and PubMed-
RCT, sentences in scientific abstracts are classified
into one of the five categories {BACKGROUND,
OBJECTIVE, METHOD, RESULT, CONCLUSION

(OTHER)}, the granularity of which is much
coarser than that of the CF-labeled sentence dataset
(32 labels total).

Evaluation Metrics We use two evaluation met-
rics: precision at 1 (P@1) and mean average pre-
cision at R (MAP@R) (Musgrave et al., 2020).
Whereas P@1 focuses on the top retrieval result,
MAP@R measures the overall retrieval quality.7

For SCITORICSBERT, we report the average re-
sults from five trained models with different ran-
dom seeds.

Baselines We compare SCITORICSBERT with
unsupervised language models, including aver-
age GloVe embeddings (Pennington et al., 2014),
BERT (Devlin et al., 2019), and RoBERTa (Liu
et al., 2019). Other baselines include domain-
specific language models, such as SciBERT (Belt-
agy et al., 2019) and PubMedBERT (Gu et al.,
2020).8 We also compare SCITORICSBERT with
SRoBERTa (Reimers and Gurevych, 2019) and (su-
pervised) SimCSE-RoBERTa (Gao et al., 2021),
which are both fine-tuned RoBERTa models on
NLI datasets.

Training Details To train SCITORICSBERT, we
split our CFS3 dataset into a training and validation
set at a ratio of 4:1. As the dataset is imbalanced,

6All the embeddings are L2 normalized beforehand.
7R denotes the total number of references with the same

label as the query.
8Regarding transformer-based unsupervised models, we

take the average of their last hidden layers.
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Introduction Methods Results Discussion Avg.

Model P@1 MAP P@1 MAP P@1 MAP P@1 MAP P@1 MAP

GloVe avg. .391 .073 .462 .089 .484 .125 .325 .058 .415 .086
BERTbase avg. .523 .099 .434 .099 .511 .140 .361 .063 .457 .100
RoBERTabase avg. .507 .106 .451 .102 .557 .152 .392 .068 .477 .107
SciBERT avg. .604 .151 .526 .117 .612 .156 .483 .093 .556 .129
PubMedBERT avg. .547 .134 .521 .108 .570 .140 .435 .078 .518 .115
SRoBERTabase .422 .099 .325 .075 .501 .148 .335 .072 .396 .099
SimCSE-RoBERTabase .551 .165 .429 .095 .511 .162 .403 .088 .474 .128

SCITORICSBERT (Softmax loss) .857 .537 .765 .375 .866 .501 .741 .334 .807 .437
SCITORICSBERT (Triplet loss) .858 .514 .776 .368 .855 .494 .734 .329 .806 .426
SCITORICSBERT (ArcFace loss) .840 .513 .741 .378 .845 .462 .708 .301 .783 .414
SCITORICSBERT (MS loss) .829 .485 .721 .354 .832 .475 .684 .314 .767 .407
SCITORICSBERT (NT-Xent loss) .839 .511 .741 .385 .838 .494 .708 .312 .781 .425

Table 3: Precision@1 and MAP@R scores for sentence retrieval tasks on the CF-labeled sentence dataset. The
best-performing scores are highlighted in bold. The underlined scores are the highest among the baseline scores.

CS PubMed

Model P@1 MAP P@1 MAP

GloVe avg. .445 .124 .627 .167
BERT avg. .553 .166 .681 .196
RoBERTa avg. .523 .159 .681 .185
SciBERT avg. .563 .169 .700 .204
PubMedBERT avg. .553 .169 .694 .213
SRoBERTa .480 .136 .566 .143
SimCSE-RoBERTa .529 .164 .646 .187

SCITORICSBERT

(Softmax loss) .616 .226 .761 .325
(Triplet loss) .599 .214 .760 .324
(ArcFace loss) .576 .205 .748 .307
(MS loss) .583 .191 .739 .300
(NT-Xent loss) .591 .216 .752 .324

Table 4: Precision@1 and MAP@R scores in sentence
retrieval tasks on CSAbstruct and PubMed-RCT.

we follow stratified random sampling to ensure that
both sets have similar label distributions. We mea-
sure the MAP@R score in the validation dataset for
each epoch and select the best-performing model.
The maximum number of epochs is set to five. See
Appendix B for further detailed configurations.

4.2 Overall Results
We present the evaluation results for the CF-labeled
sentence dataset in Table 3 and the other two
datasets in Table 4.

Among the baseline models, SciBERT and Pub-
MedBERT achieve the highest average scores.
These domain-specific models consistently out-
perform BERT, indicating that pre-training on
scientific texts provides distributional functions
(i.e., words that occur in similar contexts have
similar functions). As for supervised models,

both SRoBERTa and SimCSE-RoBERTa perform
poorly, sometimes even worse than RoBERTa. This
suggests that semantic similarity does not help com-
pare sentences from a rhetorical perspective.

Turning to our proposed method, we find that
SCITORICSBERT yields substantial improvements
over the baselines in all the datasets. On the CF-
labeled sentence dataset, the model achieves ap-
proximately 0.25 points gain in P@1 and 0.30
points gain in MAP@R over the best baseline. This
result is not surprising because the labels in the CF-
labeled sentence dataset are similar to those in our
CFS3. More importantly, SCITORICSBERT also
outperforms on CSAbstruct and PubMed-RCT, al-
though these datasets are generated from abstracts
and are thus annotated with more coarse-grained
function labels than CFS3.

Regarding the metric learning loss, there is no
clear evidence that state-of-the-art methods are
more competitive than conventional methods. Al-
though triplet and NT-Xent losses achieve slightly
better performance on some subsets of the CF-
labeled sentence dataset, softmax cross-entropy
loss outperforms all other methods in CSAbstruct
and PubMed-RCT.

To illustrate the efficacy of our method, we com-
pare the sentences retrieved by SciBERT and SC-
ITORICSBERT on the Introduction subset of the
CF-labeled sentence dataset in Table 5. As the ex-
amples show, SCITORICSBERT successfully sug-
gests similar sentences based on the functional part
of the query sentence. Additional examples are
presented in Appendices C and D.
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Query sentence The main question addressed in this paper concerns whether it is possible to
achieve a comparable or even better accuracy using just a small and non-redundant
set of subtrees.

(Query function) (Showing the outline of the paper)

SciBERT avg. #1 The main challenge is the search problem, which is to find an optimal parse tree
among all that can be constructed with any word choice and order from the set of
input words.

✓ #2 Another issue addressed in this paper is automatic construction of a lexicon for
verbs related to activities and events.

#3 Thus, the aim of this paper is to find an appropriate level of comparison for the
combinatorial properties of music and language, ideally, in a way that is independent
of controversies specific to one or the other field.

SCITORICSBERT (ours) ✓ #1 The third issue addressed in this paper concerns the nature of the category to be
formed.

✓ #2 The problem addressed in this paper is how to model and capture temporal contexts
and how to enhance NED with this novel asset.

✓ #3 Another issue addressed in this paper is automatic construction of a lexicon for
verbs related to activities and events.

Query sentence Second, it remains unclear under which circumstances higher inertia of positive
emotions (PE) is maladaptive.

(Query function) (Showing limitation or lack of past work)

SciBERT avg. #1 However, the notion of automaticity has been challenged by subsequent studies.

#2 Consequently, narrowing down which constructs are tied to ego depletion will help in
solving the current controversy surrounding the effect.

✓ #3 Currently, little is known about how auditory distraction impacts upon metacognitive
regulation of memory responses as captured by the [CITATION] framework.

SCITORICSBERT (ours) ✓ #1 However, despite the success of NNLMs on large datasets ([CITATION], [CITA-
TION], [CITATION]), it remains unclear whether their advantages transfer to
scenarios with extremely limited amounts of data.

✓ #2 It remains unclear whether similar enhancements in creativity can be observed if
negatively arousing music is used.

✓ #3 However, the molecular mechanism of NTP-induced cancer cell death remains
unclear.

Table 5: Examples of top-3 sentences retrieved by SciBERT and SCITORICSBERT. ✓ stands for the same function
label as the query. For ease of comparison, we show phrases that appear to accord with the function in bold.

4.3 Generalizability Analysis

We now investigate whether SCITORICSBERT gen-
eralizes across scientific documents or only memo-
rizes specific phrasal patterns that accord with the
communicative functions in our CFS3 dataset. We
randomly sample 10, 20, or 40 of the 77 function
labels in CFS3, train the model using only those
data, and measure the average P@1 and MAP@R
scores on the CF-labeled sentence dataset.9 We
hypothesize that models that have good generaliz-
ability can successfully retrieve similar sentences
when trained on a portion of CFS3.

The results are shown in Figures 3 and 4. We see
that all the models show strong performance over

9To align the number of training samples, we vary the
maximum training epoch in inverse proportion to the number
of training labels. We report the average results from five
trained models with different training labels and random seeds.

the best baseline, even if they are trained with only
ten labels. This suggests that SCITORICSBERT
can, to some extent, handle functional similarity
in general. We also observe that P@1 scores keep
higher values than MAP@R when training labels
are reduced, indicating that the model uses clues
to find the most similar sentence, which is easy to
learn and generalizes well.

Notably, conventional softmax cross-entropy
and triplet losses perform even better than the other
methods when the number of training labels de-
creases. This contradicts our expectation as the
other methods have achieved state-of-the-art results
on the open-set image recognition tasks, where
training and test sets do not share the same labels.
One possible explanation is that the number of
labels in our CFS3 is too small to train state-of-
the-art methods effectively, considering that those
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Figure 3: Effect of the number of classes on Preci-
sion@1 scores in the CF-labeled sentence dataset.
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Figure 4: Effect of the number of classes on MAP@R
scores in the CF-labeled sentence dataset.

methods are usually trained on a large-scale face
recognition dataset containing thousands or mil-
lions of labels (e.g., the MS1MV2 dataset (Deng
et al., 2019) contains 85K labels).

5 Conclusions and Future Work

This paper presents SCITORICSBERT, a sentence
representation model that recognizes the rhetor-
ical aspects of scientific writing. The proposed
model achieves more successful results than exist-
ing representation models in retrieving functionally
similar sentences. We also provide empirical evi-
dence that softmax cross-entropy loss is a strong
baseline for learning task-specific sentence embed-
dings, which has practical implications for other
studies on representation learning.

Future work should focus on improving our train-
ing methods using hard negatives (e.g., functionally
dissimilar but lexically similar samples) and inves-

tigating our model in downstream applications.
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A Preprocessing in Dataset Construction

We conduct preprocessing before extracting texts
from the S2ORC dataset. This phase proceeds
in three steps. First, we exclude papers that lack
venue or journal information in their metadata.
Second, we exclude papers that do not contain
body texts. Finally, we remove papers that are
collected in one of the following corpora: ACL
anthology, Molecules, Oncotarget, and Frontiers
in Psychology. These four corpora are also used
in the CF-labeled sentence dataset (Iwatsuki and
Aizawa, 2021); thus, we consider that including
them could cause data leakage. Note that the other
two evaluation datasets contain papers in the com-
puter science and biomedical domains, but we do
not exclude them from the training data as some
baselines such as SciBERT (Beltagy et al., 2019)
and PubMedBERT (Gu et al., 2020) are already
pre-trained on massive texts in those domains.

B Training Details

We use the Adam optimizer (Kingma and Ba, 2015)
with a learning rate of 2e-5. The batch size is set to
64. Following Hermans et al. (2017) and Musgrave
et al. (2020), we adopt PK-style batches that first
randomly sample P classes and then K instances
for each class. We set P = 64 and K = 1 for
Softmax and ArcFace losses and P = 8 and K = 8
for the others.

We conduct a hyperparameter search with fixed
random seeds using the validation dataset, except
for softmax cross-entropy loss. Table 6 lists hyper-
parameter configurations for each metric learning
objective.

C Retrieval Examples by
SCITORICSBERT

Table 7 shows the retrieval examples by SCI-
TORICSBERT on the Introduction subset of the
CF-labeled sentence dataset.

D A Case Study on Document Alignment

We showcase the utility of SCITORICSBERT in
the scenario of comparing different scientific pa-
pers. Specifically, we consider Devlin et al. (2019)
and Lewis et al. (2020), which propose BERT and
BART, respectively. We first retrieve texts from
PDF files using S2ORC-doc2json (Lo et al., 2020),
and split them into sentences using the NLTK tok-
enizer (Bird et al., 2009). Then, for each sentence

https://aclanthology.org/E99-1015
https://aclanthology.org/E99-1015
https://doi.org/10.1109/CVPR.2019.00516
https://doi.org/10.1109/CVPR.2019.00516
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https://doi.org/10.18653/v1/2020.emnlp-main.407
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Loss Hyperparameters

Triplet m ∈ {0.025, 0.05•, 0.1, 0.2, 0.4}
ArcFace m ∈ {0.1, 0.3, 0.5•}, s ∈ {16•, 32, 64}
MS α ∈ {1, 2•}, β ∈ {30, 40•, 50}, λ ∈ {0.5, 0.75•, 1.0}
NT-Xent T ∈ {0.0125, 0.025, 0.05, 0.1•, 0.2}

Table 6: Values tested during the hyperparameter search. • denotes those used for reporting the results.

in Lewis et al. (2020), we retrieve the most similar
one from Devlin et al. (2019) using SCITORICS-
BERT. We present a few selected examples in Ta-
ble 8.
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Query sentence Dystrophin is an important protein for cytoskeletal structure and normal muscle
function and plays a vital role in membrane stability and signaling [[CITATION]].

(Query function) (Showing the importance of the topic)

SCITORICSBERT (ours) ✓ #1 VEGF is a major modulator of endothelial cell function, such as blood vessel for-
mation during embryonic development, and plays a vital role in the proliferation,
migration, and invasion of vascular endothelial cells [[CITATION]].

✓ #2 Thrombin is an extracellular serine protease that plays a crucial role in the blood
coagulation cascade, thrombosis, and hemostasis [[CITATION], [CITATION]].

✓ #3 Copper is an essential element which plays a critical role in human metabolism.

Query sentence From a computational standpoint, the main challenge is to ensure that the model
scales well as the number of languages increases.

(Query function) (Showing the main problem in the field)

SCITORICSBERT (ours) ✓ #1 , the main challenge is to detect the pattern without being distracted by background
noise from other events.

✓ #2 The main challenge is to maintain the continuity and coherence of the original text.

✓ #3 The main challenge is to create a lexicon of dialect word forms and their associated
probability maps.

Query sentence Thus, in this paper we describe, for the first time, a straightforward synthesis of
novel 1-(2’-α-O-D-glucopyranosyl ethyl) 2-arylbenzimidazoles via one-pot glyco-
sylation of hydroxyethyl arylbenzimidazole aglycones and 2,3,4,6-tetra-O-benzyl
1-hydroxylglucose employing the Appel-Lee reagent [[CITATION], [CITATION]].

(Query function) (Showing the importance of the research)

SCITORICSBERT (ours) #1 The theoretical analysis developed in this paper aims to contribute to existing stage
models of decision-making ([CITATION] [CITATION] [CITATION] [CITATION]
[CITATION]).

#2 Considering this, and in order to propose a greener route to fully epoxidized oligo-
isosorbide glycidyl ethers, this paper reports a new protocol of heterogeneous
ultrasound-assisted epoxidation in the presence of atomized sodium hydroxide.

✓ #3 We argue for the first time that discourse parsing should be viewed as an extension
of, and be performed in conjunction with, constituency parsing.

Query sentence Recently, there has been a breakthrough in cancer immunotherapy against various can-
cer types by employing immune checkpoint blockade, particularly using antibodies
directed against programmed death-ligand 1 (PD-L1) pathway members [[CITA-
TION]].

(Query function) (Showing brief introduction to the methodology)

SCITORICSBERT (ours) #1 In recent years, there has been an increasing interest in controlled environment
(CE) plant production which reduces variation related to climate, soil, and nutrition
[[CITATION], [CITATION], [CITATION]], decreases contamination of samples by
weeds, insects, and foreign matter [[CITATION]] and enhances the standardization
of secondary metabolite production [[CITATION]].

#2 In recent years, there has been an increasing interest in lichens as a potential source
of pharmacologically bioactive agents for therapeutic treatments [[CITATION], [CI-
TATION], [CITATION]].

✓ #3 Non-human animal consciousness research has also witnessed groundbreaking ad-
vances in the study of contents of consciousness by employing perceptual rivalry
paradigms and elucidating the effect of reversible thalamic and cortical inactivations.

Table 7: Examples of top-3 sentences retrieved by SCITORICSBERT. ✓ stands for the same function label as the
query.
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Query sentence from Lewis et al. (2020) Retrieved sentence from Devlin et al. (2019)

We present BART, a denoising autoencoder for pretraining
sequence-to-sequence models.

We introduce a new language representation model called
BERT, which stands for Bidirectional Encoder Representa-
tions from Transformers.

The most successful approaches have been variants of masked
language models, which are denoising autoencoders that are
trained to reconstruct text where a random subset of the words
has been masked out.

To pretrain word embedding vectors, left-to-right language
modeling objectives have been used (Mnih and Hinton, 2009)
, as well as objectives to discriminate correct from incorrect
words in left and right context.

BART uses a standard Tranformer-based neural machine
translation architecture which, despite its simplicity, can be
seen as generalizing BERT (due to the bidirectional encoder),
GPT (with the left-to-right decoder), and many other more
recent pretraining schemes (see Figure 1) .

Model Architecture BERT’s model architecture is a multi-
layer bidirectional Transformer encoder based on the original
implementation described in Vaswani et al.

A key advantage of this setup is the noising flexibility; ar-
bitrary transformations can be applied to the original text,
including changing its length.

The advantage of these approaches is that few parameters
need to be learned from scratch.

In total, BART contains roughly 10% more parameters than
the equivalently sized BERT model.

By contrast, BERT BASE contains 110M parameters and
BERT LARGE contains 340M parameters.

Unlike existing denoising autoencoders, which are tailored to
specific noising schemes, BART allows us to apply any type
of document corruption.

Unlike left-toright language model pre-training, the MLM
objective enables the representation to fuse the left and the
right context, which allows us to pretrain a deep bidirectional
Transformer.

Because BART has an autoregressive decoder, it can be di-
rectly fine tuned for sequence generation tasks such as ab-
stractive question answering and summarization.

As a result, the pre-trained BERT model can be finetuned
with just one additional output layer to create state-of-the-art
models for a wide range of tasks, such as question answering
and language inference, without substantial taskspecific ar-
chitecture modifications.

Similar to BERT (Devlin et al., 2019), we use concatenated
question and context as input to the encoder of BART, and
additionally pass them to the decoder.

We use a gelu activation (Hendrycks and Gimpel, 2016)
rather than the standard relu, following OpenAI GPT.

Following RoBERTa , we use a batch size of 8000, and train
the model for 500000 steps.

We use a batch size of 32 and fine-tune for 3 epochs over the
data for all GLUE tasks.

We mask 30% of tokens in each document, and permute all
sentences.

In all of our experiments, we mask 15% of all WordPiece
tokens in each sequence at random.

The most directly comparable baseline is RoBERTa, which
was pre-trained with the same resources, but a different ob-
jective.

The most comparable existing pre-training method to BERT
is OpenAI GPT, which trains a left-to-right Transformer LM
on a large text corpus.

BART reduces the mismatch between pre-training and gener-
ation tasks, because the decoder is always trained on uncor-
rupted context.

BERT alleviates the previously mentioned unidirectionality
constraint by using a “masked language model” (MLM) pre-
training objective, inspired by the Cloze task (Taylor, 1953) .

Code and pre-trained models for BART are avail-
able at https://github.com/pytorch/fairseq and
https://huggingface.co/transformers

The code and pre-trained models are available at
https://github.com/google-research/bert.

Table 8: Example of document alignment using SCITORICSBERT.


