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Abstract

Data annotation has been a pressing issue ever
since the rise of machine learning and asso-
ciated areas. It is well-known that obtaining
high-quality annotated data incurs high costs,
be they financial or time-related. In our previ-
ous work, we have proposed a custom, SQL-
like retrieval language used to query collections
of short documents, such as chat transcripts or
tweets. Its main purpose is enabling a human
annotator to select “situations” from such col-
lections, i.e. subsets of documents that are re-
lated both thematically and temporally. This
language, named Matcher, was prototyped in
our custom annotation tool. Entering the next
stage of development of the tool, we have tested
the prototype implementation. Given the lan-
guage’s rich semantics, many possible execu-
tion options with various costs arise. We have
found out we could provide tangible improve-
ment in terms of speed and memory consump-
tion by carefully selecting the execution strat-
egy in each particular case. In this work, we
present the improved algorithms and proposed
optimization methods, as well as a benchmark
suite whose results show the significance of
the presented techniques. While this is an ini-
tial work and not a full-fledged optimization
framework, it nevertheless yields good results,
providing up to tenfold improvement.

1 Introduction

In recent years, rule-based approaches to vari-
ous tasks pertaining to information extraction (IE)
and natural language processing (NLP) have been
“benched” by the academic community. Even ten
years ago, rule-based systems were on their down-
fall of popularity (Chiticariu et al., 2013), and the
situation does not seem to have changed now with
the rise of machine learning models that are eas-
ily fine-tuned for any tasks and frameworks that
provide even non-experienced users with all the
necessary tools. Even the task of data annotation,
which has been traditionally dealt with via manual

labour, can now be simplified by annotation tools
that leverage machine learning capabilities1. Meth-
ods such as few-shot or zero-shot learning can help
deal with the problem of limited available data, and
produce outstanding results in domain-independent
natural language tasks.

However, rule-based approaches have held their
ground in a specific area: industrial applica-
tions, especially those that require domain adapta-
tion (Chiticariu et al., 2010b), such as biomedical
information extraction (Kreimeyer et al., 2017).
In settings that require high accuracy, the conve-
nience of using an ML model can be traded off
to obtain better results. However, using a declara-
tive approach instead of a classical approach to IE
(programs written in general-purpose programming
languages intended for extraction of “hard-coded”
features) adds the convenience and flexibility back.
Additionally, using such approaches can help over-
come issues with machine learning bias (Yapo and
Weiss, 2018), unfortunate examples of which have
been recorded many times.

Furthermore, the questions of performance and
costs constitute a pressing issue. Using machine
learning in an enterprise environment usually re-
quires the company to both obtain expensive com-
putational resources such as specialized GPUs and
develop new ETL pipelines, given the need to pro-
tect the data that their customers provide. Further-
more, using an ML model might just not be fast
or scalable enough for a business need. However,
a rule-based approach to information extraction is
scalable by definition, with the help of optimization
and other techniques. Our project, Chat Corpora
Annotator, implements a rule-based approach. It
is intended for the task of data exploration and
subsequent annotation. At present, its main use
is exploring very long chat transcripts with ex-
tracting and annotating subsets of messages with
open-domain tagsets defined by the user. A sim-

1A prominent example of this is prodi.gy by spaCy.
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Figure 1: The Matcher interface implemented inside Chat Corpora Annotator. The left side of the window contains
all of the available operators, as well as the word lists used for matching. The top frame contains a Matcher query,
and the bottom frame contains its results, which can be navigated using the buttons below. The messages that match
the query are highlighted in red. The query can be interpreted as extraction of mentions of job postings.

ple example of such extraction would be finding
all subsets of messages in which the users of a
chatroom make plans to meet in real life. Our pre-
vious paper presents the first version of the tool
together with a detailed description of its intended
usage (Smirnova et al., 2021). The semi-automatic
rule-based extraction is implemented by our cus-
tom query language Matcher. It is a declarative,
SQL-like language whose main purpose is to match
over groups of messages according to the specified
predicates and constraints. The supported predi-
cates are all natural-language related, which makes
the queries and their results easily interpretable.
Additionally, Matcher supports complex Boolean
querying and subqueries, which provide rich data
exploration capabilities. Further on, we will pro-
vide the description of all supported operators and
showcase several query examples on real data. Fig-
ure 1 presents the interface used to run Matcher
queries.

The first version of Matcher was more of a pro-
totype than an actual ready-to-use instrument, and,
subsequently, the methods that actually retrieved
and matched messages were implemented without
optimization at all. Developing the second ver-
sion, we ran into many performance-related issues
while testing Matcher on large datasets, especially
complex queries with several sub-queries, such as
extremely long processing times. Therefore, we
have proceeded with the decision to develop and

study various query evaluation strategies for our
language. Query optimization is an essential part
of database query processing, so we reuse some of
its core ideas in our approach. Overall, the contri-
butions of this paper are:

1. A description of the next version of Matcher,
which was extended by adding a new key-
word.

2. A discussion of five query evaluation strate-
gies which were implemented and bench-
marked in the next version of CCA.

3. A benchmark suite which will provide repeata-
bility of our experiments and may serve a ba-
sis for further studies concerning optimization
of such queries.

The rest of this paper is organized as follows: Sec-
tion 2 contains an overview of related work, Sec-
tion 3 provides a description of our query language,
Section 4 describes the algorithms that we propose
for query optimization, and Section 5 and Section 6
describe the benchmark and showcase the experi-
mental results. Finally, we give some concluding
remarks in Section 7.

2 Related Work

2.1 Rule-Based Systems
Probably one of the most prominent examples,
IBM’s SystemT (Li et al., 2011), is an informa-
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tion extraction system that implements AQL — a
declarative rule language that is intended for ex-
tracting structured information from unstructured
documents. It is similar to SQL in syntax, and its
output is presented as an SQL view. Below we
will briefly discuss its query optimization approach.
An interesting development worthy of mentioning
is the rule-based NERL language (Chiticariu et al.,
2010b) built on top of SystemT and intended for
customized named entity recognition.

A different declarative approach is implemented
in the DeepDive system (Zhang et al., 2017; Shin
et al., 2015). They employ a language based on
SQL and Datalog in order to facilitate the devel-
opment of declarative programs for information
extraction and subsequent use of this information,
such as constructing knowledge bases.

Odinson (Valenzuela-Escárcega et al., 2020) is
one of newest rule-based information extraction
frameworks, presented in 2020. It features a sys-
tem for annotating and essentially constructing a
custom knowledge base, and a declarative pattern
query language which is used for extracting infor-
mation out of them. The language has the capabili-
ties to run over not only tokens and token features,
but graph-like annotations as well (such as syntac-
tic dependencies). Internally, Odinson is based on
a custom Lucene index, specifically implemented
to index as much information about annotated doc-
uments as possible. This provides a large share
of runtime optimization. Additionally, since not
everything can be indexed, Odinson also contains
a query compiler that optimizes the queries that
involve syntax annotations, compiling them into a
graph traversal pattern. The authors state that due
to their optimizations, Odinson is 150,000 times
faster than its predecessor Odin.

GATE (Cunningham et al., 2002) is a well-
known IE system/framework which was first re-
leased in 2002. It features a possibility to construct
annotators with JAPE (Java Annotation Patterns En-
gine), which is an imperative rule-based language
adhering to the CSPL (Common Pattern Specifi-
cation Language) standard. As far as we know,
approaches based on CSPL cannot be optimized,
as they produce a finite state transducer and have a
set rule execution order.

Finally, another notable information extraction
system is the UIMA Ruta framework (Klügl et al.,
2016). It features an expressive matching lan-
guage that allows building concise representations

of matching rules. It is not declarative, similarly
to GATE. However, the authors state that their lan-
guage does not suffer from the drawbacks of CSPL,
as it supports variable execution order, but they do
not touch on optimization.

2.2 Query Optimization

Overall, query optimization is a well-developed
and well-studied area. Starting out in 1979 with
System R’s optimizer (Selinger et al., 1979), stud-
ies of optimization allowed optimizers to become a
standard and indispensable feature in all industrial
DBMSes (Özsu and Valduriez, 2011). Some of
the most prominent works of this area concern the
Starburst and the Volcano optimizers. Overall, over
the years optimization has accumulated a rich set
of concepts and principles such as selectivity, inter-
esting orders, minimization of intermediate results,
data sketches (histograms) and many more.

However, query optimization for lesser-known
purposes, such as query languages intended for
information extraction, has not been properly ex-
plored. Further on, we will try to provide an
overview of existing solutions. In their 2013 ar-
ticle (Chiticariu et al., 2010a), the authors of Sys-
temT present an algebraic query optimizer for
AQL. Unlike its main competitors, CSPL-based
languages that use cascading grammars, AQL does
not place evaluation order restrictions on its oper-
ators. This opens up the fundamental possibility
of constructing an operator graph, and furthermore,
many operator graphs for a single query, which
in turn makes it possible to select the best one.
The authors formally prove that the CSPL gram-
mars cannot produce a finite state transducer that
is faster than any algebraic graph, and compare the
performance of SystemT and GATE on a rule-based
Named Entity Recognition task. Their system won
in both throughput and required memory.

The SQoUT project (Jain et al., 2009a) was a sys-
tem that allowed its user to run structured queries
over relation tuples extracted from natural language
texts. The authors have implemented a full-fledged
cost-based query optimizer for SQL over a database
that stores such relation tuples. In their later arti-
cle(Jain et al., 2009b), they consider join optimiza-
tion for their system, focusing not only on perfor-
mance, but on output quality, because in such a task
it is critical: i.e., the relation tuples cannot be in-
valid. Their optimizer chooses between three join
algorithms: Independent Join, Outer/Inner Join,
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and Zig-Zag Join. The authors provide a thorough
evaluation of both performance and quality of out-
put, and come to the conclusion that their optimizer
is effective.

Finally, in their 2012 article, El-Helw et al. (El-
Helw et al., 2012) introduce the concept of extrac-
tion views: database views whose data is obtained
by running information extractors on specific docu-
ment collections. The authors state that any extrac-
tor such as GATE or UIMA can be used for this
purpose. They introduce a system that integrates
SQL with such extractors, which can be used to
build special tables out of tuples extracted from un-
structured documents. Additionally, they provide
a cost-based optimizer for SQL queries over such
tables, which supports visualization of the used
execution plan.

To the best of our knowledge, these are the only
papers that concern optimizing queries for infor-
mation extraction systems. However, none of them
were intended for the task that we have formulated:
extracting subsets of messages out of short text
datasets, such as raw dumps of chats and tweets.
They could not be adapted for the task either, as
they are focused strictly on extracting pre-specified
information, such as, for example, detecting phone
numbers in a set of email documents. Whereas
our approach is more oriented towards discovery of
information that may match a specific, but rather
loose pattern. This is prompted by the nature of
chats and tweets, as they are often entangled and
noisy, and traditional IE tools may fall short in the
task we propose. At the same time, considering
their optimization, such IE systems are necessary
for both academic and industrial community and
ensuring their performance is of priority. There-
fore, reusing query optimization techniques from
the database domain looks like a promising ap-
proach.

3 Matcher Query Language

Matcher query language consists of a basic set of
rule-based matching operators, which can be com-
bined into a matcher with Boolean operators, and
which, in turn, can be combined into matching
groups with commas. Furthermore, Matcher also
contains a restriction operator INWIN and the UNR
modifier, which will be explained below. The for-
mal query syntax of Matcher is as follows:
query = SELECT body window
body = query_seq | restriction_seq
window = | INWIN N

query_seq =
(query)
| (query) ; query_seq

restriction_seq =
restriction_seq_body
| restriction_seq_body UNR

restriction_seq_body =
restriction
| restriction, restriction_seq

restriction =
restriction AND restriction
| restriction OR restriction
| (restriction)
| NOT restriction
| condition

Here, bold denotes language keywords and regu-
lar denotes nonterminal symbols. Let us consider
the language in a bottom-up fashion.

Formally, a matcher is a template that is matched
against a single message in chat history. It consists
of a Boolean expression which is evaluated for each
message, and if it equals True, then the message is
added to the output. Therefore, a matching group is
a set of matchers, each of which provides a single
message for the output. In the formal syntax, a
matcher is described by the restriction non-
terminal symbol, an individual rule-based matching
operator by condition, and a matching group
by the restriction_seq.

The currently the available set of rule-based
matching operators is the following:

• haswordofdict(dict) matches mes-
sages that contain any word from a pre-
specified named list;

• hasdate(), hastime(), hasloca-
tion(), hasorganization(),
hasurl() match messages that contain
tokens with the respective Named Entity
annotations2;

• hasusermentioned(user) matches
messages that contain a username mention in
the text field;

• byuser(user) matches messages that con-
tain a specified username in the user field;

• hasquestion() matches messages that
contain at least one question-like sentence.

2Our system obtains NER annotations via external integra-
tion with a running CoreNLP instance.
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Matcher relies on a simple data schema consist-
ing of three fields: a username-like field, a date-like
field, and a text-like field. CCA focuses on chat
datasets, and we believe that this is a minimal re-
striction on such data.

Next, the body nonterminal symbol specifies
two admissible types of queries: matcher-only and
subquery-only. The first one consists only of match-
ers separated by commas. The second one requires
nested SELECTs (separated by semicolons) inside
the parent SELECT.

Matcher-only queries are intended for simple
use-cases, while queries with subqueries provide
flexibility by allowing to express complex patterns,
constructing them in a bottom-up fashion. Such
queries concatenate results of individual subqueries
while checking additional restrictions such as dis-
tance between them and ordering. Matcher sup-
ports subqueries of arbitrary depth. Use-case ex-
amples are provided in Section 5.

The window nonterminal describes an optional
INWIN clause. It provides a way to explicitly
restrict the length of the window in which all
matched messages should fit. For example, query
SELECT hasdate(), haswordofdict(me
eting) INWIN 20 means that in each returned
set of messages, the two messages that conform
to the matchers must not be further away than 20
messages from each other. If not specified, this
length is implicitly restricted to 50 on the language
implementation level for performance reasons.

The current version of Matcher has been ex-
tended with a special UNR clause, which signifi-
cantly improves the expressiveness of the language.
It is a modifier that removes the match order con-
straint on matching groups. Without this clause,
the outputs of each matching group are ordered
according to their order in the query.

4 Query Processing

4.1 Basics

The goal of our query processor is to construct a
list of answers, each answer being a list of integer
message ids. Thus, all operations are performed on
integer lists (groups) or lists of integer lists (group
lists).

Due to the space constraints we will not present
the pseudocode of algorithms, but we will sketch
out the ideas behind them instead.

In general, Matcher’s query evaluation consists
of four phases, which correspond to functions in

the source code:

1. VisitQuery. It is the first function that han-
dles a submitted query. If there are subqueries
in it, it obtains their results and then performs
merging, calling MergeQueries which checks
order and INWIN requirements. If there are
no subqueries, i.e. the query contains only
a matching group, then VisitRestrictions is
called. After this, the output of VisitQuery is
constructed by eliminating duplicates and sort-
ing final message lists by their first message
position. Note that VisitQuery is a recursive
function that is run for each subquery.

2. VisitRestrictions. It obtains a group list in
which the i-th group contains all messages
that conform to the i-th matcher (the entire
Boolean formula) and sorts it if necessary.
This phase also handles the UNR clause by
generating all possible permutations of the
groups. This method calls VisitCondition to
obtain message ids that conform to individual
conditions.

3. VisitCondition. It queries the transcript to
extract all messages that conform to a sin-
gle predicate (haswordofdict, byuser,
hasdate, hastime, etc).

4. MergeRestrictions. This function accepts
a group list, where each list corresponds to
an individual restriction. Items of these lists
are message ids that conform to the respec-
tive Boolean formula. The output is another
group list, but each group corresponds to an
answer. Thus, MergeRestrictions constructs
this list by taking ids from different input
groups while checking the INWIN clause.

Our initial experiments demonstrated that there
are two most expensive functions which needed
to be optimized — VisitCondition and MergeR-
estrictions (see Fig. 4). The first one works by
issuing calls to Lucene, which stores indexed chat
transcript data. There are many possible straightfor-
ward methods, e.g. implementing reuse or setting
up caching, tuning Lucene, using another storage
layer and so on. In terms of DBMS query process-
ing and optimization, this part is similar to the ac-
cess method selection problem. On the other hand,
optimizing MergeRestrictions resembles join op-
timization and it is trickier than VisitCondition.
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For this paper, we have decided to develop sev-
eral different strategies for optimizing this part. Let
us consider in detail how a Matcher query is evalu-
ated.

Query evaluation starts with the body of the main
SELECT clause. Any SELECT can consist of ei-
ther a sequence of nested subqueries or a sequence
of matchers, i.e. a matching group.

If the body consists of n matchers, we find the
ids of messages that satisfy the respective condi-
tions, obtaining n groups of messages. Let us de-
note this stage with an asterisk (*). If the UNR
modifier is used, all possible permutations of the
obtained groups are generated, and if not, a single
order (which is specified in the query) is considered.
For each group order (that is, for each permutation),
we merge the groups taking into account order con-
straints and the INWIN condition, i.e., we create
lists of n ids, each element of which is an element
of some group. We check the uniqueness of these
lists, deleting those that are already in the resulting
list, and add the rest to the output of the current
query or subquery.

However, if the body consists of k subqueries,
we process each subquery and merge the obtained
lists, taking into account order constraints and the
INWIN condition, obtaining a group list sequence.
Merging produces lists that contain k groups, each
of which is an element of the resulting list of the
corresponding subquery. Thus, this is recursion —
we process sequences of subqueries until we reach
a subquery that does not have its own subqueries.

Now, for the MergeRestrictions phase we pro-
pose several different algorithms, namely:

1. N+NS: naive, no sort;

2. N+S: naive, with sort;

3. P+NS: position-based, no sort;

4. P+S: position-based, with sort;

5. H+S: histograms, with sort.

The first part of their name encodes method and
shows whether the groups to be merged have been
sorted at the (*) stage (i.e., when they were ob-
tained).

4.2 N+NS: naive, no sort
The N+NS algorithm is the most basic version of
all considered algorithms. It is a recursive algo-
rithm which at first selects the first group and starts

iterating over its values, launching itself for each in-
dividual value. This value will be the beginning of
an answer, which is a list. Each launched instance
has this partial answer as the first parameter and
the remaining groups as the second. On subsequent
recursion steps, the algorithm tries to add the next
message id (taking it from the first group, out the
remaining ones) to the partial answer. For this, it is
necessary to check: 1) whether the id of previous
message is smaller than the id of the current one,
and 2) whether the INWIN restriction holds. If
there are no suitable message ids in the considered
list, then this recursion branch terminates. Thus, at
each recursion step, the partial answer grows by a
single id until all groups are checked.

4.3 N+S: naive, with sort

The N+S algorithm is the same, except that it lever-
ages the fact that the contents of lists to merge are
sorted. Thus, it makes possible to greatly reduce
the number of recursive paths to traverse.

There is a number of differences from the N+NS
algorithm. Firstly, it sorts each obtained group at
the (*) stage in ascending order. Next, on the sec-
ond and all subsequent recursive steps it conducts
different checks to test whether the considered id
can participate in the result.

More specifically, if the current message id goes
beyond the INWIN restriction, further processing
of the next elements of the current group stops.
Indeed, due to the ascending order of the groups,
all subsequent messages of this group definitely
cannot fit into the window.

Such approach allows to early terminate the eval-
uation, which will have a good effect on the overall
performance. However, sorting will incur addi-
tional costs, which should be taken into account
and which we will experimentally evaluate.

4.4 P+NS: position-based, no sort

The next algorithm is built around the following
idea: we should start merging groups from the
smallest ones (in terms of their size) and finish
with the largest one. Using this approach, we can
reduce the number of recursive branches which do
not satisfy the INWIN and order requirements. At
the same time, the need of a novel approach to
checking order requirements arises. The idea is
illustrated in Figure 2. When we add an id to the re-
sulting list we have to check that the id of previous
message is smaller and that id of the next message
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Figure 2: The P+NS algorithm

is greater (if they have been already placed). We
call this class of algorithms position-based.

4.5 P+S: position-based, with sort

Similarly to P+NS, this algorithm exploits the idea
of merging smallest groups first. But at the same
time it relies on the sorting idea of the N+S algo-
rithm. Thus, the P+S algorithm sorts each resulting
group at the (*) stage, and at the start the algorithm
is supplied with the number of messages in each
group.

Then, similarly to the N+S, it is possible to prune
a large number of recursive branches that do not
satisfy the order and INWIN restrictions.

4.6 H+S: histograms with sort

The next stage in the development is the H+S al-
gorithm, which uses equi-width histograms (Ioan-
nidis, 2003) of message distribution. The idea is
the following: unlike all previous algorithms which
merged all groups at-a-time we merge groups two
at-a-time.

At the same time, we try to merge groups that
will result in as few intermediate results as possible
first. This resembles the idea of classic optimiza-
tion of a join sequence in SQL query processing,
where the size of intermediates is reduced too. In
order to estimate the sizes, we employ equi-width
histograms, which are constructed in advance.

The algorithm itself is as follows. At first, we
sort groups by their sizes. Then we iterate over
triples of groups and try to assess the benefit for per-
forming local permutations on them if their sizes
are close enough. In our experiments (see Sec-
tion 6) it was shown that sorting groups by their
sizes (position-based approaches) already results
in formidable improvement, therefore we should
build our next algorithm upon this idea.

Assessing benefits of permutations is done in
the following way. Suppose that we have groups

A, B, C which we have to merge, and they are of
similar size. We consider the following three per-
mutations: ((AB)C), ((BC)A), and ((AC)B) which
represent different evaluation orders. Each of them
is assessed by “intersecting” histograms of the cen-
tral part. After the intersection, we estimate the
size of the intermediate result using obtained his-
tograms. Then we select the evaluation order that
corresponds to the smallest histogram.

Figure 3: Distribution Example

Consider the example presented in Figure 3. Sup-
pose that we have to merge A, B, and C lists with
the message distributions as shown in the figure. It
is evident that it is better to merge A and C (B and
C) first than A and B. This way we will discard a
lot of intermediates as soon as possible.

This approach will not provide performance im-
provement if there is an identical data distribution
in all considered groups. But at the same time it
will not incur a significant overhead except the his-
togram construction phase, which can be done in
advance.

This is a prototype of a full-fledged optimizer
intended to demonstrate its viability in our setting.

5 Benchmark

To ensure repeatability we have created a bench-
mark which consists of four queries and a mes-
sage set. This message set contains the first 1 mil-
lion messages from the freeCodeCamp Gitter Chat
dataset, available on Kaggle3. Its Lucene index
takes around 100MB of disk space.

Listing 1: Query 1 (Q1)
SELECT

hasword(job), hasword(code),
hasusermentioned(Kadams223)

UNR INWIN 40

The Q1 query matches a group of three messages
that have words related to jobs, words related to
code and a mention of a specific username. It can

3https://www.kaggle.com/
datasets/freecodecamp/
all-posts-public-main-chatroom

https://www.kaggle.com/datasets/freecodecamp/all-posts-public-main-chatroom
https://www.kaggle.com/datasets/freecodecamp/all-posts-public-main-chatroom
https://www.kaggle.com/datasets/freecodecamp/all-posts-public-main-chatroom
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be interpreted as extracting a discussion that the
specified user has been actively partaking in, receiv-
ing many replies. This is a simple query that illus-
trates the concept behind the UNR clause. The re-
sults of the matchers are not ordered in accordance
to their order in the query, but the whole group
should fit into a window of 40 messages. Note in
that the following listings haswordofdict was
shortened to hasword for better readability.

Listing 2: Query 2 (Q2)
SELECT

hasword(job), hasword(skill),
hasword(skill), hasword(area),
hasword(money)

INWIN 40

Q2 extracts a group of five messages that discuss
coding job listings with the mentions of the area
of the job, required skill and the salary. This is
a simple query with no subqueries, however, it
has many matchers and a window length of 40
messages in which the extracted group should fit.

Listing 3: Query 3 (Q3)
SELECT

(SELECT
hasword(job), hasword(skill),
hasword(code), byuser(Lumiras)
INWIN 60

);
(SELECT
byuser(Lumiras) AND hasword(issue)

)
INWIN 200

The Q3 query extracts the following information:
a discussion of job search and coding languages in
which user Lumiras took part, and it is followed
by an issue alert by the same user. This query
contains two subqueries, the first of which has a
medium-sized window, and the second one has a
Boolean AND which specifies that the output of this
matching group, containing a single message, must
be by the specified user and contain a reference to
an issue.

Listing 4: Query 4 (Q4)
SELECT

(SELECT
hasword(job), hasword(skill),
hasword(code), byuser(Lumiras)

);
(SELECT
hasword(job), hasword(skill),
hasword(code), byuser(odrisck)
INWIN 40

);
(SELECT
hasword(job), hasword(skill),

hasword(code), byuser(odrisck)
INWIN 40

)
INWIN 300

Q4 extracts three message groups, each of which
discusses job search and coding languages. User
Lumiras participates in the first group, and user
odrisck takes part in the second and the third.
This query contains three similar subqueries and a
large window for the groups to fit in.

6 Experiments and Discussion

Experimental evaluation was conducted on a PC
with the following characteristics: 8-core In-
tel®Core™ i7-11800H CPU @ 2.30GHz, 16
GB RAM, running Windows 10.0.19042.1645
(20H2/October2020Update).

The current version of CCA is implemented
in C# (.NET 6, WPF) using the following
libraries: Antlr4, Lucene.Net 4.8.0, Newton-
soft.Json, and SoftCircuits.CsvParser. To obtain
accurate measurements, we have used Benchmark-
DotNet v0.13.14. It was run with default parame-
ters, a confidence interval of 99.9% was calculated
by the benchmark (as a different number of runs
was used in each case), and we manually checked
that relative error was less than 2%. Our source
code is available publicly5.

In our first experiment we have compared the
four initial versions of the algorithm: N+NS, N+S,
P+NS and P+S. For this, we used the first four
queries of our benchmark. The overall results are
presented in Table 1.

To provide better insights into the results, we
have also constructed a stacked barchart presented
in Figure 4. It shows four approaches each depicted
by its own bar. Each bar is divided into parts that
correspond to the contribution of each method.

Our experiments have clearly demonstrated that
all of the proposed strategies are superior in perfor-
mance to the basic N+NS. Overall, P+S is the most
efficient approach, which noticeably beats N+S and
N+NS, and to a lesser extent P+NS. It was possible
to obtain more that 10x speedup for a subset of
queries.

The next observation is that sorting of group
elements is almost free in terms of time. Sorting is
conducted inside the VisitRestriction function and

4https://github.com/dotnet/
BenchmarkDotNet

5https://github.com/yakovypg/
Chat-Corpora-Annotator

https://github.com/dotnet/BenchmarkDotNet
https://github.com/dotnet/BenchmarkDotNet
https://github.com/yakovypg/Chat-Corpora-Annotator
https://github.com/yakovypg/Chat-Corpora-Annotator
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Query Msgs N+NS Impr N+S Impr P+NS Impr P+S Impr

Q1 1M 2253.5 - 1232.8 1.8x 209.4 10.8x 207.0 10.9x
Q2 1M 4260.6 - 1954.6 2.2x 530.6 8.0x 419.1 10.2x
Q3 1M 4354.1 - 2248.0 1.9x 408.1 10.7x 379.2 11.5x
Q4 1M 11615.2 - 6193.5 1.9x 2016.7 5.8x 1318.6 8.8x

Total — 22483.4 - 11628.9 1.9x 3164.8 7.1x 2323.9 9.7x

Table 1: Overall results
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Figure 4: In-depth results

the figure shows that its presence has almost no
impact on the bar height.

Listing 5: Query 5 (Q5)
SELECT

byuser(sludge256),
byuser(sludge256),
byuser(trisell) OR byuser(seahik) OR
byuser(odrisck) OR byuser(jsonify) OR
byuser(cerissa) OR byuser(mykey007) OR
byuser(AhsanBudhani) OR
hasusermentioned(seahik)

INWIN 50

The second experiment concerned out last strategy,
H+S. H+S does not always beat P+S, but it never
loses to it, either. We have added the Q5 to our
benchmark as an example on which H+S beats
P+S: it takes 1479 ms compared to 1865 ms, thus
providing 25% improvement.

7 Conclusion and Future Work

In this paper, we have presented and described our
custom query language Matcher, intended for ex-
ploration and annotation of large natural language
datasets such as chat transcripts. The main body of
our work consisted in optimizing one of Matcher’s

execution stages that deals with merging the results
of individual parts of the query, which in essence
resembles join optimization. We have created five
algorithms and a benchmark of five queries to test
them against. We have not presented a proper op-
timizer, but a collection of simple techniques that
nevertheless yield surprisingly good results, provid-
ing up to 10x improvement. All this warrants fur-
ther investigation. Concerning our future work, the
first evident direction is to implement a proper cost
model, design rules for enumerating plan space,
employ more sophisticated statistics and estima-
tors of intermediate result sizes. Next, looking at
graphs for the P+S algorithm, one may notice that
for Q4, Lucene index access has become the most
costly part and thus, it is necessary to address this.
There are many approaches to optimizing Lucene
index access which can be investigated. Finally,
note that Matcher itself does not support variables
so far, however, it is a necessary feature and it will
have impact on optimization.
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