
Proceedings of the 29th International Conference on Computational Linguistic, pages 85–93
October 12–17, 2022.

85

Neural-Guided Program Synthesis of Information Extraction Rules Using
Self-Supervision

Enrique Noriega-Atala♠, Robert Vacareanu♠, ♣, Gustave Hahn-Powell♠, and
Marco Antonio Valenzuela-Escárcega

♠University of Arizona, Tucson, AZ, USA
♣Technical University of Cluj-Napoca, Cluj-Napoca, Romania

{enoriega,rvacareanu,hahnpowell}@arizona.edu
macrovalenzuelaescarcega@gmail.com

Abstract

In this work we propose a neural-based ap-
proach for rule synthesis designed to help
bridge the gap between the interpretability, pre-
cision and maintainability exhibited by rule-
based information extraction systems with the
scalability and convenience of statistical infor-
mation extraction systems. This is achieved
by avoiding placing the burden of learning an-
other specialized language on domain experts
and instead asking them to provide a small set
of examples in the form of highlighted spans
of text. We introduce a transformer-based ar-
chitecture that drives a rule synthesis system
that leverages a self-supervised approach for
pre-training a large-scale language model com-
plemented by an analysis of different loss func-
tions and aggregation mechanisms for variable
length sequences of user-annotated spans of
text. The results are encouraging and point
to different desirable properties, such as speed
and quality, depending on the choice of loss
and aggregation method.

1 Introduction

Rule-based information extraction is interpretable,
maintainable, and highly precise, but typically re-
quires both domain expertise and deep knowledge
of an esoteric rule language. The language bar-
rier presents a major impediment to adoption for
subject matter experts who are otherwise comfort-
able with providing examples of their information
need in the form of a handful of highlighted spans
of text. Synthesizing information extraction rules
from such examples has the potential to bridge
this divide and empower subject matter experts,
but how can we learn to synthesize such programs
for any domain? We propose a self-supervised
approach for pre-training a large-scale language
model for synthesizing information extraction rules
using randomly generated rules (programs) paired
with matched spans in context (program specifica-
tions). The contributions of this work are:

• A transformer-based neural architecture for
rule scoring designed to drive a rule synthesis
process by jointly encoding candidate rules
and a specification that represents the user’s
intent.

• The introduction of a relevant in domain self-
supervised pre-training objective for the rule
synthesis problem.

• The exploration of different training scenarios
using different loss functions and aggregation
methods to score candidate rules in the pres-
ence of variable length user specifications.

2 Related Work

Generating computer programs automatically has
been a longstanding dream within the field of Arti-
ficial Intelligence. The goal of program synthesis
is to generate programs from a high-level specifica-
tion1 (Gulwani et al., 2017). Existing approaches
to program synthesis fall into one of two broad cat-
egories: search-based methods (e.g., enumerative
search, stochastic search (Alur et al., 2013) etc.)
and constraint satisfaction (Solar-Lezama, 2009;
Torlak and Bodik, 2013). In this work, we focus on
search-based program synthesis (Alur et al., 2018),
specifically a neural-guided enumerative search.

Neural approaches have come to dominate
search-based program synthesis (Balog et al., 2016;
Parisotto et al., 2016; Kalyan et al., 2018). Similar
to Parisotto et al. (2016), our approach learns a
distribution over programs to guide every step of
the search. Unlike Parisotto et al. (2016), however,
we score only the transitions allowed by the DSL
grammar and encode the specification in a man-
ner which reflects that our programs are meant to
match natural language.

Rule-based information extraction systems are
more interpretable than its statistical counterparts.

1A description (visual, example-based, etc.) of what the
program should accomplish.

86

Rule languages with high expressiveness allow
to model complex surface and syntactic patterns
(Valenzuela-Escárcega et al., 2016). These systems
are suitable to create highly specialized domain-
specific information extraction tools without the
need of large and expensive annotated datasets
(Valenzuela-Escárcega et al., 2018). Unfortunately,
mastering rule-based systems often implies a steep
learning curve and a significant time investment by
domain experts.

In this work we focus on the intersection of both
pattern-based and neural-based techniques by train-
ing a statistical model to synthesize rule patterns by
exposing it to user-provided examples.

3 Odinson Information Extraction
System

In this work, we are interested in synthesizing infor-
mation extraction rules expressed in a domain spe-
cific language (DSL) first described in Valenzuela-
Escárcega et al. (2016). This language supports
extraction rules based on token constraints (e.g.,
parts-of-speech and lemmas) as well as syntactic
patterns. However, only surface rules are targeted
in this work, leaving support for syntactic rules for
future work.

We apply the rules expressed in the DSL us-
ing the Odinson information extraction frame-
work (Valenzuela-Escárcega et al., 2020), which
supports the efficient application of the extraction
rules over a large corpus through the use of a cus-
tom Lucene2 index. Like Lucene, Odinson can
store an index on-disk or in-memory, and we take
advantage of both indexes types during this work.
An on-disk index is used to store a large corpus
used during the data generation process described
in Section 5, and an in-memory index is created on-
the-fly during the enumerative search to store the
sentences that form part of the user specification, in-
dicated in Algorithm 1 as the make_index() func-
tion.

4 Enumerative Search

The enumerative search procedure, outlined in Al-
gorithm 1, takes as input a user specification, (re-
ferred to as specification for brevity) comprised of
a collection of sentences and a set of spans repre-
senting the desired extractions; a rule scorer com-
ponent which drives the behavior of the search;

2https://lucene.apache.org/

and a performance threshold that functions as a
stopping criteria for the search.

The specification encodes the user’s intent and is
the main source of signal at the time of scoring any
given partial rule encountered during the search.

Rules are composed of syntactic elements de-
fined by the DSL. One noteworthy element is the
placeholder, represented by the symbol □, which
is introduced to represent an underspecified portion
of the rule that must be expanded by following the
grammar of the DSL. A rule is considered valid
(grammatical) if it has no placeholders, otherwise it
is a partial rule containing one or more placeholder.
Partial rules are subject to further expansions of the
form allowed by the DSL grammar.

To conduct an enumerative search, we create an
in-memory index containing the phrases included
in the rule’s specification and initialize a priority
queue with a partial rule consisting of a single
placeholder (i.e., the root of the search tree). At
each iteration, we retrieve the top-ranked partial
rule in the priority queue and check its validity.
If it is a valid rule, we query the index to verify
if the rule matches the spans highlighted in the
specification, and compute a score to measure the
rule’s performance (e.g., an F1 score over the spans
matched in the specification). If the score is above
some threshold3, the candidate rule is returned. If
the rule still contains placeholders, we expand the
left-most placeholder according to our DSL gram-
mar and use the rule scorer to produce a score
for each of the expanded rules with respect to the
user-provided specification. Each expanded rule is
placed into the priority queue according to its score.
The process repeats until a complete rule is found
that meets or exceeds the specified performance
threshold.

Our enumerative search process implements
the branch-and-bound algorithm (Land and Doig,
1960) using a priority queue. An ideal scorer would
guide the expansions directly to a correct rule ap-
proximating a depth-first search, but the priority
queue allows the search to backtrack to the most
promising candidate if necessary.

It is worth noting that the rule scorer component
of the algorithm can be any function that takes as
input a partial rule and the specification, and re-
turns a score denoting the rule’s priority for further
expansion. In the remaining sections of this work,
we describe neural architectures for training rule

3A system hyperparameter.

https://lucene.apache.org/

87

scoring models (§7.1) with supervised training data
(§5).

Algorithm 1 Enumerative search.
Require: spec ▷ user specification
Require: scorer ▷ partial rule scorer
Require: threshold ▷ score threshold

(sentences, gold_spans)← spec
index← make_index(sentences)
queue← priority_queue()
push(queue,□,∞)
while queue ̸= ∅ do

candidate← pop(queue)
if is_valid(candidate) then

results← query(index, candidate)
score← eval(results, gold_spans)
if score ≥ threshold then

return candidate
end if

else
children← expand(candidate)
for all child ∈ children do

score← scorer(child, spec)
push(queue, child, score)

end for
end if

end while

5 Data Generation

To learn to synthesize information extraction rules
in a supervised fashion, we first need (spec, rule)
pairs. Conceptually, a spec (i.e., matches in con-
text) is easily obtained by querying an index, as
long as the rule is available. Our data generation
pipeline can be broken down into 4 steps, as high-
lighted in Algorithm 2.

Algorithm 2 The algorithm to generate
(spec, rule) pairs without any supervision

1: Generate a random rule r
2: Query the index using the rule r
3: Select a spec s out of all the query results
4: Return (s, r)

In order to generate a rule (step 1 in Algo-
rithm 2), we need a sentence and a span of interest.4

4In practice, this would be provided by a user (e.g., a
domain expert). To generate data for our pre-training task in
this work, we simply select a random sentence together with a
random span within that sentence.

Then, we randomly manipulate constraints to al-
ter the rule’s complexity. After each subsequent
change in the candidate rule, we query a large in-
dex to avoid generating rules without any matches.
Once we have a final form of a rule, we use it to
query the index and collect the matches (spans in
context) to use as the rule’s specification (spec).
We describe our rule generation process in Algo-
rithm 3.

Algorithm 3 The algorithm to generate a random
rule
Require: Sentence sent together with span, a

span inside sent
rule← surface_constraints(sent, span)
rule← random_constraints(rule)
rule← random_surface(rule)

The heart of our rule generation algorithm lies
inside 3 functions: surface_constraints,
random_constraints, and
random_surface. Concretely,
surface_constraints uses the under-
lying tag, lemma, or word constraints to generate
an initial rule. Then, random_constraints
adds additional token-level constraints, such as
and, or, and not. Lastly, random_surface
adds surface level constraints, such as wildcards
and or constraints. For example, consider The
quick brown fox jumps over the
lazy dog together with the desired span quick
brown fox. The surface_constraints
will generate an initial rule, such as
[lemma=quick] [tag=JJ] [word=fox].
Then, random_constraints will modify this
initial rule and add random constraints, changing
the rule to something like [lemma=quick |
lemma=fast] [tag=JJ] [word=fox].
Then, random_surface adds surface level
constraints. For example, the rule can now become
([lemma=quick | lemma=fast])?
([tag=JJ] | [word=lazy])
([word=fox] | [word=cat]). Note
that both random_constraints and
random_surface add a random number
of changes to the initial rule.

6 Pre-training

We take inspiration from the Question-Answering
community (Rajpurkar et al., 2016, 2018) and train
a model to predict the span matched by a given rule

88

in a given sentence. Concretely, we use a dataset
generated according to the description in Section 5
and interpret the concatenation of the rule (rule)
with the sentence (sent) as the question. Then, the
self-supervised task becomes to predict the start
and the end of the span, as in classical span-based
question answering.

This pre-training objective has two aims. First,
we expose the backbone model (a transformer) to
the in-domain vocabulary in which the words and
symbols of the DSL are much more frequent than
they are in the Wikipedia or Book corpora (Devlin
et al., 2019). Our second aim is to expose the
model to an unfamiliar task closely related to our
ultimate goal: span prediction (i.e., the match for an
information extraction rule against some sentence).
By learning to predict spans, the model is primed
to learn to score candidate rules generated through
enumerative search.

7 Rule Scorer Architecture

The heart of the enumerative search process lies at
the rule scoring function. The rule scoring func-
tion assigns a priority value to each of the rule’s
expansions encountered throughout an enumerative
search. Since priority scores control the exploration
behavior during the search, it is critical to have an
optimized scoring model that can discriminate be-
tween promising or futile rule expansions.

We opt to follow a data-driven approach to train
a rule-scoring artificial neural network. Figure 1
depicts the architecture of scoring network. The
network takes as input a rule: either partially or
totally expanded, and the specification; as output,
it produces a score used to prioritize a candidate
rule in the search process.

We used the rule-specs described in §5 to build a
dataset of transitions for rule scoring. We split the
rules into training, development and testing with
1.5 million, 6,000 and 500 items, respectively. For
the training and development subsets, we used the
Odinson’s language grammar to enumerate all the
transitions necessary to derive each of the rules,
and collected the transitions along the path from
the root placeholder to the ground truth rule that
matches the specification. To obtain negative exam-
ples, at any given step we collected the syntactically
valid expansions that don’t lead to the ground truth
rule. Figure 2 shows an example of the expansion
steps to generate a simple rule composes of two to-
ken constrains in DSL. Each row shows a transition,

considered a positive training example while the
rest of the other syntactically valid transitions (not
shown in the figure) are used as negative examples.

Following this approach, the dataset contains
9,731,804 and 748,836 transitions in the training
and development subsets, respectively. The ratio
of positive to negative transitions is 1 to 3.21.

7.1 Encoding the Rule with the Specification

The provided specification encodes the intent of
the rule. Without a specification, it is impossi-
ble to know what a rule is expected to match. In
other words, the specification sets the context of a
rule, and without it, there is no signal to guide the
search process beyond the syntactic properties of
the DSL’s grammar and the statistics of the training
dataset.

The specification consists of a variable length list
of sentences with an annotated span that the target
rule is expected to match. We propose a two-step
method to encode a rule with its specification into
a combined representation inspired in the investiga-
tion of different aggregation methods for multiple
input sequences proposed by (Noriega-Atala et al.,
2022). This rule-spec embedding is then used to
compute the priority score.

In the first step, a partially expanded rule will
be paired with each phrase in the spec. The pair
is encoded by prepending the rule to the phrase,
separated by the [SEP] token. Special markup
tokens are inserted at the boundaries of the match.
This annotated input sequence is then passed to a
BERT-based encoder to generate a contextualized
representation of the rule with one of its individual
spec phrases. Figure 3 shows an example

In the second step, we aim to reduce all the con-
textualized representations of the partial rule to rep-
resent the totality of the user’s intent into a fixed-
size embedding. We achieve this by collecting
the [CLS] tokens of the contextualized sequences
from the previous step and aggregate them together
using one of the following methods: average, max-
pooling over time or an attention mechanism (Yang
et al., 2016), whose attention matrix and single
query vector are tunable parameters optimized dur-
ing training.

8 Experiments

We tested the rule scoring architecture on several
rule synthesis processes. For each model, we con-
trol the loss function (§8.1) used for training and

89

Transformer
Encoder & Pooler

Embedding
Aggregation

Layer

Scoring
Head

Aggregated
Rule-Spec
Embedding

Rule-Spec
Score

Rule-Spec
pairs tokens

Contextualized
Rule-Spec pairs

Embeddings

(1) (2) (3)

Figure 1: Rule scoring architecture. Step 1 takes as input the pair-wise concatenation of a) the partial rule and
b) the annotated phrases in the provided specification. The input is fed through a foundation transformer model
which outputs the [CLS] embedding for each rule-spec pair. Step 2 aggregates the matrix of [CLS] embeddings,
either through average pooling or an attention layer, and outputs a fixed-size rule-spec vector. Step 3 linearly maps
the rule-spec vector into a real-valued scalar score. The output score will be used as the priority value during the
enumerative search process.

□ → □□
□□ −→ [□]□
[□]□ −→ [tag = □]□
[tag = □]□ −→ [tag = JJ]□
[tag = JJ]□ −→ [tag = JJ] [□]
[tag = JJ] [□] −→ [tag = JJ] [word = □]
[tag = JJ] [word = □] → [tag = JJ] [word = rule]

Figure 2: Expansion transitions to generate a rule. The
transitions shown here are used as positive examples in
the training set for the rule scoring model.

the method for aggregating the specification (§7.1).
All models are fine-tuned on top of a BERT check-
point pre-trained for rule span prediction (§6).

Each trained model was applied on a held-out
test set of 500 rule synthesis problems with their
respective specification. Each synthesis process
was carried out by an enumerative search with a
limit of 500 steps.

8.1 Loss Functions for Rule Scoring
One crucial property required to carry out enumer-
ative search efficiently is the rule scoring function.
The function must give a high score to rules gen-
erated from transitions leading towards a rule that
matches the specification and vice-versa.

We explore two loss functions designed to re-
ward accurate transitions and penalize transitions
that don’t lead towards the ground-truth rule.

8.2 MSE Loss
We use the mean squared error loss function (Equa-
tion 1) in which an expansion is scored as ii = 1
when it the expansion is the result of a transition
towards the ground-truth rule, and li = 0 otherwise.
This loss configuration does not take into account
any information about the location of the expansion
in the AST of the rule.

ℓ(l, s) =
1

n

n∑
i=1

(li − si)
2 (1)

8.3 Margin loss
Additionally, we use a margin loss function to train
a scoring function to rank the scores of a rule with
respect to the score of its parent. The element-wise
loss function from Equation 2 takes as as input ar-
guments two scores: A partial rule’s score (sc) and
its parent’s rule score (sp). Each score is generated
by a forward pass through the model. Individual
losses within a batch are averaged to generate the
batch’s loss. Optimizing this loss will tune the
model such that the difference between the pair
of scores is at least as large as the margin hyper-
parameter m. This loss function is designed to give
a higher score to a rule or partial rule than its parent
if it was a transition leading towards the ground-
truth and vice-versa. Ideally, this property should
prioritize partial rules that are closer to matching
the specification.

ℓ(sp, sc,m) =

max(0,m− sc + sp)

if sc is correct
max(0,m− sp + sc)

if sc is incorrect

(2)

9 Results

Table 1 shows the number of problems for which
each rule scoring model matched the user specifi-
cation. Cases in which all the spans in the speci-
fication are matched exactly are considered exact
matches and those where a span is missing or an
incorrect span is matched are considered partial

90

[CLS] [tag = JJR] [lemma = natural] [□|□|□]□ [SEP] The <MATCH> more natural , or background </MATCH> , sound
you can tape , the better . [SEP]

[CLS] [tag = JJR] [lemma = natural] [□|□|□]□ [SEP] so there are <MATCH> less natural , wild </MATCH>,
hatchery fish that make it to the ocean [SEP]

[CLS] [tag = JJR] [lemma = natural] [□|□|□]□ [SEP] The further back one traces the race , the fewer are con-
cerned in the government ; the fewer are so concerned , the <MATCH> more natural , </MATCH> because the easiest , is the
system of effecting changes - aye , improvements - by “ despatching ” the government . [SEP]

Figure 3: Partial rule and its target specification encoded as input to a rule scoring network. The partial rule is paired
with every phrase in the specification to attend to every match with a transformer encoder.The boundaries of the
specification’s spans are delimited with specially designated markup tokens in the architecture’s tokenizer model.
For each input sequence, the rule scoring network will pool the [CLS] output embedding as the contextualized
representation of the partial rule with respect to its corresponding matching span. The matrix of [CLS] embeddings
will reduced to fixed size rule-spec encoding with an aggregation layer as described in §7.1. The contents of this
figure represent the left-most input block in figure 1

Loss Spec Exact Partial Any
Function Aggregation Matches Matches Matches

Margin Attention 68(14%) 263(53%) 331(67%)
Margin Average 57(11%) 248(50%) 181(61%)
MSE Attention 113(23%) 358(72%) 471(95%)
MSE Average 84(17%) 383(77%) 838(94%)

Margin No Spec 0 28(6%) 28(6%)

Table 1: Number of matches in the specifications of the testing set. Exact matches are cases in which all the spans
in the specification are matched exactly. Partial matches are cases where a) a span is missing or b) an incorrect span
is matched. Total matches are the sum of both.

matches. The right-most column counts the number
of matches, irrespective of the type.

The architectures that aggregate the rule-span
pair encodings using an attention mechanism are
better at matching the specification in terms of ex-
act and partial matches. Specifically, the model
trained using the MSE loss function has the highest
exact match rate and combined match rate. For
any given problem, every span in the specification
represents constraints for rule synthesis. These
constraints interact together to encode some intent.
We hypothesise that the attention mechanism helps
capture the signal in those implicit constraint in-
teractions better than averaging the rule-span pair
encodings, which effectively weights the contribu-
tion of every encoding to the rule’s score equally.

To highlight the crucial role of the specification,
we trained a model that generates scores by only en-
coding partial rules, ignoring the specification dur-
ing the enumerative search algorithm. This model
is represented by the bottom row of the table. Its un-
surprisingly poor performance illustrate how with-
out the specification (which represents the intent),
there is simply not enough signal to successfully

synthesize a rule.

In addition to the number of matches of each
model, we are also interested in the quality of
the matches. Tables 2 and 3 show the macro and
micro average performances of the rule scoring
models, respectively. To compute precision, recall
and F1 scores, a) matches to specification spans,
b) matches to spans not in the specification, and
c) unmatched spans in the specification are con-
sidered a) true positives, b) false positives, and
c) and false negatives, respectively. The models
that encode the rule and specification with atten-
tion outperform those that average. The attention
mechanism also improves recall. These results are
consonant with our hypothesis about the utility of
the attention mechanism to model the interaction
of the elements in the specification. In addition,
models trained with the margin loss function are
faster at synthesizing rules (i.e., they require fewer
steps to generate a complete rule). This observation
reflects the design, as the margin loss prioritizes
partial rules close to complete expansion, resem-
bling more a depth-first search approach, whereas
training with MSE just estimates how “right” or

91

Loss Spec
Precision Recall F1 StepsFunction Aggregation

Margin Attention 0.55± 0.02 0.34± 0.02 0.36± 0.02 13.08± 0.37
Margin Average 0.49± 0.02 0.32± 0.02 0.33± 0.02 13.43± 0.46
MSE Attention 0.82± 0.01 0.50± 0.02 0.56± 0.02 74.15± 3.65
MSE Average 0.73± 0.02 0.45± 0.02 0.48± 0.01 55.55± 3.73

Margin No Spec 0.01± 0.00 0.02± 0.01 0.01± 0.00 4.0± 0.0

Table 2: Macro-average performance of different rule scoring models on the testing set. Results are computed
by evaluating the rules generated using enumerative search on their corresponding specification in the testing set
(see §7). The testing dataset is bootstrapped re-sampled 10,000 times to calculate standard deviations of each
metric. To compute precision, recall and F1 scores, a) matches to specification spans, b) matches to spans not in the
specification, and c) unmatched spans in the specification are considered a) true positives, b) false positives, and c)
false negatives, respectively. The steps column reports the average number of steps to successfully find a rule.

Loss Spec
Precision Recall F1Function Aggregation

Margin Attention 0.55± 0.03 0.41± 0.03 0.47± 0.02
Margin Average 0.53± 0.03 0.41± 0.03 0.46± 0.03
MSE Attention 0.69± 0.04 0.30± 0.02 0.42± 0.03
MSE Average 0.32± 0.02 0.27± 0.02 0.30± 0.01

Margin No Spec 0.13± 0.03 0.16± 0.04 0.14± 0.03

Table 3: Micro-average performance of different rule scoring models on the testing set. Results are computed by
evaluating the rules generated using enumerative search on their corresponding specification in the testing set (see
§7) and the matches to calculate micro average performance metrics. The testing dataset is bootstrapped re-sampled
10,000 times to calculate standard deviations of each metric. Metrics are compared similarly. The definitions of
precision, recall and F1 are the same of table 2

“wrong” is the rule, and has no implicit consider-
ation about how far or close a partial rule is to
completing expansion.

We looked at the rules generated using the
MSE+Attention rule-scoring model. Out of all
the rules generated, approximately 2.5% perfectly
match the gold rule. Nevertheless, approximately
20% of the generated rules obtain a perfect F1 score
(i.e. 1.0). This is an example of program aliasing,
where a different program produces the same result.
In our case specifically, a different rule matches
the same specification. We can observe this phe-
nomenon in the first two rows of table 4. Nonethe-
less, there is still ample room for improvement, as
we can see how sometimes the synthesizer gener-
ates a rule that misses most of the specification.

10 Future Work

The results presented in this work are promising
and open the door for further research in several
directions that will help to better understand the

properties of the rule scoring architectures. In its
current state, our approach has at least avenues to
future work.

Extrinsic Analysis We evaluated the methods
on a testing dataset. This evaluation is useful to
compare the relative performance of the different
architectures analyzed in this work. It is necessary
to implement named captures to be able perform
an extrinsic evaluation, similar to the evaluation
protocol proposed by (Vacareanu et al., 2022) on
an external dataset to validate the utility of our
method for the information extraction task.

Finding equivalent rules Our training procedure
prunes branches that will not lead to the target rule,
but this may inadvertently prune paths leading to
equivalent rules that match the same specification.
The large search space makes it impractical to enu-
merate all equivalent rules for each specification.
Reinforcement learning is a viable alternative to
training a rule scoring model. Multiple rules that

92

Target Rule Synthesized Rule F1

[tag=NN] [lemma=in]
[raw=many] [word=of]
[tag=PRP$]

[tag=NN] [lemma=in]
[lemma=many] [lemma=of]
[tag=PRP$]

1.0

[raw=always] [lemma=make]
[tag=NNS] [word=that]

[lemma=alway] [tag=VBP]
[lemma=decision]
[lemma=that]

1.0

[lemma=describe] [raw=how]
[word=the]

[tag=VBZ] [lemma=how]
[tag=DT] 0.59

[lemma=mikhail | tag=NN] [word=The | lemma=range] 0.08

Table 4: Examples of rules generated with an enumerative search. Target Rule is the ground truth rule which
matches the user specification. Synthesized Rule is the rule generated by the enumerative search process; F1 is the
synthesized rule’s score over the user specification for the corresponding target rule.

match the specification can be found by exploring
the space of syntactically correct expansions. This
could improve the expressiveness of a rule syn-
thesis system and increase data efficiency without
incorrectly penalizing valid rules that are not part
of the training dataset in supervised learning.

Grammar synthesis The current approach as-
sumes a single rule must match the entire specifi-
cation. For diverse specifications (i.e., spans with
highly varied contexts), a single rule may end up
containing many disjunctive clauses. Long, com-
plex rules may adversely affect interpretability and
maintainability. Rather than generating a single
rule for a specification, it may be advantageous
in some cases to learn to generate a set of two or
more complementary rules with low complexity
and better generalization.

Interactive use The model trained using margin
loss and an attention mechanism for encoding is
able to find a rule much faster (on average) than
the rest of the models without suffering a steep loss
in performance. Further investigation is needed to
understand not only what changes might increase
the quality of the matches in rule synthesis but also
what changes will make they system fast enough
for interactive use.

References

Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo
M. K. Martin, Mukund Raghothaman, Sanjit A. Se-
shia, Rishabh Singh, Armando Solar-Lezama, Emina
Torlak, and Abhishek Udupa. 2013. Syntax-guided

synthesis. In Formal Methods in Computer-Aided
Design, pages 1–8.

Rajeev Alur, Rishabh Singh, Dana Fisman, and Ar-
mando Solar-Lezama. 2018. Search-based program
synthesis. Communications of the ACM, 61(12):84–
93.

Matej Balog, Alexander L Gaunt, Marc Brockschmidt,
Sebastian Nowozin, and Daniel Tarlow. 2016. Deep-
coder: Learning to write programs. arXiv preprint
arXiv:1611.01989.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Sumit Gulwani, Oleksandr Polozov, Rishabh Singh,
et al. 2017. Program synthesis. Foundations and
Trends® in Programming Languages, 4(1-2):1–119.

Ashwin Kalyan, Abhishek Mohta, Oleksandr Polo-
zov, Dhruv Batra, Prateek Jain, and Sumit Gulwani.
2018. Neural-guided deductive search for real-time
program synthesis from examples. arXiv preprint
arXiv:1804.01186.

AH Land and AG Doig. 1960. An automatic method
of solving discrete programming problems. Econo-
metrica: Journal of the Econometric Society, pages
497–520.

Enrique Noriega-Atala, Peter M. Lovett, Clayton Morri-
son, and Mihai Surdeanu. 2022. Neural architectures
for biological inter-sentence relation extraction. In
Scientific Document Understanding 2022, number
3164 in CEUR Workshop Proceedings.

https://doi.org/10.1109/FMCAD.2013.6679385
https://doi.org/10.1109/FMCAD.2013.6679385
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://ceur-ws.org/Vol-3164/paper1.pdf
http://ceur-ws.org/Vol-3164/paper1.pdf

93

Emilio Parisotto, Abdel-rahman Mohamed, Rishabh
Singh, Lihong Li, Dengyong Zhou, and Pushmeet
Kohli. 2016. Neuro-symbolic program synthesis.
arXiv preprint arXiv:1611.01855.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable questions
for squad. In ACL.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In EMNLP.

Armando Solar-Lezama. 2009. The sketching ap-
proach to program synthesis. In Asian Symposium on
Programming Languages and Systems, pages 4–13.
Springer.

Emina Torlak and Rastislav Bodik. 2013. Growing
solver-aided languages with rosette. In Proceedings
of the 2013 ACM international symposium on New
ideas, new paradigms, and reflections on program-
ming & software, pages 135–152.

Robert Vacareanu, Marco A. Valenzuela-Escárcega,
George Barbosa, Rebecca Sharp, and Mihai Sur-
deanu. 2022. From examples to rules: Neural guided
rule synthesis for information extraction. In Proceed-
ings of the 13th Language Resources and Evaluation
Conference (LREC).

Marco A. Valenzuela-Escárcega, Gus Hahn-Powell, and
Dane Bell. 2020. Odinson: A fast rule-based infor-
mation extraction framework. In Proceedings of the
12th Language Resources and Evaluation Confer-
ence, pages 2183–2191, Marseille, France. European
Language Resources Association.

Marco A. Valenzuela-Escárcega, Gus Hahn-Powell, and
Mihai Surdeanu. 2016. Odin’s runes: A rule lan-
guage for information extraction. In Proceedings of
the Tenth International Conference on Language Re-
sources and Evaluation (LREC’16), pages 322–329,
Portorož, Slovenia. European Language Resources
Association (ELRA).

Marco A Valenzuela-Escárcega, Özgün Babur, Gus
Hahn-Powell, Dane Bell, Thomas Hicks, Enrique
Noriega-Atala, Xia Wang, Mihai Surdeanu, Emek
Demir, and Clayton T Morrison. 2018. Large-scale
automated machine reading discovers new cancer-
driving mechanisms. Database, 2018. Bay098.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchical
attention networks for document classification. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1480–1489, San Diego, California. Associa-
tion for Computational Linguistics.

https://arxiv.org/abs/2202.00475
https://arxiv.org/abs/2202.00475
https://aclanthology.org/2020.lrec-1.267
https://aclanthology.org/2020.lrec-1.267
https://aclanthology.org/L16-1050
https://aclanthology.org/L16-1050
https://doi.org/10.1093/database/bay098
https://doi.org/10.1093/database/bay098
https://doi.org/10.1093/database/bay098
https://doi.org/10.18653/v1/N16-1174
https://doi.org/10.18653/v1/N16-1174

