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Abstract

In this paper we revisit the direction of using
lexico-syntactic patterns for relation extraction
instead of today’s ubiquitous neural classifiers.
We propose a semi-supervised graph-based al-
gorithm for pattern acquisition that scores pat-
terns and the relations they extract jointly, us-
ing a variant of PageRank (Page et al., 1999).
We insert light supervision in the form of seed
patterns or relations, and model it with sev-
eral custom teleportation probabilities that bias
random-walk scores of patterns/relations based
on their proximity to correct information. We
evaluate our approach on Few-Shot TACRED
(Zhang et al., 2017; Sabo et al., 2021), and show
that our method outperforms (or performs com-
petitively with) more expensive and opaque
deep neural networks. Lastly, we thoroughly
compare our proposed approach with the sem-
inal RlogF pattern acquisition algorithm of
Riloff (1996), showing that it outperforms it
for all the hyper parameters tested, in all set-
tings.1

1 Introduction

Rule-based methods hastily fell out of favor after
the “deep learning tsunami” hit natural language
processing (Manning, 2015). However, deep learn-
ing methods are not perfect: they continue to re-
main “blackboxes,” despite recent effort towards
untangling their representations (Jain and Wallace,
2019; Wiegreffe and Pinter, 2019; Kobayashi et al.,
2020). Moreover, the presence of various linguis-
tic phenomenons in the hidden representation of
deep models does not imply that the model will use
them (McCoy et al., 2019). On the other hand,
rules are interpretable by design. Furthermore,
changing something in a deep learning model often
changes everything (Sculley et al., 2015; Arpteg

1Code available at https://github.
com/clulab/releases/tree/master/
pandl2022-patternrank

et al., 2018), while rules are disentangled, i.e., mod-
ifying a rule impacts only its own matches.

Here, we introduce a novel pattern acquisition
method for relation extraction, which uses graph-
based techniques that operate over the entire topol-
ogy of the bipartite graph that contains candidate
patterns and their extracted relations. More specif-
ically, we leverage a variant of PageRank (Page
et al., 1999) to jointly score candidate patterns and
their extractions. Such an approach has the advan-
tage of softening the sparsity problem: an unknown,
but potentially in-domain candidate relation is not
automatically considered incorrect (as most “tradi-
tional” semi-supervised algorithms would consider
it); instead it receives a non-zero score that depends
on how reachable it is in this graph.

Our main contributions are:

• We propose a graph-based algorithm, Pattern-
Rank, for jointly scoring patterns and extrac-
tions by considering the whole topology of
the graph that contains them. Our algorithm
captures light supervision (in the form of
seed relations or patterns) with several custom
teleportation probabilities that bias random-
walk scores of patterns/relations based on their
proximity to correct information.

• We evaluate our proposed approach on the
Few-Shot TACRED task (Zhang et al., 2017;
Sabo et al., 2021). Our results show that the
performance is better than (or at least equiv-
alent with) several state-of-the-art neural ap-
proaches, while also being fully interpretable.

• We perform an extensive comparison between
our proposed method and the seminal pattern
acquisition algorithm RLogF of Riloff (1996),
which is closest in spirit to our direction, ex-
plaining why it outperforms it.

https://github.com/clulab/releases/tree/master/pandl2022-patternrank
https://github.com/clulab/releases/tree/master/pandl2022-patternrank
https://github.com/clulab/releases/tree/master/pandl2022-patternrank
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2 Terminology

Before moving on, we introduce here key terminol-
ogy used throughout the paper.

Pattern We define a pattern as a linear sequence
of surface and syntactic constraints. For ex-
ample, the pattern [lemma=born] >nmod_in
[ne=LOC] matches if the text contains the lemma
born, linked through a nmod_in dependency to a
token labeled as a location named entity.

Relation We evaluate our proposed method on
relation classification. As such, we use the term
relation to refer to the semantic relation holding
between two given entities. For example, for the
sentence John was born in Tampa, where
the two entities are John and Tampa, respectively,
the relation will be per:born_in.

3 Related Work

Rule-based systems received tremendous atten-
tion the “pre deep-learning era.” In a seminal
work, Hearst (1992) proposes a method to learn hy-
ponymy relations using hand-written patterns of the
form NP0 such as {NP1 .., (and|or)}
NPn. Riloff (1993) introduced AutoSlog, a system
for automatically learning domain-specific dictio-
naries using a few hand-written patterns. The sys-
tem is improved in (Riloff, 1996) by combining the
original AutoSlog with statistical techniques and
introduced the RlogF pattern scoring function, de-
fined as: RlogF (patterni) =

Fi
Ni

log2(Fi), where
Fi is the number of extractions for the correspond-
ing class, and Ni is the total number of extractions.

The duality between patterns and relations has
also been explored in (Brin, 1998). More con-
cretely, the authors first generate a set of patterns
from a set of relations. Then, using the previously
generated set of patterns they generate a new set
of relations. On a high level, we employ a similar
algorithm. Conceptually similar method has also
been in explored in (Riloff and Jones, 1999; Riloff
and Wiebe, 2003).

3.1 Automatic pattern learning
The typical approach to semi-supervised pattern
learning is to initialize the learning algorithm with
a small set of known seed relations (Riloff and
Jones, 1999; Riloff and Wiebe, 2003; Gupta and
Manning, 2014). Generally, the approach is to
consider the matches outside the seed relations as
incorrect matches (Riloff and Jones, 1999; Riloff

and Wiebe, 2003). Gupta and Manning (2014)
improved the approach by allowing soft matches.
Concretely, they predict the labels on unlabeled
entities using a concatenation of different features,
including word embeddings. We approach this
issue by interpreting the matches of all the patterns
as a graph and scoring everything jointly. In a
sense, our approach can be thought of as a guided
wisdom of the crowd approach.

3.2 Graph-based pattern learning

Treating pattern acquisition from a graph-based
perspective is an under-explored approach. How-
ever, we are not the first to view it from this point
of view. Kozareva et al. (2008) briefly explored
using PageRank, among other scoring techniques,
but in another setting and only for relation scoring.
They focused on learning hyponym relations start-
ing from a single doubly-anchored pattern template
and a single seed instance. They build a directed
graph G, where an edge (u, v) represents that using
the relation u in the pattern template extracted the
relation v. Then, they used graph-based scoring
techniques to select the best relations. In contrast,
our proposed method learns both patterns and rela-
tions jointly, starting from either a pattern or a seed
relation.

Perhaps the work of (Hassan et al., 2006) is clos-
est in nature with our approach. They proposed
using Hyperlink-Induced Topic Search (HITS)
(Kleinberg, 1999) to jointly learn patterns and re-
lations without any supervision. One limitation of
their method is that it is unable to accommodate ini-
tial information about which seeds relations or pat-
terns are considered correct, information which can
come from a previous component in the pipeline,
or from human supervision. In contrast, our algo-
rithm can incorporate human supervision through
seed relations or patterns, and we use a new topic-
sensitive variant of PageRank (Page et al., 1999) to
model human supervision during the random walk.

Although rule-based approaches received a lot
of attention prior to the deep-learning era, graph-
based approaches for pattern acquisition remain
under explored. In this paper we model the pattern
scoring problem as a random walk over a graph
consisting of patterns and relations, and mitigate
sparsity through custom teleportation probability.
We empirically show that this strategy leads to bet-
ter results in realistic few-shot settings for relation
extraction (Sabo et al., 2021).
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4 Method

Our approach, called PatternRank, follows an itera-
tive approach, which alternates between learning
patterns from known relations (or seeds), and ex-
tracting new relations matched by these patterns.
The key contribution of our work is the novel scor-
ing strategy, which scores patterns and extracted
relations jointly, using a graph-based algorithm.
We describe the three components of our method
in greater detail below.

4.1 Generating Candidate Patterns

We generate candidate patterns starting from a
small set of seed relations and some (unannotated)
text corpus. Our seed relations take the form
(agent, predicate, patient), and the pat-
terns are the syntactic paths connecting the three
elements. For example, from the seed relation
(drought, causes, famine), we consider all the syn-
tactic paths connecting drought with famine that
pass through the predicate causes in the corpus.2

Then, to reduce search space, we filter these candi-
date patterns as follows:

1. We remove candidate patterns observed less
than k times in the corpus.

2. We avoid mirror patterns. For example,
if in the set of candidate patterns we
have both <nsubj causes >dobj and
<dobj causes >nsubj we keep the pat-
terns that extracted more relations overall.

3. We remove patterns that contain the same type
of dependencies on both sides of the predi-
cate. For example, we filter out patterns like
<nsubj causes >nsubj >dobj.

Our method accommodates the case where the
starting point are seed patterns instead of seed re-
lations. In this case we apply the seed patterns to
generate seed relations. Then, we continue with
pattern generation as described above.

An important difference from previous work
is that our method does not use a pre-computed
index with all the patterns on the corpus (Lin
and Pantel, 2001). In realistic settings, such an
index of rules is prohibitively large due to the

2We use lemmas instead of the verbatim words for lexical
items in the paths, and universal dependencies for the syntactic
annotations. Our method accommodates seed relations pro-
vided without a predicate, in which case we generate syntactic
paths that simply connect the agent and patient.

sparsity of language. Instead, we generate them
on the fly using Odinson, a rule-based information
extraction framework that indexes atomic syntactic
dependencies (Valenzuela-Escárcega et al., 2020).
To bridge the fact that the Odinson index contains
individual syntactic dependencies, whereas our
rules are compositional (i.e. they aggregate multi-
ple atomic (word- or dependency-level) constraints
such as matching lemmas or part-of-speech tags),
we create patterns by searching the Odinson
for all the syntactic paths connecting the seed
relations. For example, for the seed relation
(drought, causes, famine) we search for the paths
connecting drought to famine via causes with
the Odinson query: [lemma=drought]
(«|»)* [lemma=cause] («|»)*
[lemma=famine], where («|»)* stands
for zero or more syntactic dependencies connect-
ing the token to the left to the one on the right.
This significantly speeds up pattern generation
without relying on an explicit pattern index.

4.2 Extracting Candidate Relations
Using the previously generated patterns, we ap-
ply them over our corpora and record the relations
matched by them. We filter the extractions based
on the part-of-speech tags of the constituent words
and based on their concreteness. For example, we
remove relations where the agent or patient are pro-
nouns or symbols. Further, we use the concreteness
norm database of Brysbaert et al. (2014)3 to filter
out relations that are too generic (e.g., (someone,
causes, something)). The threshold is an ap-
plication specific hyper parameter.

4.3 Scoring Patterns and Relations
We score patterns and relations jointly using a
graph-based algorithm. Specifically, we view the
patterns and relations as a bipartite graph. Nodes
represent patterns or relations. Edges between
nodes of the same type are prohibited. Two nodes
are connected with an edge if the corresponding
pattern matched the corresponding relation. Edges
are undirected, as the pattern/relation matching can
be seen as bidirectional. Additionally, edges are
weighted, where the weight represents the number
of times the pattern extracted the relation.

Formally, we have the bipartite graph G =
(P,R,E), with two partitions: P , which contains

3This database contains psycholinguistic concreteness
norms for 40,000 generally known English lemmas on a nu-
merical scale from 1 (highly abstract) to 5 (highly concrete).
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Figure 1: Our proposed method for jointly scoring patterns and relations. We apply the personalized PageRank algorithm twice.
First, we use a teleportation vector where we teleport only to the seed relations, i.e., example relations known to be correct.
After this step, we take the top scoring patterns and consider them to be correct. We apply the personalized PageRank algorithm
a second time, but this time we teleport only to the previously selected patterns. The algorithm outputs a list of patterns and
relations, each with an associated score.

the nodes corresponding to the patterns, and R,
which has the nodes corresponding to the rela-
tions that were extracted using the patterns from P .
An undirected edge (p, r) ∈ E between a pattern
p ∈ P and an extracted relation r ∈ R is added
if the pattern p matches the relation r in the cor-
pora. We attach a weight w ∈ N to the (p, r) edge,
representing the number of time p extracted r.

Equipped with this representation, we apply
graph-based algorithms for jointly scoring the pat-
terns and the relations. We adapt Topic-Sensitive
PageRank (Haveliwala, 2002), a variant of PageR-
ank (Page et al., 1999) with custom teleportation
probabilities. We apply this algorithm twice, as
follows:

1. We first apply it to obtain the scores for each
of the generated patterns. In this setting, we
set the teleportation probability to uniformly
teleport only to seed relations, i.e., extractions
specified ahead of time by the user to be cor-
rect.

2. Using the PageRank scores generated in the
previous step, we select the desired number of
patterns by keeping the top patterns with the
highest scores.

3. We apply the topic-sensitive PageRank a sec-
ond time. For this run, we teleport only to
the patterns selected in the previous step. Fur-
ther, this time we do not teleport uniformly,
but proportional with the score of a given pat-
tern. This is done to prevent a pattern which
extracted very few relations to dominate the
random walk.

At the end of this process, the algorithm gener-
ates scores for both patterns and relations. Figure 1
summarizes this whole process.

An important thing to note is that our proposed
method considers the entire topology for comput-
ing a score, without ignoring or considering an
unknown extraction to be bad. As a consequence, a
pattern which rarely matches the seed relations can
still obtain a high score if its matches tend to over-
lap with patterns that predominantly match the seed
relations. Traditional bootstrapping approaches for
relation extraction typically mark unknown extrac-
tions as bad, ignore them, or (better) try to score
them relative to the seed relations (Gupta and Man-
ning, 2014). In a sense, we handle this problem
via a guided wisdom of the crowd approach, where
patterns which overlap in extractions with patterns
that match predominantly the seed relations can
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Query She founded a production company called Higher Ground Productions
Entity 1 Entity 2

per:employee_of

Figure 2: Example of a sentence in the TACRED dataset
(Zhang et al., 2017). The task is to predict the relation that
holds between the two entities, which in this example is
per:employee_of.

still obtain a high score.

5 Experiments

5.1 Experimental Setting

For all experiments we used Odinson for indexing
(Valenzuela-Escárcega et al., 2020). Further, we
used the UMBC corpus (Han et al., 2013) to obtain
more robust statistics on a rule’s extractions.

5.2 Relation Extraction

We evaluate PatternRank, our proposed method,
on the Few-Shot TACRED dataset (Sabo et al.,
2021), a few-shot variant of the original TACRED
dataset (Zhang et al., 2017). TACRED is a relation
classification task, where you are asked to predict
the relation between the two (given) entities in a
sentence.4 An example of the input is presented
in Figure 2. In the few-shot variant, the test rela-
tion classes are not seen during training. Instead,
a method has to generalize to new relation types
using only a few examples of the new relations.5

More formally, at testing time, the task requires
the classification of a relation that holds between
two given entities in a query sentence, using only a
support set, which consists of examples for each of
the 5 possible relations for the query sentence. If
none of the relations hold for the query sentence,
the prediction should be no_relation.

Query David Banda ( son of Madonna and Guy Ritchie ) 8
Entity 1 Entity 2

?

Support sentence An opinion piece by Richard Lindzen of MIT
Entity 1 Entity 2

per:employee_of

Support sentence He was a son of David and Mary M Anderson
Entity 1 Entity 2

per:parents

Figure 3: A shortened test example of Few-Shot TACRED.
Here, we consider only two support sentences in total, which
makes it a 2-way 1-shot setting. If the true relation of the
query sentence is not found among the support sentences, then
the label is no_relation. In this example the gold relation
is per:parents.

4Entity types are also provided.
5Typically 1 or 5 sentences per relation.

Because our method starts from seed patterns
or relations, we convert each support sentence
into seed patterns6 by artificially constructing
patterns that extract the specified entities. We
construct two such patterns, one which contains
only surface constraints, and one that relies
on syntax. For example, for the relation type
per:city_of_birth and the support sentence
Rothman was born in San Francisco in 1932,
we automatically generate the surface pattern:
[ne=PER] [lemma=be] [lemma=born]
[lemma=in] [ne=LOC], and the syn-
tactic pattern: [ne=PER] <nsubjpass
[lemma=born] >nmod_in [ne=LOC]. We
then use UMBC (Han et al., 2013) to obtain robust
statistics on their extractions, by making use of
the seeds and the relations available so far. More
precisely, we apply the patterns on UMBC and
extract candidate relations. Then, we use this set of
candidate relations to build more patterns. Lastly,
we apply this set of patterns over UMBC to obtain
the extractions which will then ranked.

We compare our proposed approach with one
strong baseline, and several state-of-the-art neural
methods.

Our baseline is driven by the type of the two
participating entities. In particular, given a query
sentence q, which has the entity types (E1, E2)
(e.g. (PER,PER) for the example in Figure 3), the
algorithm:

1. Discards the sentences from the support set
which do not have the entity types (E1, E2).
For example, for the example in Figure 3, we
discard the first support sentence, as the entity
types in it are (PER,ORG).

2. Adds one artificial support sentence with the
relation type set to no_relation, if in
the background training set there are sen-
tences with the same entity types as the query
sentence. We do this to ensure that the
no_relation label remains a classification
option, as there may be multiple relations that
can hold between the two entities.7 For exam-
ple, we add His son Richmond Jr and grand-
son Richmond III both became football stars.
with the relation label no_relation.

6We empirically observed that seed patterns are less noisy
than seed relations.

7Examples of relations that can hold between PER and
PER: per:parents, per:spouse, per:children,
per:siblings, per:other_family.
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3. Randomly picks one of the remaining sen-
tences with matching entity types from the
support set, and labels the query sentence with
the corresponding relation type. For example,
the baseline may randomly select the sentence
He was a son of David and Mary M Anderson,
and predict per:parents.

Additionally, we compare our method with the
following state-of-the-art supervised methods:

Sentence-Pair (Gao et al., 2019): Concatenates
the query sentence with each support sentence and
runs a sequence classification variant of BERT (De-
vlin et al., 2018) over it, predicting a two-element
vector. The first element represents the probability
of the pair sharing the same relation type and the
second element represents the probability of the
pair not sharing the same relation type. It takes the
average score in case there are multiple sentences
with the same relation type. Additionally, the score
for no_relation is considered to be the small-
est value assigned by the method for the probability
that the pair does not share the same relation type.

Threshold (Sabo et al., 2021): Assigns the label
no_relation if the score of the concatenation
is smaller than a learned threshold. Otherwise, it
assigns the relation type associated with the highest
similarity score, as in Sentence-Pair.

NAV (Sabo et al., 2021): A transformer-based clas-
sifier which uses the background training set to
learn a vector for the no_relation label. At
test time, it computes the similarity score between
the query sentence and each support sentence. Ad-
ditionally, it computes the similarity score between
the query sentence and the vector associated with
no_relation. Finally, it outputs the relation
associated with the highest score.

MNAV (Sabo et al., 2021): Conceptually similar
with NAV, but instead of using a single vector for
the no_relation label, it uses multiple vectors.
The rationale behind adding multiple vectors is
that it is expected to ease the embedding space
constraints. The number of vectors is treated as a
hyperparameter.

We present our results in Table 1. Note that our
method obtains 12.72 F1 in the more challenging 5-
way 1-shot setting (where only 1 support sentence
is provided per relation label), and 22.13 F1 in the
5-way 5-shot setting (where 5 sentences are pro-
vided per type) using 100 patterns. The fact that our
method outperforms all others in the 1-shot setting,

Method 5-way 1-shot 5-way 5-shot
Baseline 10.82±0.01% 10.90±0.01%
Riloff (5) 4.55±0.61% 15.28± 1.71

Riloff (100) 11.68±0.80% 22.01± 1.76

Sentence-Pair 10.19±0.81% –
Threshold 6.87±0.48% 13.57±0.46%
NAV 8.38±0.80% 18.38±2.01%
MNAV 12.39±1.01% 30.04±1.92%
Ours (5) 6.53±0.49% 17.05± 1.87 %

Ours (100) 12.72±1.12% 22.13± 1.94 %

Ours (all rules) 14.06±0.96% 22.16± 1.67 %

Table 1: Performance comparison between our proposed
method, a baseline driven by entity types, Riloff’s RlogF ap-
proach (Riloff, 1996), and other state-of-the-art neural meth-
ods. For both Riloff and our method, we report the results
using 5 and 100 patterns learned by the two approaches. Ad-
ditionally, we add the performance when using all patterns.

indicates that our graph-based algorithm general-
izes better in the minimal supervision setting. We
discuss the results in detail below.

6 Analysis and Discussion

6.1 PatternRank vs. Neural Methods
The results in Table 1 show that our method outper-
forms (or, at least, performs equivalently with) all
neural methods in the 1-shot setting, and performs
competitively in the 5-shot one. Using all rules we
obtain a performance of 14.06 in the harder 5-way
1-shot case, outperforming the previous state-of-
the-art of 12.39 by over 1.5 F1 points. This strong
performance is preserved even if we use only 100
rules.8 This confirms our intuition that there is
value in graph-based approaches in the neural era,
especially in settings with minimal supervision,
which are closer to real-world applications of rela-
tion extraction. Our conjecture is that teleportation
reduces sparsity by allowing patterns that overlap
with patterns that predominantly match the seed
relations to obtain a high score. At a high level,
this approach acts akin to a guided wisdom of the
crowd.

Importantly, note that our method produces a rel-
atively small number of interpretable rules, which
is a radical departure from these neural methods.
We argue that this is a step forward towards reduc-
ing the high maintainability cost of neural systems.

One potential argument against our method is
that it needs an external text corpus at training time.
For example, in this work we used UMBC (Han

8Using the top 100 rules per support sentence translates to
using approximately 13% of all the patterns found.



7

et al., 2013). However, so do neural methods: all
neural methods reported here rely on transformer
networks, which have been pretrained on much
larger resources than the corpus we used.

6.2 PatternRank vs. Riloff’s RlogF

We compare the scores proposed by our method
with the scores proposed by the RlogF scoring func-
tion Riloff (1996), which is closest in spirit to our
direction. We do not include in this analysis other
bootstrapping approaches, such as (Gupta and Man-
ning, 2014; Collins and Singer, 1999), which focus
on other NLP tasks, such as named entity recogni-
tion. RlogF takes into consideration the number of
times a rule matched a seed compared to the total
number of matches, as follows:

RlogF (patterni) =
Fi

Ni
· log2(Fi)

where Fi is the number of times patterni matched
a known good relation and Ni is the total number of
matches of patterni. This scoring function treats
each pattern in isolation and considers every match
outside the seed set as negative.

As Table 1 shows, our approach outperforms
RlogF when using 5 patterns and 100 patterns re-
spectively.9 When using only 5 rules, our proposed
approach gives a 40% relative improvement. When
using 100 rules, our proposed approach improves
RlogF by over 1 F1 points. Overall, we perform
much better with few rules and when data is sparse,
but our proposed approach outperforms Rlogf in
all our experiments, regardless of the setting.

To better understand the differences between
the two approaches, we perform an analysis on
the patterns resulted from the support sentences
of Few-Shot TACRED dev partition. That is, for
each support sentence we learn patterns that will
be representative for that particular relation. Each
pattern has an associated score, given by our pro-
posed method. In the process, we keep track of
the number of good and total matches respectively,
which are used in RlogF. When comparing the per-
formance, we repeat our experiments 5 times and
report the mean and standard deviation. We used
the 5-way 1-shot split, unless otherwise stated.

9We omit running RlogF with all the rules because there is
limited benefit of ranking if everything is used, regardless of
score. As such, when using all the rules both methods obtain
the same score, as they should.

6.2.1 Score agreement
First, we compare the agreement between the
scores assigned by both methods. Since we are
interested in ranking and not in the values of the
scores, we use the Kendall rank correlation coeffi-
cient. Naively calculating Kendall’s tau between
the scores given by RlogF and the scores given by
PatternRank yields τ = 0.98 ± 0.02. However,
this is misleading because both scoring methods
tend to agree for the low-scoring patterns, which
represents the majority of the cases. If, instead, we
restrict our analysis to patterns that match seed
relations, we obtain τ = −0.19 ± 0.07.10 This
indicates that the rankings are more dissimilar
than the naive ranking would suggest. Manually
inspecting the scoring, we observed that RlogF
favors high precision patterns, regardless of
the number of matches. For example, for the
relation org:country_of_headquarters, our method
scored [ne=ORG] [lemma=in] [ne=LOC]
the highest, while RlogF scored [ne=ORG]
<conj_and [lemma=president]
>nmod_of [ne=LOC] the highest.

In order to better understand why RlogF over em-
phasizes precision, we mathematically compared
what it means for patternj to be scored higher
than patterni according to this algorithm. As-
suming that the patterni is known, starting from
RlogF (patterni) − RLogF (patternj) < 0, as-
suming Fi, Fj , Ni, Nj > 0 and defining: α = Fi

Ni
,

where 0 < α ≤ 1, and β =
Fj

Nj
, where 0 < β ≤ 1,

we have: αlog2(Fi) < βlog2(Fj), and, thus,

Fi < F
β
α
j . As such, if α is close to 1 (i.e., the ex-

pected value for correct patterns), patternj needs
exponentially more correct matches the smaller β
gets. For example, if Fi = 100, α = 1, for a
β = 0.75 we would need Fj = 465.

We show the histogram of the resulting scores
from both methods in Figure 4. Because RLogF is
an unbounded score, we normalize the rule scores
between [0, 1]. Additionally, we consider only the
sentences which resulted in more than 20 patterns,
in order to have robust statistics across sentences.11

We observe that our proposed method produces
scores that are more spread in the domain.

Additionally, we note that RlogF scored a higher
number of patterns in the higher end of the spec-
trum ([0.8, 1]) than our proposed method. Manu-

10Additionally, RlogF gives a score of 0 for patterns that
did not match at least 2 times any seed relations.

11That includes over 80% of the sentences.
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Figure 4: Histogram of scores for the obtained patterns,
scored with RlogF and PatternRank. For robust statistics, we
consider only sentences which result in more than 20 patterns.
Additionally, we normalize the pattern scores per sentence
to be in [0, 1]. We show the count in log scale for increased
visibility.

ally analyzing such cases, we observe that RlogF
tends to assign a high scores to patterns with low
number of total matches Ni, if its precision Fi is
high. When the good matches are sparse in the
corpora, this can result in rules that matched only a
few times the relations of interest to obtain a high
score, when compared with the other rules.12 This
is in line with our previous observation that RLogF
over-emphasizes precision.

6.2.2 Pattern importance

Following the observation in Section 6.2.1 that
RlogF tends to score more patterns higher than our
proposed method, we investigated the performance
of the system when taking the n highest-scoring
patterns, with both our method and RlogF. We show
the results in Figure 5. We note that our method
outperforms RlogF consistently until the number
of patterns for each sentence gets saturated. We
interpret this as further evidence that RlogF assigns
overly optimistic scores to patterns with high preci-
sion, which can be detrimental when the statistics
are not robust.

6.2.3 Random Jump Probability

Our proposed method makes use of the random
jump probability, which ensures that the resulting
matrix is ergodic. We assess the influence of this
hyper-parameter by analyzing the performance of
the method when varying it. We set the number of
patterns used for each method to 10. As highlighted
in Figure 6, we found our system to be robust to
hyper-parameter changes, outperforming RlogF for

12Changing Fi
Ni

· log2(Fi) to Fi
Ni

· log2(Ni) does not change
the histogram, nor the performance.

Figure 5: Performance of our method compared with RlogF,
varying the number of patterns accepted. We note that our
proposed method consistently outperforms RLogF up until the
number of patterns are saturated.

Figure 6: Performance of our method compared with RlogF,
when varying the random jump probability. We used the
top 10 best patterns according to each method. We average
over all the dev episodes. We note that our proposed method
consistently outperforms RLogF, and that the performance is
robust to changes in the random jump probability.

all the values we tested.13

6.3 Resulting Rules

Quantitatively, our proposed method outperforms
Riloff on the relation classification task regardless
of the number of patterns considered. Qualita-
tively, analyzing the top scored patterns, we ob-
serve that our proposed method tends to prefer
patterns which offer a better balance between pre-
cision and recall due to using the whole topol-
ogy of the pattern/relation graph. We show a
few examples of the top scored patterns with both
methods in Table 2 for two relations from devel-
opment: org:country_of_headquarters
and per:age.

6.4 Limitations

Our proposed method provides some advantages,
such as simplicity and greater interpretability. Nev-
ertheless, it has some limitations. First, our pro-

13A random jump probability of 0 is not possible because
then the graph might not be connected. A random jump prob-
ability of 1 is not useful because it translates to jumping from
node to node, randomly.
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Relations: org:country_of_headquarters
PatternRank (ours):
[ne=ORG]+ [lemma=in] [ne=LOC]+
[ne=ORG]+ [lemma=","] [ne=LOC]+
Riloff:
[ne=ORG]+ <nmod:poss [lemma=campaign]
>nmod_against [ne=LOC]+
[ne=ORG]+ <appos [lemma=institute]
>nmod_in [ne=LOC]+

Relations: per:age
PatternRank (ours):
[ne=PER]+ [lemma=","] [ne=NUMBER]+
[ne=PER]+ [lemma=be] [ne=NUMBER]+
Riloff:
[ne=PER]+ >appos [lemma=kan]
>nummod [ne=NUMBER]+
[ne=PER]+ >appos [lemma=student]
>det:qmod [ne=NUMBER]+

Table 2: Comparison between the top scoring patterns ac-
cording to our method and to RlogF. We observe that our
proposed method tends to score higher patterns that generalize
better, i.e., patterns with fewer lexical or syntactic constraints.

posed method depends on an external explicit cor-
pus. Typical pre-trained LMs compress the under-
lying text used for training in its parameters, while
our proposed method needs the explicit text.

Second, our assumption that the same
relation holds between entities of type
(ENTITY1,ENTITY2) might not always be
true. Nevertheless, this assumption was empir-
ically proven using distant supervision (Mintz
et al., 2009). Our empirical results add evidence
to its efficacy. However, this assumption must
be evaluated before employing this method in
downstream applications.

Third, though rules are generally less prone to
overfitting and offer good out-of-domain general-
ization, they may have limited expressivity when
compared to neural methods. Nevertheless, the ca-
pacity needs of a model should be evaluated on
a per-application basis. For example, (Tang and
Surdeanu, 2023) found that using only rules can
achieve a performance of over 65% F1 on the super-
vised TACRED task. This is comparable to state-of-
the-art neural methods, which by now obtain 70+%
F1,14 suggesting that rule-based methods can be
competitive on information extraction tasks.

14https://paperswithcode.com/sota/
relation-extraction-on-tacred

7 Conclusion

We propose a new pattern acquisition method for
relation extraction, which uses graph-based tech-
niques that operate over the entire topology of the
bipartite graph that contains candidate patterns and
their extracted relations.

We evaluate our proposed approach on the Few-
Shot TACRED task (Sabo et al., 2021), a more
realistic and harder variant of TACRED (Zhang
et al., 2017). Our proposed approach outperforms
or performs comparably with more opaque neural
methods. Further, we empirically show that our
proposed method performs better than the seminal
pattern scoring method proposed in (Riloff, 1996),
RLogF. Lastly, we highlight some of the limitations
of our proposed approach.

All in all, we provide compelling evidence that,
for specific applications, rule-based methods con-
tinue to offer comparable or better performance
than their neural counterparts, and, thus, they
should not be overlooked by current and future
research on information extraction.
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