
Proceedings of the 4th Workshop on NLP for Conversational AI, pages 34 - 46
May 27, 2022 ©2022 Association for Computational Linguistics

D-REX: Dialogue Relation Extraction with Explanations

Alon Albalak1, Varun Embar2, Yi-lin Tuan1, Lise Getoor2, William Yang Wang1

1University of California, Santa Barbara 2University of California, Santa Cruz
{alon_albalak, ytuan}@ucsb.edu

{vembar, getoor}@ucsc.edu
william@cs.ucsb.edu

Abstract

Existing research studies on cross-sentence re-
lation extraction in long-form multi-party con-
versations aim to improve relation extraction
without considering the explainability of such
methods. This work addresses that gap by fo-
cusing on extracting explanations that indicate
that a relation exists while using only partially
labeled explanations. We propose our model-
agnostic framework, D-REX, a policy-guided
semi-supervised algorithm that optimizes for
explanation quality and relation extraction si-
multaneously. We frame relation extraction as a
re-ranking task and include relation- and entity-
specific explanations as an intermediate step
of the inference process. We find that human
annotators are 4.2 times more likely to prefer
D-REX’s explanations over a joint relation ex-
traction and explanation model. Finally, our
evaluations show that D-REX is simple yet ef-
fective and improves relation extraction perfor-
mance of strong baseline models by 1.2-4.7%.1

1 Introduction

Traditional relation extraction (RE) approaches dis-
cover relations that exist between entities within
a single sentence. Recently, several approaches
have been proposed which focus on cross-sentence
RE, the task of extracting relations between enti-
ties that appear in separate sentences (Peng et al.,
2017; Quirk and Poon, 2017; Han and Wang, 2020;
Yao et al., 2019) as well as cross-sentence RE in
dialogues (Yu et al., 2020; Chen et al., 2020; Xue
et al., 2021; Qiu et al., 2021; Lee and Choi, 2021).

A crucial step towards performing cross-
sentence RE in multi-entity and multi-relation di-
alogues is to understand the context surrounding
relations and entities (e.g., who said what, and to
whom). Figure 1 shows an example from the Di-
alogRE dataset where a simple BERT-based model

1Code and data publicly available at https://github.
com/alon-albalak/D-REX

Figure 1: A sample dialogue between 2 speakers with
actual D-REX predictions. The model initially classifies
Speaker 2 and chandler, incorrectly, as girl/boyfriend.
After predicting the explanation "your friend", D-
REX correctly re-ranks the relation as friends.

(Initial Predicted Relation in Figure 1) gets con-
fused by multiple entities and relations existing in
the same dialogue (Yu et al., 2020). The model pre-
dicts the “girl/boyfriend” relation between Speaker
2 and Chandler, however, it is clear from the con-
text that the “girl/boyfriend” relation is referring to
a different pair of entities: Speaker 1 and Chandler.

One approach to encourage a model to learn the
context surrounding a relation is by requiring the
model to generate an explanation along with the
relation (Camburu et al., 2018). In addition to the
DialogRE dataset, Yu et al. (2020) introduces man-
ually annotated trigger words which they show play
a critical role in dialogue-based RE. They define
trigger words as “the smallest span of contiguous
text which clearly indicates the existence of the
given relation”. In the context of RE, these trigger
words can be used as potential explanations.

Our work aims to extract explanations that
clearly indicate a relation while also benefiting an
RE model by providing cross-sentence reasoning.
Our proposed approach, D-REX, makes use of mul-
tiple learning signals to train an explanation extrac-
tion model. First, D-REX utilizes trigger words as
a partial supervision signal. Additionally, we pro-
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pose multiple reward functions used with a policy
gradient, allowing the model to explore the expla-
nation space and find explanations that benefit the
re-ranking model. Including these reward functions
allows D-REX to learn meaningful explanations on
data with less than 40% supervised triggers.

In order to predict relation- and entity-specific
explanations in D-REX, we pose RE as a relation
re-ranking task with explanation extraction as an
intermediate step and show that this is not possible
for a model trained to perform both tasks jointly.

Our contributions are summarized as follows:

• We propose D-REX, Dialogue Relation
Extraction with eXplanations, a novel sys-
tem trained by policy gradient and semi-
supervision.

• We show that D-REX outperforms a strong
baseline in explanation quality, with human
evaluators preferring D-REX explanations
over 90% of the time.

• We demonstrate that by conditioning on D-
REX extracted explanations, relation extrac-
tion models can improve by 1.2-4.7%.

2 Problem Formulation

We follow the problem formulation of Yu et al.:
let d = (s1 : u1, s2 : u2, . . . , sn : un) be a dia-
logue where si and ui denote the speaker ID and
the utterance from the ith turn, respectively. Let
E ,R be the set of all entities in the dialogue and
the set of all possible relations between entities,
respectively. Each dialogue is associated with m
relational triples <s, r, o> where s, o ∈ E are sub-
ject and object entities in the given dialogue and
r ∈ R is a relation held between the s and o. Each
relational triple may or may not be associated with
a trigger t. It is important to note that there is no
restriction on the number of relations held between
an entity pair; however, there is at most one trigger
associated with a relational triple. In this work,
we consider an explanation to be of high quality
if it strongly indicates that a relation holds, and
for this purpose we consider triggers to be short
explanations, though not always optimal in quality.

2.1 Relation Extraction (RE)
Given a dialogue d, subject s, and object o, the
goal of RE is to predict the relation(s) that hold
between s and o. We also consider RE with addi-
tional evidence in the form of a trigger or predicted

explanation. Formally, this is the same as relation
extraction with an additional explanation, ex.

2.2 Explanation Extraction (EE)

We formulate EE as a span prediction problem.
Given a dialogue d consisting of n tokens T1

through Tn, and a relational triple <s, r, o>, the
goal of EE is to predict start and end positions,
i, j in the dialogue, such that the explanation
ex = [Ti, Ti+1, . . . , Tj ] indicates that r holds be-
tween s and o.

3 Baseline Models

We first introduce approaches for RE and EE based
on state-of-the-art language models. We then pro-
pose a multitask approach that performs both tasks
jointly. Our approaches use BERTbase (Devlin et al.,
2019) and RoBERTabase (Liu et al., 2019b) pre-
trained models2, and follow their respective fine-
tuning protocols.

For all models, we maintain a single input for-
mat, which follows from Yu et al.. Formally, for
a dialogue d, subject s, object o, relation r, and
explanation ex, the input sequence to all mod-
els is [CLS]{r/ex[SEP]}s[SEP]o[SEP]d, where
{r/ex[SEP]} denotes that the relation or explana-
tion may be included depending on the task setting.
For RoBERTa models, we use the <s> and </s>
tokens rather than [CLS] and [SEP], respectively.

3.1 Relation Extraction (RE)

We follow the fine-tuning protocols of Devlin et al.
and Liu et al. for BERT and RoBERTa classifi-
cation models by using the output corresponding
to the first token C ∈ RH ([CLS] and <s>, re-
spectively) as a latent representation of the entire
input and train a classification matrix W ∈ RKxH ,
where K is the number of relation types and H is
the dimension of the output representations from
the language model. For each relation ri, the prob-
ability of ri holding between s and o in d is cal-
culated as Pi = sigmoid(CW T

i ). We compute the
standard cross-entropy loss for each relation as

LRE = − 1

K

K∑

i=1

yi · log(Pi)+(1−yi) · log(1−Pi)

(1)
where yi denotes whether relation i holds.

2Pre-trained models obtained from
https://github.com/huggingface/transformers (Wolf et al.,
2020)
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Figure 2: Overview of the D-REX system. The relation Ranking module ranks relations conditioned only on the
subject, object, and the dialogue. The EXplanation policy extracts supporting evidence for the ranked relations by
conditioning on individual relations in addition to the original input. The relation ReRanking module conditions its
rankings on supporting evidence from the explanation policy. In this hypothetical example, we see that relation
3 was originally ranked number 3 but had strong supporting evidence and was re-ranked in the number 1 spot.
Solid lines represent model inputs/outputs, and dotted lines represent learning signals. Reward functions, RRR and
RLOO, are detailed in equations 4 and 5, respectively.

3.2 Explanation Extraction (EE)
For EE, we use the input described above, with a
natural language phrasing of a relation appended
to the beginning of the sequence. For example, if r
is "per:positive_impression", then we concatenate
"person positive impression" to the beginning.

We follow the fine-tuning protocol of Devlin
et al. for span prediction. We introduce start and
end vectors, S,E ∈ RH . If Ti ∈ RH is the final
hidden representation of token i, then we compute
the probability of token i being the start of the
predicted explanation as a dot product with the
start vector, followed by a softmax over all words
in the dialogue:

PS
Ti

=
exp(S · Ti)∑
j exp(S · Tj)

(2)

To predict the end token, we use the same formula
and replace the start vector S with the end vector
E. To compute the loss, we take the mean of the
cross-entropy losses per token for the start and end
vectors. Formally, let |d| be the number of tokens
in dialogue d, then

LEX = − 1

|d|

|d|∑

i(
ySi · log(PS

Ti
) + (1− ySi ) · log(1− PS

Ti
)
)

+
(
yEi · log(PE

Ti
) + (1− yEi ) · log(1− PE

Ti
)
)

(3)

where ySi and yEi are the start and end labels. Be-
cause we want explanations extracted only from the
dialogue, if the start or end token with largest log-
likelihood occurs within the first l tokens, where l
is the length of [CLS]r[SEP]s[SEP]o[SEP], then
we consider there to be no predicted explanation.

3.3 Joint Relation and Explanation Model

The joint RE and EE model uses the standard input
from §3. It utilizes a BERT or RoBERTa backbone,
and has classification and span prediction layers
identical to those in the RE and EE models. Simi-
larly, the loss is computed as the weighted sum of
RE and EE losses:

LJ = αLRE + (1− α)LEX

where α is an adjustable weight. In practice, we
find that α = 0.5 works best.

Flaw of the joint model The disadvantage of the
joint model is this: supposing that an entity pair
has 2 relations, each explanation should be paired
with a single relation. However, by making predic-
tions jointly, there is no guaranteed mapping from
predicted explanations to predicted relations. One
method of solving this issue is to predict relations
and explanations in separate steps. It is possible to
first predict relations and then condition the expla-
nation prediction on each individual relation and
conversely. This idea forms the basis for D-REX.
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4 D-REX

In this section, we introduce the D-REX system. We
begin by introducing the models which make up the
system. Next, we present the training and inference
algorithms. Finally, we discuss the optimization
objectives for each model in the system.

4.1 Models
The D-REX framework requires three components:
an initial relation ranking model, an explanation
model, and a relation re-ranking model, shown in
Figure 2.

Initial Ranking Model (R) In our algorithm and
discussions, we use R to denote the initial ranking
model. There are no restrictions on R, it can be any
algorithm which ranks relations (e.g., deep neural
network, rule-based, etc.) such as (Yu et al., 2020;
Lee and Choi, 2021). However, if R needs to be
trained, it must be done prior to D-REX training;
D-REX will not make any updates to R.

In our evaluations, we use the relation extraction
model described in §3.1. The input to this model is
(s,o,d) and the output is a ranking, R(s, o, d).

Explanation Extraction Model (EX) In our al-
gorithm and discussions, we use EX to denote the
explanation model. In this paper we limit our ex-
periments to extractive explanation methods, as op-
posed to generative explanation methods, however
this is not a limitation of D-REX. The only limita-
tion on the explanation model is that we require it
to produce human-interpretable explanations. Thus,
it is also possible to use generative models such
as GPT-2 (Radford et al., 2019) or graph-based
methods such as (Yu and Ji, 2016; Xue et al., 2021)
with adjustments to the formulation of the reward
functions.

In our evaluations, we use the model as de-
scribed in §3.2. The input to EX is (r,s,o,d) and
the output is an extracted phrase from d, denoted
as EX(r, s, o, d).

Relation Re-Ranking Model (RR) In our algo-
rithm and discussions, we let RR denote the relation
re-ranking model. In the D-REX training algorithm,
RR is updated through gradient-based optimization
methods, and must be able to condition its rank-
ing on explanations produced by EX. In our experi-
ments, we use the same model architecture as R and
include an explanation as additional input to the
model. The input to RR is (ex,s,o,d) and the output
is a relation ranking, denoted as RR(ex, s, o, d).

Algorithm 1: The proposed training algo-
rithm for D-REX

Input :Pre-trained ranking, explanation, and
re-ranking models: R, EX, RR
k: for number of relations to re-rank

Data: Dataset: D
for (s, r, o,t,d) in D do

Compute ranking loss: LR
RE(s, o, d)

rpred ← R(s,o,d)1:k
for i in rpred do

exi ← EX(rpredi , s, o, d)
Compute Re-ranking loss:
LRR

RE(exi, s, o, d) ; // Equation 1
Compute Re-Ranking Reward: RRR ;
// Equation 4

Compute Leave-one-out Reward: RLOO ;
// Equation 5

Compute policy gradient with rewards
RRR, RLOO ; // Equation 6

end
if t not empty then

Compute LEX ; // Equation 3
end
Update EX,RRparameters with calculated losses

end

4.2 D-REX Algorithm
The outline of this algorithm is shown in pseu-
docode in Algorithm 1.

Assuming that we have ranking, explanation,
and re-ranking models R, EX, RR, then given a sin-
gle datum (s, r, o, t, d), comprised of a subject, re-
lation, object, trigger(may be empty), and dialogue,
the D-REX algorithm operates as follows: The rank-
ing model takes as input (s, o, d) and computes the
probability of each relation from the predefined
relation types. Next, we take the top-k ranked
relations, rpred = R(s, o, d)1:k, and compute ex-
planations. For i = 1, ..., k, explanations are com-
puted as exi = EX(rpredi , s, o, d). Finally, for each
predicted explanation, the re-ranking model com-
putes k probabilities for each relation type, using
(exi, s, o, d) as the input to RR. The final proba-
bilities for each relation type are computed as the
mean across all k+1 predictions from R and RR.

4.3 Model optimization
We propose multiple optimization objectives to
train an EX model that extracts explanations mean-
ingful to humans and beneficial to the rela-
tion extraction performance while ensuring that
RR maintains high-quality predictions.

Explanation Model Optimization We train
EX with supervision on labeled samples, and a pol-
icy gradient for both labeled and unlabeled samples,
allowing for semi-supervision. For the policy gradi-
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ent, we introduce two reward functions: a relation
re-ranking reward and a leave-one-out reward.

Re-ranking Reward The purpose of the re-
ranking reward is to ensure that EX predicts
explanations which benefit RR. Formally, let
LR
RE(s, o, d) be the loss for R, given the subject, ob-

ject, and dialogue: s, o, d. And let LRR
RE(ex, s, o, d)

be the loss of RR, given the explanation, subject,
object, and dialogue: ex, s, o, d. Then we define
the relation re-ranking reward as:

RRR = LR
RE(s, o, d)− LRR

RE(ex, s, o, d) (4)

Because R is stationary, EX maximizes this func-
tion by minimizing LRR

RE . Of course, EX can only
minimize LRR

RE through its predicted explanations.
Leave-one-out Reward The purpose of the

leave-one-out reward is to direct EX in finding
phrases which are essential to correctly classify-
ing the relation between an entity-pair. This reward
function is inspired by previous works which make
use of the leave-one-out idea for various explana-
tion purposes (Shahbazi et al., 2020; Li et al., 2016).
We can calculate the leave-one-out reward using
either R or RR, and it is calculated by finding the
difference between the standard relation extraction
loss and the loss when an explanation has been
masked. Formally, if d is the original dialogue and
ex is the given explanation, let dmask(ex) be the
dialogue with ex replaced by mask tokens. Then,
the leave-one-out reward is defined as:

RLOO = LRE(s, o, dmask(ex))− LRE(s, o, d)
(5)

Because LRE is calculated using the same
model for both the masked and unmasked loss,
EX maximizes this reward function by maximizing
the masked loss. Of course, the only interaction
that EX has with the masked loss is through the
explanation it predicts.

Policy Gradient We view EX as an agent whose
action space is the set of all continuous spans from
the dialogue. In this view, the agent interacts with
the environment by selecting two tokens, a start
and end token and receives feedback in the form
of the previously discussed reward functions. Let
i, j be the start and end indices that the explanation
model selects and Ti be the ith token, then ex =
d[i : j] = [Ti, Ti+1, . . . , Tj ] and the probabilities
of i, j being predicted are calculated as PS

Ti
and

PE
Tj

according to equation 2.
For both reward functions, we use a policy gradi-

ent (Sutton and Barto, 2018) to update the weights

of the explanation model and calculate the loss as

LEXPG
= −(log(PS

Ti
)+log(PE

Tj
))∗(RRR+RLOO)

(6)
Additionally, while training EX in the D-

REX algorithm, we make use of supervision when
available. In the case where supervision exists, we
calculate an additional loss, LEX , as defined in
equation 3.

Relation Extraction Re-ranking Model Op-
timization While training D-REX we train
RR with labeled relations as supervision and use
a cross-entropy loss, LRR

RE , calculated in the same
way as R in Equation 1.

5 Experimental Evaluation

In this section, we present an evaluation of D-
REX in comparison with baselines methods on the
relation extraction and explanation extraction tasks.

5.1 Experimental settings
For our experiments, we re-implement the BERTS
model from (Yu et al., 2020) as well as a new
version which replaces BERT with RoBERTa. In
our paper, we refer to these models as RBERT and
RRoBERTa. All models are implemented in PyTorch3

and Transformers(Wolf et al., 2020), trained us-
ing the AdamW optimizer (Loshchilov and Hutter,
2018). All experiments were repeated five times
and we report mean scores along with standard de-
viations. D-REX models use a top-k of five and are
initialized from the best performing models with
the same backbone. For example, D-REXBERT uses
two copies of RBERT (Yu et al., 2020) to initial-
ize the ranking and re-ranking models and EXBERT
to initialize the explanation model. When training
Joint, we do not calculate LEX for relational triples
without a labeled trigger. The full details of our
training settings are provided in Appendix B.

DialogRE Dataset We evaluate our models on
the DialogRE English V2 dataset4 which con-
tains dialogues from the Friends TV show (Yu
et al., 2020), details of which are in Table 1. D-
REX models are trained with trigger supervision on
less than 40% of the training data, and make no
use of dev or test set triggers. The learning signal
for the remaining triples comes entirely from our
rewards through a policy gradient.

3https://pytorch.org/
4Dataset collected from https://dataset.org/dialogre/ for

research purposes only
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DialogRE V2

Dial-
ogues

Rela-
tions

Relational
Triples

(train/dev/
test)

Triggers
(train/dev/

test)

1788 36 6290/1992/1921 2446/830/780

Table 1: Dataset details for DialogRE. With only 2446
labeled triggers in the training set, D-REX models learn
using only a policy gradient and no direct supervision
on the remaining 3844 triples.

Evaluation Metrics We adopt separate evalua-
tions for relation and explanation extraction.

First, for relation extraction, we evaluate our
models using F1 score, following Yu et al. (2020),
and additionally calculate the mean reciprocal
rank (MRR), which provides further insight into a
model’s performance. For example, MRR is able to
differentiate between a ground truth relation ranked
2nd or 10th, while the F1 score does not. In the
dialogRE dataset, multiple relations may hold be-
tween a single pair of entities, so we use a variation
of MRR which considers all ground truth relations,
rather than just the highest-ranked ground truth
relation.

For explanation extraction, we focus mainly on
manual evaluations, but also propose the Leave-
One-Out metric, introduced in section 5.4 for an
ablation study.

5.2 Relation Extraction (RE) Evaluation

In Table 2, we compare the baseline RE model
RBERT with the methods presented in this paper.
We also compare with three other methods which
use similarly sized language models, but addition-
ally utilize graph neural networks (GNN): GDP-
Net(Xue et al., 2021), TUCORE-GCNBERT(Lee
and Choi, 2021), and SocAoG(Qiu et al., 2021).

First, we see that even though D-REX is de-
signed to introduce human-understandable explana-
tions, it still has modest improvements over RBERT,
which focuses on RE, while Joint has no signifi-
cant improvement. Next, we see a five point abso-
lute improvement in F1 from the baseline model
when using RoBERTa. The trend from BERT to
RoBERTa is similar to results found by Lee and
Choi (2021), where changing from a BERTbase
model to RoBERTaLarge(not shown here) improved
their model performance significantly. Addition-
ally, we see a 3 point improvement from R to D-
REX when using RoBERTa (compared to 0.7 for
BERT), which we believe is due to the better per-

Model F1(σ) MRR(σ)
RBERT 59.2(1.9) 74.8(1.3)
JointBERT 59.4(1.7) 74.0(0.9)
D-REXBERT 59.9(0.5) 75.4(0.1)
RRoBERTa 64.2(1.6) 77.9(1.0)
JointRoBERta 65.2(0.3) 78.3(0.3)
D-REXRoBERTa 67.2(0.3) 79.4(0.3)
*GDPNet 60.2(1.0) -
*TUCORE-GCNBERT 65.5(0.4) -
†SocAoG 69.1(0.5) -

Table 2: Relation extraction results on DialogRE V2.
R models are described in Section 3.1, Joint models in
3.3, and D-REX models in 4. RBERT is a replication of
BERTS from Yu et al. (2020). "*" denotes results taken
from Lee and Choi (2021) and "†" from Qiu et al. (2021)

forming ranking model, which allows for D-REX to
rely more on the input explanations. Finally, we
see that by using GNNs, and task-specific dialogue
representations, all three GNN-based methods can
improve over the general BERT-based methods.

5.3 Explanation Extraction (EE) Evaluation

Automatic Evaluation Although the aim of this
paper is not trigger prediction, for completeness
and reproducibility, we include results on the test
set of triggers in Appendix A.

Human Evaluation To better understand how
our model performs in extracting explanations and
what challenges still exist, we perform two analy-
ses; a comparative and an absolute analysis. We
consider two sets of data for evaluation: samples
for the DialogRE test set where No Labeled trig-
ger exists (NL) and samples where the predicted
explanation Differs from the Labeled trigger (DL).

5.3.1 Comparative Analysis
In Table 3, we show the results for pairwise
comparisons of explanations predicted by D-
REXRoBERTa against 3 baselines: random strings of
1-4 words, predictions from JointRoBERTa, and la-
beled triggers. For each comparison, we employ 3
crowd-workers5, who were given the full dialogue,
a natural language statement corresponding to a
relational triple, and the two proposed explanations
highlighted in the dialogue6. The crowd-workers
were asked to specify which of the highlighted ex-
planations was most indicative of the relation, or

5Amazon Mechanical Turk workers were paid $0.35 per
HIT, where a HIT includes 3 comparisons. We estimate an
average HIT completion time of ~1.5 minutes, averaging ~$14
per hour. We only accept workers from AUS, CA, and USA.

6Example HIT included in Appendix 4

39



D-REXRoBERTa vs. Win(%) Tie(%) Lose(%)
Random (NL) 79.9 10.4 9.8

JointRoBERTa (NL) 38.5 52.3 9.2
Ground truth (DL) 12.1 44.3 43.7

Table 3: Human evaluator preferences on explana-
tion extraction methods. NL and DL are samples where
No Labeled trigger exists, and where the predicted ex-
planation Differs from the Label, respectively. Results
presented are percentages of preference.

Not
Indic-
ative

Incorrect
Entity
Pair

Incorrect
Relation

Indic-
ative

NL 29 19 18 34
DL 19 13 7 61

Table 4: Explanation error analysis on 100 samples
where No Labeled trigger exists (NL) and 100 where
the predicted explanation Differs from the Label (DL).

they could be equal. For each comparison we use a
majority vote, and if there was a three-way tie we
consider the explanations to be equal. We compare
D-REX with random strings and the joint model on
174 samples from NL, as well as 174 samples from
DL.

In Table 3 we see that for NL, D-REX produces
explanations which were 4.2 times more likely to
be outright preferred by crowd-workers than the
joint model, suggesting that our reward functions
properly guided the explanation policy to learn
meaningful explanations on unlabeled data. Sur-
prisingly, we found that on over 12% of samples
with labeled triggers, evaluators outright preferred
D-REX explanations over the ground truth trigger,
suggesting that D-REX indeed finds some explana-
tions which are better than the ground truth trigger.

In Appendix 5.5, we include 2 examples com-
paring explanations from D-REX and Joint.

5.3.2 Absolute Analysis
To better understand the quality of D-REX’s expla-
nations, we randomly sample 100 from both NL
and DL for a fine-grained analysis. We classify the
explanations into 4 categories: not indicative, incor-
rect entity-pair, incorrect relation, and indicative.
"Indicative" and "Not indicative" have the obvious
meanings, "Incorrect entity-pair" means that an ex-
planation actually explains the correct relation, but
between the incorrect entity-pair, and "Incorrect
relation" means that the explanation indicates a
relation different from the desired relation.

Table 4 shows the results. Interestingly, we see in
the NL set, that errors were equally likely to come

Model F1 Leave-one-out(↓)
D-REXRoBERTa (Full) 67.2 83.9

- reranking reward 66.0 84.9
- LOO reward 67.1 85.4

Table 5: Ablation study on reward functions. Leave-
One-Out metric (LOO) measures how salient a predicted
explanation is in determining a relation and is further
defined and motivated in §5.4. Smaller LOO is better.

from either an explanation indicating the relation
for an incorrect entity-pair as for the incorrect re-
lation altogether. This is in contrast to the DL set,
where D-REX was nearly half as likely to predict
an explanation for an incorrect relation as it was
for an incorrect entity-pair.

Additionally, in our fine-grained analysis, we
also considered whether a relational triple was
identifiable from the context alone and found that
nearly 20% of the 200 samples had ambiguities
which could not be resolved without outside knowl-
edge. This suggests that there is likely a maximum
achievable relation extraction score on the Dialo-
gRE dataset under the current setting.

5.4 Ablation Study
To assess the benefit of each proposed reward in-
dividually, we perform an ablation study on the
reward functions. In order to study explanation
quality automatically, we introduce a new metric
for explanation quality; the Leave-One-Out metric.

The Leave-One-Out (LOO) metric has a theoreti-
cal basis in the works of Li et al. (2016) and Ribeiro
et al. (2016), where Li et al. (2016) use word era-
sure to determine a "word importance score". Here
we define LOO formally. For a relation extraction
model R, an explanation extraction model EX, and
a dataset D, LOO is calculated as

LOO(R,EX,D) =
F1R(DMASK(EX))

F1R(D)

where F1R(D) is the F1 score of R on D and
DMASK(EX) is the dataset where explanations pre-
dicted by EX are replaced by mask tokens. The
LOO metric calculates how essential the predicted
explanations are to the ability of the relation extrac-
tion model.

To show that LOO is an appropriate measure
of explanation quality, we compute the Pearson
correlation coefficient between token F1 score and
LOO scores for models on labeled triggers, found
in Table 6. With 6 models trained on 5 random
seeds each, we have 30 data points and a correlation
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Figure 3: Two examples comparing predicted explanations from D-REX (underlined) and Joint (bold).

coefficient of −87.4 with p = 2.4 ∗ 10−8. Because
we calculate the coefficient with respect to human-
annotated triggers, this suggests that a low LOO
correlates with explanations that humans would
determine as indicative of the given relation.

For our experiments, we always calculate LOO
using the baseline model, RBERT. From the re-
sults in Table 5, we see that both reward functions
benefit the final results. Compared with RRoBERTa,
D-REXRoBERTa gains 3 F1 points, but without the
reranking reward, the model only gains 1.8 F1 score
or 60% of the total possible improvement. This per-
formance loss demonstrates that the reranking re-
ward is critical to attaining the best score in relation
extraction. Similarly, without the leave-one-out re-
ward, the model’s explanation quality, measured in
LOO, is 1.5 points, or nearly 10% worse, demon-
strating that the leave-one-out reward is beneficial
in guiding the model to salient explanations.

5.5 Explanation Samples

Figure 3 shows two samples comparing explana-
tions from D-REX and Joint. In both examples,
even though there was no labelled trigger, each
model was able to predict an explanation which
correlates with the relation. Specifically, "engage-
ment ring" and "got married" are related to the
girl/boyfriend relation, and "in" and "mean in" can
be associated with the visited_by relation. How-
ever, the bottom example shows that Joint did
not consider the context surrounding it’s expla-
nation. The conversation is about food, and the
visited_by relation is not relevant. On the other
hand, D-REX finds the phrase "you’re mean in",
where "you’re" refers to speaker3, and "in" refers

to "England". This is clearly an explanation which
indicates the correct relation between the correct
entities.

5.6 Reduced Labels
All previous results use 100% of labeled triggers
in the DialogRE dataset, which covers 40% of all
relational triples. To test how few labeled triggers
EX requires in order to learn meaningful explana-
tions we ran a small scale experiment (1 random
seed) using labeled triggers from only 5, 10, and
20% of relational triples. However, in the small
tests we ran, we found that at 20% labeled trig-
gers the EX model mostly predicts no explanations.
Furthermore, at 10% and fewer labeled triggers,
the model converges to the trivial solution in the
explanation space which is to never predict any
tokens.

We believe that this issue is due, in part, to
two challenges: the search space over all possible
start/end tokens is too large, and the policy gra-
dient has a high variance. Although these results
may seem discouraging, we believe this challenge
can be overcome in the future by using algorithms
which reduce variance in the policy gradient and
by initializing EX with a model pre-trained in span
extraction.

6 Limitations and Future Work

Firstly, this study focuses on learning explanations
as well as relations in dialogue and DialogRE is the
only currently available dataset with annotations
for both tasks. A limitation of this study is the small
scale at which we were able to test the methods. A
future direction would be to learn explanations on a
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different RE dataset and use the pre-trained model
in D-REX, however it would be non-trivial for a
model to transfer explanations learned on a wildly
different domain. Additionally, it is theoretically
possible to train D-REX with no labeled triggers at
all, however, we were unsuccessful and in Section
5.6 we discuss these and additional negative results.

This study focuses on relations and entities
found in multi-party conversations, and while there
are similarities between the dialogue domain, med-
ical literature, and wikipedia (e.g., multi-entity,
multi-relation), it is not clear whether the methods
from this paper can transfer to other such domains.
We plan to investigate how well the proposed meth-
ods transfer to relations and entities in other do-
mains such as news and web text (Zhang et al.,
2017) and for other types of semantic relations as
in Hendrickx et al. (2010) or Yao et al. (2019).

We acknowledge that this study is English-
focused, and it is not clear that these methods can
transfer to languages in other families such as afro-
asiatic or sino-tibetan. Additionally, we think that it
would be very interesting to see how these methods
perform on languages with very different linguistic
features; for example, languages with inflection
such as Finnish. We leave non-English and multi-
lingual variations of these methods to future work.

In this work, we do not focus on improving state-
of-the-art trigger prediction. However, we recog-
nize that trigger annotation is labor-intensive, and
a possible use of D-REX would be to use predicted
labels as a form of weak supervision for a system
whose goal is to improve on trigger prediction.

7 Related Work

Recently, there have been numerous information
extraction tasks proposed which involve dialogues,
including character identification (Zhou and Choi,
2018), visual coreference resolution (Yu et al.,
2019), emotion detection (Zahiri and Choi, 2018).

New settings for relation extraction have also
been proposed, such as web text (Ormándi et al.,
2021) and, in many ways similar to dialogue, doc-
ument text (Yao et al., 2019). There have also
been methods developed to include explanations in
similar natural language understanding tasks (Cam-
buru et al., 2018; Kumar and Talukdar, 2020; Liu
et al., 2019a; Lei et al., 2016). There have even
been methods developed which, similarly to our re-
ranking, make use of an explanation as additional
information (Hancock et al., 2018).

The work by Shahbazi et al. is aligned with our
study. They also focus on relation extraction with
explanations; however, their method is based on
distant supervision from bags of sentences contain-
ing an entity-pair. Due to the cross-sentence nature
of relations in dialogue, their method is not appli-
cable here, although we draw inspiration from their
work. They explain their model by considering the
salience of a sentence to their model’s prediction,
similarly to our leave-one-out reward.

Also relevant to our work is that by Bronstein
et al.. Their work focuses on the task of semi-
supervised event trigger labeling, which is very
similar to our semi-supervised prediction of rela-
tion explanations. In their work, they use only a
small seed set of triggers and use a similarity-based
classifier to label triggers for unseen event types.

Finally, there have been multiple recent works
in dialogue RE which perform quite well by using
graph neural networks (Xue et al., 2021; Qiu et al.,
2021; Lee and Choi, 2021). However, they focus
only on RE and not on explaining the relations.

8 Conclusion

In this work, we demonstrated that not only is it
possible to extract relation explanations from multi-
party dialogues, but these explanations can in turn
be used to improve a relation extraction model.
We formulated purpose-driven reward functions for
training the explanation model and demonstrated
their importance in learning high quality explana-
tions. Our proposed approach, D-REX, is powered
by a very simple reformulation of the traditional
relation extraction task into a re-ranking task.

9 Ethical and Social Considerations

The methods proposed in this work on their own
are not nefarious, however, proposed explanations
should not be blindly accepted as fact. For the same
reasons that language models may have ethical and
social risks, so may our algorithm which is built on
top of such language models. While we test only
on TV show dialogues, were this technology to be
put to use in non-scripted, real life conversations,
there would need to be very thorough analysis of
any ethical risks that the proposed explanations
may have.
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model token F1(σ) EM(σ) LOO(σ)
EXBERT 62.1(3.1) 54.1(1.9) 82.2(0.4)
JointBERT 43(1.3) 38.6(1.4) 89.0(1.0)
D-REXBERT 50.5(1.1) 45.7(1.7) 84.4(1.6)
EXRoBERTa 66.5(2.2) 58.4(2.0) 82.2(0.4)
JointRoBERTa 49(0.7) 47(0.7) 86.2(0.8)
D-REXRoBERTa 57.2(2.1) 51.6(1.6) 83.9(0.4))

Table 6: Trigger prediction results. Leave-One-Out
metric (LOO) measures how salient a predicted expla-
nation is in determining a relation and is further defined
in §5.4. Smaller LOO is better.

A Trigger prediction

In Table 6, we compare our methods for supervised
explanation extraction with D-REX. Interestingly,
we find that the joint model achieves the lowest
F1 score for both the BERT and RoBERTa mod-
els. JointBERT scores nearly 20 points below its
counterpart BERT model, while the JointRoBERTa
model cuts that difference to just over 15 points
below its RoBERTa counterpart. On the other hand,
D-REX maintains a token F1 score within 10 points
of its counterpart even though it has been trained
to generalize beyond the labeled triggers.

B Hyperparameters

All models are trained using the AdamW optimizer
(Loshchilov and Hutter, 2017) with a learning rate
of 3e-5 and batch sizes of 30. To determine the best
learning rate, R and EX models were trained using
learning rates in {3e-6, 1e-5, 3e-5, 1e-4}. The best
learning rate, 3e-5, was determined by performance
on a held out validation dataset. Baseline models
(R, EX, and Joint) are trained for at most 30 epochs
and we use validation-based early stopping to de-
termine which model to test. D-REX models are
trained for at most 30 additional epochs with the
best model determined based on relation extraction
F1 scores computed on validation data. We found
the best validation result to always occur within
the first 30 epochs. All experiments were repeated
five times and we report the mean score along with
standard deviation. To train the joint model, we
do not calculate LEX for relational triples which
do not have a labeled trigger and we select α from
{0.25,0.5,0.75} and set α to 0.5 based on validation
performance.

C Crowd-Worker Sample

In Figure 4, we show a sample HIT that was pro-
vided to crowd-workers. Each crowd-worker was
shown three examples. The layour is as follows:

the top always asks the worker to decide which of
the highlighted texts is a better indication of the
relation. Next, a natural language interpretation of
the relational triple is given, in this case, "Speaker 2
and Speaker 1 are (or were) lovers". Then, we show
the entire dialogue along with highlighted spans of
text for each explanation. Finally, at the bottom, we
always provide the user with three choices: yellow
is better, equal, or orange is better, where the user
is only allowed to select one option.
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Figure 4: A sample HIT that was presented to crowd-workers for the comparative study of explanations.
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