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Abstract

Transformer-based pre-trained language mod-
els (PLMs) currently dominate the field of Nat-
ural Language Inference (NLI). It is also be-
coming increasingly clear that these models
might not be learning the actual underlying task,
namely NLI, during training. Rather, they learn
what is often called bias, or shallow heuristics,
leading to the problem of generalization. In
this article, building on the philosophy of log-
ics, we discuss the central concepts in which
this problem is couched, we survey the pro-
posed solutions, including those based on natu-
ral logic, and we propose or own dataset based
on syllogisms to contribute to addressing the
problem.

1 Introduction

Current natural language inference (NLI) is typi-
cally conceived as a three-way classification prob-
lem. With samples such as (1), consisting of a
premise (P) and a hypothesis (H), the PLMs are
tasked to categorize their relationship as either one
of contradiction (P and H cannot both be true), of
entailment (If P is true, then H must be true as
well), or as being neutral (neither of the two).

(1) (P) The streets are wet. (H) It has rained.

As we will show below (see section 2), transformer-
based pre-trained language models (PLMs) are cur-
rently the standard to approach this task of NLI.
What is emerging as neural NLI’s most pressing
problem is the fact that these neural PLMs might
almost outperform the crowdworker-based human
baseline for the dataset on which they were fine-
tuned, but perform worse than random at out-of-
dataset-samples. We call this, following standard
usage, the problem of generalization.

In this article, we focus on this problem of gen-
eralization, contributing a perspective that is in-

formed by the philosophy of logic. More specifi-
cally, our article makes three contributions. First,
after developing a conceptual background from the
philosophy of logic, we give a comprehensive and
systematic view on the extent of the problem of
generalization in NLI, and we survey the different
extant proposals to address this problem. Second,
we propose and make publicly available a new fine-
tune and challenge dataset that is based on syllo-
gistic. Third, we evaluate the performance of both
neural NLI models (including models fine-tuned
on our syllogistic dataset) and a symbolic approach
on this dataset. In the remainder of this section, we
introduce the philosophical concept of inference.

The first and central distinction to be drawn re-
garding the concept of valid inference is the one be-
tween deductively valid inferences and defeasibly
valid inferences (see Koons 2021 for an introduc-
tion to the distinction and to the concept of defeasi-
ble reasoning).1 An inference is deductively valid
if it is not possible that the premises are true while
the conclusion is false (for the concept of necessity
involved here, see Plantinga 1974, 1ff.). With de-
feasible inference, this condition does not hold: for
such inferences, it is possible that the premises are
true, while the conclusion is wrong. Example (1)
is a case of defeasible inference: the streets could
be wet, but this could have other causes than rain.

Within the domain of deductively valid infer-
ences, it is common to distinguish inferences that
are deductively valid due to the form of the propo-
sitions that constitute the inference, and others that
are valid due to the content of these propositions
(see Quine 1980 [1951] for a critical discussion of
the distinction). Example (2) is a case of a formally
deductively valid inference: It does not matter what

1For an early discussion of the distinction between deduc-
tively valid inferences, especially as opposed to conventional
and conversational implicatures, see Zaenen et al. (2005).



you plug in for “Germans”, “childcare workers”,
and “fingerprint collectors”, you will always get
a deductively valid inference (note that the truth
of either premise or hypothesis is not required for
an inference to be deductively valid. The concept
of validity applies only to the truth-functional rela-
tionship between premise and hypothesis. A deduc-
tively valid inference with true premises is called a
sound inference).

(2) (P) All Germans are childcare workers and
all childcare workers are fingerprint collec-
tors. (H) All Germans are fingerprint col-
lectors.

In contrast, example (3) is deductively valid be-
cause of the content, the meaning of “bachelor”
and “unmarried”: replacing these concepts with
others will likely result in an invalid inference.

(3) (P) Peter’s marital status is that of a bache-
lor. (H) Peter is unmarried.

Formally valid inferences can further be classified
according to the formal logical apparatus that is
needed to prove its validity: propositional calculi,
propositional calculi of different orders, and modal
calculi are the most common options (see Smullyan
1968 for introductions to propositional and first-
order logic, Garson 2006 for modal logic). Briefly,
natural logic can be understood as the program to
successively cover all of these areas without having
to resort to translation into a formal language (for
details, see section 2.2 and appendix, section C).

There are different proposals to systematize the
domain of defeasible inferences. Currently, a
prominent one is that defeasible inferences are in-
ferences to the best explanation, that is, abductive
inferences (for an excellent introduction to the con-
cept, see Lipton 2004). Example (1) evinces the
plausibility of this perspective: It is reasonable to
conceive the hypothesis there as an explanation for
the premise. The inference is defeasible because
there could emerge a better explanation for the
premise (in example (1), this could be the informa-
tion that a street cleaning crew just passed through
the street). An alternative conception is that such
inferences are inductive in nature, that is, based
on a number of previous observations of similar
situations. Ever since Hume, it has been painfully
clear that, without further metaphysical argument,
such inductive inferences are not deductively valid.
Figure 1 gives an overview on these kinds of valid

Valid Inference

deductively valid

... due to its form ... due to its content

defeasibly valid
(conceived as abductions, inductions, etc.)

Figure 1: Kinds of valid inferences.

inference.
We will see that current practice oscillates be-

tween deductively and defeasibly valid inferences.
Our own dataset focuses on the area of formal de-
ductive validity.

To conclude our terminological survey, we men-
tion that we will propose to distinguish between
bias and shallow heuristics in a way suggested by
Blodgett et al. (2020): We use bias as preconcep-
tions that are potentially harmful, intrinsically nor-
mative, and always couched in a wider worldview.
In contrast, a shallow heuristic is a local tactic to
succeed at a given task without any understanding
or mastery of the actual task that is explicitly not
part of an intrinsically normative worldview.

2 State of the Art in Neural NLI

2.1 Neural NLI: Models & Datasets

In this section, we introduce the state of the art
in neural NLI. As the focus of critical attention
increasingly shifts to the datasets, we consider them
in detail as well.

The Models Transformer-Based pre-trained lan-
guage models (PLMs) have become the de facto
standard in a variety of natural language process-
ing tasks, including NLI. Based on the encoding
part of the transformer (Vaswani et al., 2017), re-
searchers have proposed a number of highly suc-
cessful NLU architectures, starting with BERT (De-
vlin et al., 2019), quickly followed by others, in-
cluding RoBERTa (Liu et al., 2019), XLNet (Yang
et al., 2019), DeBERTa (He et al., 2020), and
smaller versions such as DistilBERT (Sanh et al.,
2019) and Albert (Lan et al., 2019). Additionally, a
number of sequence-to-sequence architectures have
been proposed that are more similar to the original
transformer than to BERT in that they directly try
to transform one sequence to another, much like the
basic set-up of neural machine translation. These
include T5 (Raffel et al., 2019) and BART (Lewis
et al., 2020).

These PLMs are then fine-tuned on specific



datasets, such as MNLI, which means that, while
predicting labels on the dataset in question, a part
of their parameters is being optimized. Fine-tuning
usually takes several thousand times less computa-
tions than pre-training.

Such transformer-based PLMs fine-tuned to spe-
cific datasets perform impressively at standard nat-
ural language understanding (NLU) benchmarks,
which include natural language inference (NLI)
tasks. The MNLI Leaderboard, for instance,
shows that the top ten PLMs are without exception
transformer-based. Notably, in contrast to GLUE
as a whole, the PLMs did not yet manage to outper-
form the human baseline at MNLI (as of June 15,
2022).

The Datasets Given the importance of fine-
tuning for the entire method as it is currently prac-
ticed, it is clear that this method is squarely based
on the availability – and quality – of large NLI
datasets. Table 1 gives an overview on the cur-
rently most widely used datasets.2

Name of Dataset Total
Size

Genre

RTE (Wang et al.,
2018)

6k News,
Wikipedia

QNLI (Wang et al.,
2018)

116k Wikipedia

WNLI (Wang et al.,
2018)

852 hand-written

SICK (Marelli et al.,
2014a)

9.8k video & image
captions

SNLI (Bowman
et al., 2015)

570k image captions

MNLI (Williams
et al., 2018)

433k 10 genres, writ-
ten & spoken

Table 1: Overview on Datasets used. Under “size”, we
report the total number of samples in train, test, and
validation splits.

Thanks to their sheer size, SNLI and MNLI have
come to dominate the field, as their size is suitable
for fine-tuning large PLMs for NLI. As a conse-
quence, as we shall see in the following section
2.2, most of the research on generalization issues
focuses on these datasets.

There is a number of studies that critically as-
sess the SNLI and MNLI datasets for their bias and

2Note that the RTE (“Recognizing textual entailment”)
dataset has been compiled from RTE1 (Dagan et al., 2005),
RTE2 (Bar Haim et al., 2006), RTE3 (Giampiccolo et al.,
2007), and RTE5 (Bentivogli et al., 2009). The QNLI
(“Question-answering Natural Language Inference”) dataset
was created based on Rajpurkar et al. (2016). The WNLI
(“Winograd Natural Language Inference”) dataset was created
based on Rahman and Ng (2012).

thereby provides the groundwork for proposals fol-
lowing option 1 below (section 2.3). Williams et al.
(2018) themselves note that their dataset contains a
negation bias: if the hypothesis contains a negation,
then it is more likely to be part of a contradic-
tion pair (most likely, because simply negating the
premise provides an efficient way for annotators to
create contradiction pairs). Poliak et al. (2018) sys-
tematically investigate the prospects of hypothesis-
only approaches (methods that only consider the
hypothesis for predicting the label) to NLI in dif-
ferent datasets, finding better-than-random perfor-
mance at most of them, which suggests the broad
presence of statistical irregularities. Gururangan
et al. (2018) show that SNLI and, to a lesser extent,
MNLI, contain clues that make hypothesis-only ap-
proaches quite successful. Chien and Kalita (2020)
focus on syntactic bias for PLMs fine-tuned on
SNLI and MNLI, also finding that these bias are
strong. Bernardy and Chatzikyriakidis (2019) ar-
gue that both SNLI and MNLI only cover a part of
the entire range of human reasoning. In particular,
they suggest that they do not cover quantifiers, nor
strict logical inference.

The dataset that we will present in this study is
intended to remedy both the lack of quantifiers and
the lack of strict logical inference, given its focus
on formally valid inferences.

Furthermore, we emphasize that, thanks to their
near-ubiquitous use for fine-tuning, SNLI and to a
greater extent MNLI determine the precise shape of
the concept of inference that state-of-the-art mod-
els employ. On the one hand, the instructions given
to crowdworkers are such that it seems reason-
able to conclude that MNLI is about deductively
valid inference: given a premise, crowdworkers
are asked to “[w]rite a sentence that is definitely
correct about the situation or event in the line [con-
taining the premise]” (for the full instructions, see
the appendix, section A). Requiring that the hypoth-
esis be definitely correct given the correctness of
the premise seems to require that it is not possible
that the hypothesis could be false, given that the
premise is true.

This reading, however, is contradicted by the
fact that the creators of MNLI deliberately selected
bits of text at random, not filtering for grammati-
cality, etc. These bits then served as prompts for
the crowdworkers: they were tasked to write other
bits of text for each prompt that either contracts,
is entailed by, or is neutral vis-à-vis this prompt.

https://paperswithcode.com/sota/natural-language-inference-on-multinli


A consequence of the diversity of genres and this
near-absence of preprocessing in MNLI is that the
corpus contains premises such as (4).

(4) iuh-huh how about any matching programs

It is incoherent to say that questions entail any other
statements: to entail something, a statement has to
have determinate truth conditions; questions are
textbook cases of sentences that have no determi-
nate truth conditions. So, it is simply not possible
for (4) to be part of any valid inference, let alone
a deductively valid one. This issue stems from the
very idea of MNLI, which is to represent the full
variety of American English, using only minimal
pre-processing.

Furthermore, crowdworkers are incentivized to
produce large number of samples, which makes it
rational to assume that a number of samples they
produce are like example (5). Intended as a case
of contradiction, it is clear that the premise does
not contradict the conclusion in any logical sense:
The speaker could simply have been lying, and
no contradiction between premise and hypothesis
would exist.

(5) (P) Oh, my friend, have I not said to you all
along that I have no proofs. (H) I’ve always
had the proof that he did it.

In sum, from a philosophical perspective, a quali-
tative inspection of the MNLI dataset shows that
there might be some deeper problems in the set-up
of the dataset. Furthermore, despite appearances
to the contrary as per crowdworker-instructions,
MNLI itself focuses on defeasible reasoning, that
is, samples where the premise gives grounds to
believe the hypothesis but does not entail it.

2.2 The Generalization Problem of Neural
NLI

The basic problem that begins to emerge with this
currently dominant approach to NLI is the prob-
lem of generalization. By this, we understand the
inability of the PLMs to transfer the impressive
performance on datasets on which they have been
fine-tuned to out-of-dataset samples. Of course, a
drop in performance is natural (even for humans)
if the PLM is asked to perform the same task on
substantially different data. If, however, the perfor-
mance of a PLM simply collapses entirely when
applied to out-of-dataset-samples, then it is concep-
tually wrong to say that the PLM has learned the

task, namely correctly predicting logical relation-
ships between statements, in the first place during
fine-tuning: The task itself remains stable regard-
less of whether the samples are in or out of dataset.
Together with the PLM’s performance’s lack of
stability, this implies that it has learned something
other than the task itself.

The problem of generalization in NLI is broadly
acknowledged in the literature, see Zhou and
Bansal (2020), Bras et al. (2020), Utama et al.
(2020), Asael et al. (2021), He et al. (2019), Ma-
habadi et al. (2019), and Bernardy and Chatzikyri-
akidis (2019). It is generally assumed that the un-
derlying cause of the problem of generalization is
the PLMs’ overfitting (see Goodfellow et al. 2016)
on the training set. This overfitting, so the assump-
tion goes, leads to the PLMs’ picking up on spu-
rious idiosyncrasies of the datasets, leading to the
use of shallow heuristics and ultimately to a lack of
generalization. Romanov and Shivade (2018) de-
tail the generalization problems of pre-transformer
PLMs in a highly specialized domain, namely med-
ical history reports used by doctors.

If the models do not learn the central logical
concepts during fine-tuning, what are they learn-
ing? The dominant view in the field is that they are
learning so-called shallow heuristics, or bias: rules
of thumb that work for the dataset due to some
kind of bias in the data, but which do not apply
to out of dataset samples, causing performance to
collapse. In a much-discussed study, McCoy et al.
(2019) conduct experiments to the conclusion that
state-of-the-art PLMs use three kinds of syntactic
heuristic at NLI tasks, which they call the lexi-
cal overlap, the subsequence, and the constituent
heuristics. McCoy et al. (2019) also present a new
stress test dataset called HANS (“Heuristic Analy-
sis for NLI systems”) that is built so that PLMs’ use
of the three heuristics will come to light in cases
where the heuristics suggest entailment, but where
the true label is not entailment.

2.3 Two Options to Address the
Generalization Problem

In this section, we will consider the two main op-
tions that researchers have explored to address the
problem of generalization in NLI.

Option 1: Debias the Dataset or the PLM The
first option represents the mainstream of current
thinking on NLI: It accepts the diagnosis that the
models are merely picking up shallow heuristics



because there is a technical shortcoming in the
method, and it tries to solve the problem by debias-
ing the datasets or the PLMs themselves. In table
2,3 we list the papers, we mention whether their
approach is based on a priori knowledge about the
bias that one should tackle, and we report perfor-
mance gains on the target dataset specified. When-
ever available, we report performance gains on
HANS, as this dataset has established itself as the
de facto standard in the debiasing literature. As a
consequence, these figures lend themselves best to
comparisons between different approaches.

Paper a priori
knowl?

Target
dataset

Acc.

He et al. (2019) Yes HANS n.a.
Clark et al.
(2019)

Yes HANS 66.15
(+3.7)

Mahabadi et al.
(2020)

Yes HANS 71.95
(+10.1)

Yaghoobzadeh
et al. (2019)

Yes HANS 70.5
(+7.4)

Zhou and
Bansal (2020)

Yes Custom +4.5

Belinkov et al.
(2019)

Yes Various no gain

Dranker et al.
(2021)

Yes Various no gain

Bras et al.
(2020)

No Various +3.6

Utama et al.
(2020)

No HANS 69.7
(+8.2)

Nie et al. (2020) (Yes) Various appr.
+2

Bowman et al.
(2020)

(Yes) MNLI no gain

Table 2: Overview on the extant approaches in option
1. Where no performance figures are given (n.a.), the
paper doesn’t report overall figures per dataset and it
was not possible to extract these figures with simple,
undisputable computations; “no gain” is a shorthand for
“no significant gains”.

Option 2: Hybrid Approaches Given the cur-
rent generalization problem faced by purely neural
approaches, some champions of symbolic methods
have seen a chance to reinsert symbolic methods
into the mainstream by combining neural with sym-
bolic approaches. All current hybrid approaches
rely on natural logic, an alternative to classical
translation of natural language sentences into some
formal langue. For details and references, see the
appendix, section C. Hu et al. (2020) deliberately
propose a lightweight, almost simplistic system

3Note that the papers do not always report identical base-
line performance, e.g., for BERT-base. We have reproduced
these figures all the same, as the differences are small enough
so that they do not affect our overall argument.

that does not aim at setting a new state of the art,
but rather at mapping out the lower bound perfor-
mance of such a model. They explore its uses to
provide training data for BERT.

An early approach at combining the two ap-
proaches is Raina et al. (2005). They combine
classical formal logic with statistical learning for
abductive reasoning (i.e., inference to the best ex-
planation, a kind of non-monotonic inference, see
(Lipton, 2004)).

Angeli and Manning (2014) introduce a seminal
approach combining natural logic, monotonicity
structures, WordNet and learned word probabili-
ties as well as embeddings to conceive of NLI as
a search problem. Kalouli et al. (2020) combine a
classical symbolic system with a transformer-based
neural PLM to achieve state-of-the-art performance
on many standard datasets. Chen et al. (2021) adopt
a different approach, conceiving of NLI as a path
planning problem with the premise as the start and
the hypothesis as the goal to be reached. They
develop a system called NeuralLog that combines
classical symbolic approaches using monotonic-
ity notation (Hu et al., 2020) with, among others,
Sentence-BERT embeddings to score the candidate
hypotheses (Reimers and Gurevych, 2019). They
report state of the art performance on both the SICK
(Marelli et al., 2014b) as well as the MED (Yanaka
et al., 2019) test sets; however, from among the
neural approaches, they only consider BERT base.
We report the results of these two only hybrid ap-
proaches post-HANS in table 3.

Paper Target
dataset

Acc.

Kalouli et al. (2020) HANS 68.9
(+7.4)

Chen et al. (2021) MED 93.4
(+21.8)

Table 3: Overview on the performance of the two most
recent hybrid approaches. the MED dataset has been
developed by Yanaka et al. (2018).

3 Dataset

In our experiment, we build on the insight gained
from the qualitative inspection of MNLI as well as
from research by Bernardy and Chatzikyriakidis
(2019) that current NLI datasets lack samples that
center on quantifiers as well as deductively valid
inferences by providing a dataset that focuses on
these very domains. Furthermore, our dataset pro-
vides a simple way to distinguish two properties of



models that are often conflated: bias and shallow
heuristics. As we have seen above (section 2.2), it
is often said that the datasets or the models contain
various biases. However, following Blodgett et al.
(2020), we propose to use bias only for evaluations
that are inherently normative and part of a larger
worldview that is viewed critical. For instance, if
a model expects that doctors are always men and
therefore fails to correctly predict some logical re-
lationships between sentences, one should attribute
this to a bias: the model represents doctors as men,
which is a clear case of a gender stereotype.

In contrast, a shallow heuristic is something
that the models use irrespective of any such world-
view, simply to succeed at a given task without
fully learning it. The so-called negation bias is a
clear case for such a shallow heuristic: It is not
connected to any larger and problematic worldview
but a simple instance of a rule of thumb.

While it has so far not been used to assess NLI
capacities of NLU models, the systematic behind
our dataset dates back to Aristotle. In his Prior An-
alytics (composed around 350 BC), Aristotle (1984,
book 1) diligently analyzes the possible combina-
tions of subject-, predicate-, and middle-term via
quantifiers and negations to form a number of for-
mally valid inferences. He deduces 24 formally
valid patterns of inferences, so-called syllogisms.
Example (2) is an instance of such a syllogism,
belonging to the mood of the first figure that goes
by the name of “BARBARA”, the capital “A” sig-
nifying affirmative general assertions (“All X are
Y.”).

Now, consider the formal logical relationship
in (6). By starting out with (2) and changing one
single word, three letters in total, we have switched
the relationship from entailment to contradiction.

(6) (P) All Germans are childcare workers and
all childcare workers are fingerprint collec-
tors. (H) No Germans are fingerprint col-
lectors.

Finally, consider the formal logical relationship
in (7). By changing one word, four letters, we
switched the relationship from entailment to neu-
tral.

(7) (P) All Germans are childcare workers and
some childcare workers are fingerprint col-
lectors. (H) All Germans are fingerprint
collectors.

We are using a total of 12 formally valid syllogisms
– called BARBARA, CELARENT, DARII, FERIO,
CESARE, CAMESTRES, FESTINO, BAROCO,
DISAMIS, DATISI, BOCARDO, FERISON – and
we manually develop 24 patterns that are very sim-
ilar to these 12 syllogisms, but where the first and
the second sentence together contradict or are neu-
tral to the third sentence. This yields a total of
36 patterns, 12 of which are valid syllogisms, 12
are contradictory, and 12 are neutral. To fit the
premise-hypothesis structure expected by the mod-
els, we combine premise one and two to form a
single premise.

We then use a pre-compiled list of occupations,
hobbies, and nationalities to fill the subject- middle-
and predicate-terms in these patterns. Using 15 of
each of them and combining them with the 36 pat-
tern yields 121500 test cases in total, each consist-
ing of a premise and a hypothesis.4 This variation
allows us to capture the influence of any bias on
model prediction, that is, any expectations of the
models that certain nationalities are only likely to
entertain certain hobbies and certain jobs, regard-
less of any valid inferences suggesting otherwise.
Furthermore, it allows us to systematically distin-
guish it from shallow heuristics, rules of thumb
that are not connected to any general worldviews
or racial biases, but merely local attempts to suc-
ceed at the tasks without understanding it.

4 Experiment

We run a total of seven models on our test
dataset, all of which are fine-tuned on standard
NLI datasets, namely SNLI and MNLI (see table 4
for details: PLMs marked with one star “*” have
only been fine-tuned on MNLI, PLMs marked with
two stars have been fine-tuned on both SNLI and
MNLI). The models are hosted by by Huggingface
(Wolf et al., 2019), three of them are fine-tuned by
Morris et al. (2020), prefixed with “textattack”, and
four by Reimers and Gurevych (2019), prefixed
with “crossencoder”.

The models’ performances on MNLI, per our
own evaluation (not all of the models provide eval-
uation scores, and we did not find precise docu-
mentation on how the scores were obtained), are
given in table 4, for details of the evaluation, see
the appendix, section B.

The basic idea behind the experiment is to assess

4The datasets can be found on the following github-repo:
retoj/philo_nli.

https://huggingface.co
https://github.com/retoj/philo_nli


PLM N-
Par.

MNLI-
M

textattack-facebook-bart-large-MNLI* 406M 0.8887
crossencoder-deberta-base** 123M 0.8824
crossencoder-roberta-base** 123M 0.8733
crossencoder-MiniLM2-L6-H768** 66M 0.86602
textattack-bert-base-uncased-MNLI* 109M 0.8458
crossencoder-distilroberta-base** 82M 0.8364
textattack-distilbert-base-uncased-
MNLI*

66M 0.8133

Table 4: Performance of the models in focus on the
MNLI-Matched validation set. PLMs marked with one
star “*” have only been fine-tuned on MNLI, PLMs
marked with two stars have been fine-tuned on both
SNLI and MNLI.

Figure 2: Performance on our syllogistic dataset by
correct label.

whether the PLMs’ performance on our dataset re-
veals any shallow heuristics learned by the models
during fine-tuning on MNLI and SNLI.

5 Results

The results of our experiments are shown in figure
2. For instance, the model whose performance is
represented on the very left, textattack’s fine-tuned
version of BART large, predicts the correct label
in only 7% of cases for neutral labels, while doing
so in 95% for entailment samples and still 83% for
contradiction labels.

Figure 2 shows clearly that the models’ predic-
tions are quite accurate for labels entailment and
contradiction, but very poor for neutral.

6 Discussion & Further Probes

6.1 Discussion of Experimental Results
Overall, figure 2 shows that textattack’s distilbert
leads the field with a accuracy of 65%, which might
surprising just because it was among the smallest
models evaluated here. However, there is growing
evidence that NLI, and its more formal-deductive
parts in particular, cannot be solved by simply in-

Figure 3: Predicted labels for patterns that are symmet-
ric between premise and hypothesis regarding existential
quantifier and negation.

creasing model size. Researchers at DeepMind
find that larger models tend to generalize worse,
not better, when it comes to tasks involving log-
ical relationships. The large study by Rae et al.
(2021, 23) strongly suggests that, in the words of
the authors, “the benefits of scale are nonuniform”,
and that logical and mathematical reasoning does
not improve when scaling up to the gigantic size
of Gopher, a model having 280B parameters (in
contrast, Gopher sets a new SOTA with many other
NLU tasks such as RACE-h and RACE-m, where
it outperforms GPT-3 by some 25% in accuracy).

Furthermore, figure 2 also shows that all of the
models perform very poorly with neutral samples;
indeed, none of the models is able to recognize
such neutral relationships with a accuracy of more
than 10%. Given that pure chance would still yield
an accuracy of some 33%, this is a very poor per-
formance.

We have therefore further probed the heuristics
that the models might be using that could cause
the poor performance with neutral labels. Man-
ual inspection showed that they respond strongly
to symmetries regarding quantifiers and negations
between premises and hypotheses. In particular,
if either both or none of the premise and the hy-
pothesis contain a “some” (existential quantifier)
or a negation (the symmetric conditions), then the
models are strongly biased to predict entailment
(see figure 3).

Conversely, if the pattern contains an asymmetry
regarding existential quantifier and negation be-
tween premise and hypothesis, then the models are
very strongly inclined to predict contradiction (see
figure 4).



Figure 4: Predicted labels for patterns that are asymmet-
ric between premise and hypothesis regarding existential
quantifier and negation.

In the case of the contradiction and entailment
pairs, these heuristics serve the models very well
in our dataset, resulting in impressive performance.
However, when applied to the neutral samples, the
heuristics break down, performance falls far below
simple guessing.

We conclude this part of our discussion by noting
that the experiments did not show any significant
bias in the behavior of the PLMs: Their accuracy
did not change depending on existing preconcep-
tions, say, that Germans are always engineers and
like to collect stamps. What we have found, in
contrast, is heavy use of shallow heuristics, as the
figures 3 and 4 evince.

6.2 Fine-Tuning & Re-Evaluation,
Comparison with a Symbolic Approach

In a next step, we assessed whether the mod-
els’ poor performance with neutral samples in our
dataset can be remedied with fine-tuning. We con-
ducted two different fine-tuning runs, FT1 and FT2.
Their sole difference consists in the way that we
split up the 121k samples. For FT1, we used 110k
samples for training and validation, and we tested
on the neutral subset of the 10k remaining samples,
which is about 3k samples (“3k” in figure 5). For
FT2, we used 71k samples for training and valida-
tion, leaving the neutral subset of the remaining
50k samples, about 13k samples, for testing.5

We fine-tuned crossencoderMiniLM2-L6-H768
and textattack-distilbert-base-uncased-MNLI
(BART-large from facebook exceeded our capaci-
ties). Furthermore, we also evaluated one of the

5We adapted a huggingface-notebook found here, letting
run each fine-tuning process for three epochs with a batch size
of 16 on one GPU of a DGX-2.

Model Neutr. MNLI-
M

FT1-crossencoder-
MiniLM2-L6-H768

100% 72%

FT2-crossencoder-
MiniLM2-L6-H768

62% 70%

FT1-textattack-
distilbert-base-uncased-
MNLI

100% 38%

FT2-textattack-
distilbert-base-uncased-
MNLI

61% 53%

GKR4NLI 89/23% n.a.

Table 5: Accuracies of fine-tuned models and GKR4NLI
on different test sets; For FT1-fine-tuned models,
“Neutr.” consists of 3k neutral samples from the syl-
logistic dataset, for FT2-fine-tuned models, it consists
of 13k neutral samples from the same source. MNLI-M
is MNLI-matched.

currently leading symbolic NLI systems on both
test datasets, namely GKR4NLI, introduced in
(Kalouli et al., 2020). The results of all of these
evaluations is shown in table 5.

The results shown in table 5 show that fine-
tuning does indeed help. In the first fine-tuning
split FT1, both models achieve 100% accuracy;
this, however, comes at rather high cost in terms
of accuracy on MNLI-matched (14% and 43% re-
spectively). GKR4NLI also performs well at this
test set with 89% out of the box. With regard to
the second fine-tuning split FT2, GKR4NLI’s per-
formance drops to 23%, while the two fine-tuned
models achieve accuracies of around 62%, again at
the cost of significantly reduced accuracy in MNLI.

These results suggest that it is not easy for
the models tested to combine the representations
needed to perform well at MNLI-matched with
those needed to do well in our neutral samples. In
particular, the results suggest that a large number
of training samples is needed, as in FT1. We note
that our results leave open the possibility that larger
models can accommodate both kinds of sample.

At this point, we would like to compare our
results with those obtained by Richardson et al.
(2020). They use a cleverly chosen roaster of se-
mantic fragments (i.e. subsets of a language trans-
latable into formal logic, in particular first-order
predicate logic) to test the models’ understanding
of the logical relationships of contradiction, en-
tailment and neutral. They find that the models
tested perform poorly on these tasks, but that this
performance can be remedied with fine-tuning the
models on sufficient amounts of training data that

https://colab.research.google.com/github/huggingface/notebooks/blob/master/examples/text_classification-tf.ipynb#scrollTo=n9qywopnIrJH


has been synthetically generated from these frag-
ments. In contrast to the semantic fragments used
by Richardson et al. (2020), our datasets seem to
pose a more difficult challenge for the models that
we have tested (despite the fact that Richardson
et al. 2020 only considered BERT-base, while we
have also included larger and more recent models).
Perhaps we have made some progress towards what
Richardson et al. (2020) explicitly ask for, namely
more difficult fragments?

We take these results to confirm that our dataset
can make a valuable contribution to the field, as it
presents a challenge for both neural and symbolic
systems. Indeed, in light of these results, one could
wonder whether it is not unfair to expect any NLI
system to master our syllogistic dataset, as samples
such as (2), (6), and (7) might be said to be very
far away from ordinary language use. In response
to this, we point out that, as a matter of logical fact,
these are formally valid inferences which should
be covered by any NLI system that aspires to cover
the full extent of NLI. Furthermore, students of
logics have acquired their concepts of formal valid-
ity through such examples for millennia, making
it a rather natural stepping stone for AI systems.
Finally, as already mentioned, it might very well
be that large models could accommodate both the
defeasible kinds of inferences in MNLI and our
deductively valid ones.

7 Conclusion

We have detailed the problem of generalization that
current neural approaches to NLI face from the
background of philosophical logic. We have sug-
gested that current datasets are light on deductively
valid inferences, proposed a distinction between
bias and shallow heuristics, and we have proposed
our own syllogistic dataset. This dataset allows to
distinguish between bias and shallow heuristic, it
focuses on formally valid inferences, and our re-
sults suggest that it can help to improve both neural
and symbolic approaches.
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A Full Instructions Given to
Crowdworkers

Williams et al. (2018, 1114) specifies the following
tasks for the crowdworkers:

“This task will involve reading a line from a
non-fiction article and writing three sentences that
relate to it. The line will describe a situation or
event. Using only this description and what you
know about the world:

• Write one sentence that is definitely correct
about the situation or event in the line.

• Write one sentence that might be correct about
the situation or event in the line.

• Write one sentence that is definitely incorrect
about the situation or event in the line. ”

B Method used for evaluation of Models
on MNLI

To evaluate the models, we have used Hugging-
face’s trainer API, see Huggingface (Wolf et al.,
2019). In particular, we followed the instructions
in the notebook here. We evaluated the models
using the API out-of-the-box, with the following
exceptions:

1. The textattack-models had as labels "LA-
BEL_0, LABEL_1, LABEL_2", which could
not be read by the function that ensures that
the labels are used equivalently by both model
and dataset; hence, we reconfigured the mod-
els to use as labels “contradiction, entailment,
neutral”.

2. facebook-bart-large-mnli by textattack posed
two additional challenges.

(a) Due to out of memory issues, we had to
split up processing of the validation set
into three chunks, averaging the accuracy
received afterwards.

(b) The logits containing the predictions is-
sued by facebook-bart-large-mnli could
not be processed by the evaluation func-
tion, which caused the need to select
only the first slice of the tensor that the
model was issuing, ensuring that the met-
ric function got a 1-dimensional tensor
to compute accuracy.

C From First-Order Representations to
Natural Logic

Traditionally, the topic of common-sense reason-
ing, and later of NLI, as we understand it, was
approached by the use of formal logic, predomi-
nantly first-order logic,6 see Davis (2017) and Lif-
schitz et al. (2008) for extensive surveys of this
approach, and McCarthy (1959) for the pioneering
paper in this tradition. Bos and Markert (2005)
and Bos and Markert (2006) are two typical cases
in this tradition. In the latter, the authors find
that, overall, adding logical processing to a shallow
word-overlap approach actually hinders rather than
boosts performance.

More recently, the once-dominant approach of
representing premise and hypothesis in a formal
language such as first-order predicate logic has
been superseded by attempts to recover the logical
structure of a sentence and the logical relationship
between two sentences by directly annotating the
natural language sentence. In particular, the so-
called monotonicity calculus has been popular in a
number of approaches. Icard III and Moss (2014)
present an accessible and thorough review of recent
theoretical work on this monotonicity approach.

The calculus stands in the tradition of natural
logic (pioneered by Gentzen 1935 and Jaskowski
1934, for an overview, see Pelletier and Hazen
2021) is used by the NatLOG system developed by
MacCartney and Manning (2007), MacCartney and
Manning (2008), and MacCartney and Manning
(2009). The basic idea behind the monotonicity
calculus is to use low-level structural properties
of quantifiers and predicates to assess the validity
of an inference. For instance, the validity of the
inference from “Every dog is a mammal” to “Every
poodle is a mammal” is explained by a bottom-up
combination of properties from the quantifier as
well as the predicate involved – and not by translat-
ing the entire sentence into predicate calculus.

6As it has been pioneered by Frege (1892) and developed
by Russell (1905).

https://huggingface.co
https://colab.research.google.com/github/huggingface/notebooks/blob/master/transformers_doc/pytorch/training.ipynb
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