
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies: Student Research Workshop, pages 25 - 30

July 10-15, 2022 ©2022 Association for Computational Linguistics

Regularized Training of Nearest Neighbor Language Models

Jean-Francois Ton*
University of Oxford

Walter Talbott
Apple

Shuangfei Zhai
Apple

Joshua Susskind
Apple

Abstract

Including memory banks in a natural language
processing, architecture increases model capac-
ity by equipping it with additional data at infer-
ence time. In this paper, we build upon kNN-
LM (Khandelwal et al., 2020), which uses a
pre-trained language model together with an
exhaustive kNN search through the training
data (memory bank) to achieve state-of-the-art
results. We investigate whether we can improve
the kNN-LM performance by instead training
a LM with the knowledge that we will be using
a kNN post-hoc. We achieved significant im-
provement using our method on language mod-
eling tasks on WIKI-2 and WIKI-103. The
main phenomenon that we encounter is that
adding a simple L2 regularization on the activa-
tions (not weights) of the model, a transformer
(Vaswani et al., 2017), improves the post-hoc
kNN classification performance. We explore
some possible reasons for this improvement. In
particular, we find that the added L2 regular-
ization seems to improve the performance for
high-frequency words without deteriorating the
performance for low-frequency ones.

1 Introduction

The problem of language modeling (LM) usually
consists of two main challenges. Firstly, mapping
the context, i.e. the sentence prefixes, to a vector
representation, and secondly using this representa-
tion to predict the subsequent word. In Khandelwal
et al. (2020), the authors claim that the first problem
is much easier to solve. Hence, given a pre-trained
LM, they post-hoc modify the representation using
a k-nearest neighbor scheme (kNN) and achieve
significant improvements on challenging datasets,
such as WIKI-103.

Given that kNN improves the overall language
modeling of a pre-trained network, we examine
training strategies that can make the underlying
network’s representations more amenable to the

∗Work done as an intern at Apple

kNN step. Our results show improvements over
applying kNN to a generic LM network.

We first explore a simple learning scheme for
the language model, where during training we in-
tentionally push representations that predict the
same word closer together in the L2 sense, using a
Momentum Contrastive (MOCO) (He et al., 2020)
style implementation. We go on to note that this
MOCO style learning can be replaced by simply
adding L2 regularization to the activation of the
layer used for kNN, eliminating implementation
complexity. Lastly, we present some initial experi-
ments toward understanding why this L2 regular-
ization brings improved performance.

2 Background

Our work builds upon kNN-LM (Khandelwal et al.,
2020). In essence, kNN-LM tackles the problem of
how to improve a trained LM’s representations,
and how to adapt LMs to capture non-frequent
sentences that are usually forgotten by the model
during training. kNN-LMs achieve significantly
higher performance through a simple interpolation
between the original LM predictions and the kNN
predictions.

At inference time, given a new context sentence,
kNN-LM works as follows:

1. The context sentence ci is passed through the
pre-trained network to produce a representa-
tion rcontexti ∈ Rd as well as the correspond-
ing logits yLMi to predict the next word.

2. rcontexti is used to find the k-nearest neighbors
in the training data. The logits ykNN are com-
puted by a weighted average of the neighbors’
labels, using the inverse exponential distance
as the weight for each neighbor.

3. The logits are interpolated to give the final
prediction:

yfinal = λykNN + (1− λ)yLM ,

25

where λ is the interpolation parameter that can
be tuned on validation data.

This simple post-hoc implementation allows Khan-
delwal et al. (2020) to improve upon the SOTA
in LM by a significant margin. One thing to note
about kNN-LM is that they do not need to retrain
the LM and hence the whole algorithm can be run
on CPU only. Furthermore, kNN-LM uses FAISS,
which is an efficient library that allows them to
quickly find kNNs.

One detail to note in (Khandelwal et al., 2020)
which was crucial for this work was that the au-
thors tried both the inner product and the L2 for
their distance metric in kNN. They concluded that
L2 worked significantly better. This observation
implies the fact that the default training recipe of
LMs implicitly prefers one distance over the other.
Given that we know that a post-hoc kNN adapta-
tion significantly improves the performance, it is
natural to ask whether we could train a LM with
this in mind. In the next section, we describe how
to adapt the training of the LM for this purpose.

3 Proposed Method

In our initial attempt, we experimented with the
idea of explicitly minimizing the L2 distance be-
tween context vectors that predict the same target
word. This strategy directly mirrors the use of con-
text vectors at the kNN step, and we hoped that
training the representations in a way similar to test-
ing will further improve the effectiveness of kNN
LM. However, a naïve implementation of it is infea-
sible due to having to store all the representation in
memory. We then resorted to a MOCO-(He et al.,
2020) style training scheme. Specifically, for each
target word w, we construct a queue Q of fixed
length L, which stores the recent L context repre-
sentations for w. During training, we optimize a
regularized objective as follows:

Lnew = LCE + ω

N∑

j=1

L∑

i=1

||sg(Qwj

i)− rj ||2,

(1)

where N is the batch size, rj is the context rep-
resentation of the jth word, Qwj

I is the ith item
in the queue corresponding to the jth target word
wj ; ω is the regularization parameter; sg(·) is the
stop gradient operator. Specifically, Q is updated
with a momentum target encoding network which

is initialized with the same parameters of the LM,
similar to MOCO (He et al., 2020).

Empirically, we found that Equation 1 provides
a practical solution and yields improved represen-
tations for the kNN LM, as shown in Fig 1. In
particular, we see from the figure that there is an
optimal value for ω for which the added regulariza-
tion seems to improve the kNN LM model perplex-
ity significantly i.e. from 76 to 70 at ω = 2 (orange
line). The interesting part to note in this case, is
the fact that the standard LM (without post-hoc
kNN) does not vary much up to ω = 5, leading
us to conclude that the added regularization has
changed the representation in a way that kNN can
more effectively exploit the neighbors.

However, the use of the queue and momentum
target network still adds overhead to a large-scale
model training as we are required to access the
queue for each batch. Hence we tried to decrease Q
and L, which interestingly did not decrease the per-
formance at all and therefore, to promote efficiency,
we tested an even simpler formulation, where we
replace Q with all zero vectors. This eliminates the
need to explicitly construct and update the queue,
while instead encouraging the model to learn con-
servative representations w.r.t. the L2 norms of its
context representations. The corresponding loss is
as follows:

Lnew = LCE + ω

N∑

j=1

||rj ||2. (2)

To our surprise, Equation 2 yields similar perfor-
mance to Equation 1 in practice see Table 1, while
being much easier to implement and tune. This is a
new interesting finding that we will try to explain
in the ablation study below. We thus use Equation
2 as the default loss function in our experiments
unless otherwise mentioned.

4 Experiments

We tested our method on the WIKI-2 and
WIKI-103 datasets, which are widely used bench-
marks for language modeling. We are interested
in demonstrating two empirical results: improved
performance using our approach over that of kNN-
LM, and exploring a possible mechanism for this
improved performance.

4.1 Experimental setup
Dataset WIKI-2 is a benchmark with 30k word
vocabulary and consists of 2M tokens. WIKI-103

26

kNN-LM (ω=0) ω=0.1 ω=1.0 ω=10.0

Train Ppl. LM 19.99 20.05 20.11 21.37
Valid Ppl. LM 75.96 75.68 76.37 81.29
Valid Ppl. kNN-LM 74.11 73.13 70.63 80.52

Table 1: Experiments on WIKI-2 with corresponding validation perplexity using L2 regularization. We see that a
weighting of ω = 1 yields the best performance for our method

Figure 1: Validation perplexity on WIKI-2 of the LM
before (blue) and after (orange) adding kNN. NOTE:
weight=0 corresponds to the standard version that
does not include our added MOCO-style regularization
term i.e. kNN-LM from Khandelwal et al. (2020)

is a benchmark with 250k word vocabulary and
consisting of 103M tokens (Merity et al., 2016).

Language Model Architecture For the lan-
guage model architecture, we will be using the ex-
act setup as described in (Khandelwal et al., 2020).
This setup consists of the language model (Baevski
and Auli, 2018), which consists of 16 layers, each
with 16 self-attention heads, 1024 dimensional hid-
den states, and 4096 dimensional feedforward lay-
ers. Thus, following (Baevski and Auli, 2018), this
LM has adaptive inputs and an adaptive softmax
(Joulin et al., 2017) with tied weights (Press and
Wolf, 2016) for all our experiments. We trained
the each language model on a Tesla V100 with
40GB of RAM.

In addition, we follow the exact same training
procedure as in (Khandelwal et al., 2020) and re-
fer to their paper for further details on the training
parameters. The only difference in terms of imple-
mentation is the MOCO style learner as well as the
L2 regularization added to the final layer. Lastly,
we would like to note that while crossvalidating
though the interpolation parameter λ we note that
for all models, λ = 0.3 works the best which is
similar to the finding in (Khandelwal et al., 2020).

4.2 Experiments on WIKI-2

We first apply our proposed method on the standard
WIKI-2 dataset, where we run each configuration
5 times and plot the standard deviation, as seen in
Figure 1. Note that ω = 0 in Figure 1 corresponds
to the standard kNN-LM version, i.e. without the
added term in the loss. Comparing Figure 1 and
Table 1, we see that the MOCO and L2 approaches
produce similar results. From these results, we note
the following phenomena:

1. A clear "U"-shape demonstrating the added
benefit of our loss term on the validation per-
plexity of the LM for moderate values of ω.

2. Training performance does not decrease for
moderate values of ω, showing that the extra
term does not destroy training and generaliza-
tion of the standard LM.

3. There is no difference in terms of validation
perplexity between the standard LM and our
version before applying kNN, but there is
a significant difference after applying kNN.
Our approach likely finds a different local min-
imum for the language model that is better
suited for kNN.

The above finding supports our belief that using our
added regularization, we are able to find better rep-
resentations, that can subsequently be used more
efficiently when for kNN LM. Next, we apply our
methods on the much bigger data WIKI-103.

4.3 Experiments on WIKI-103

We illustrate our findings on the more challeng-
ing WIKI-103 dataset and demonstrate that our
L2 fix significantly improves the performance of
the LM. In the Table 2, we illustrate that when
changing the regularization strength we again see
a significant gain in performance when adding our
regularization during training of the LM. Due to
the computational costs when training these mod-
els, we resort to the same hyperparameters as in

27

kNN-LM (ω=0) kNN-LM (ω=1) kNN-LM (ω=10)

Train Ppl. LM 11.31 11.24 11.07
Valid Ppl. LM 18.00 17.95 17.71
Valid Ppl. kNN-LM 16.09 15.89 17.46

Table 2: Experiments on WIKI-103. We report the training and validation perplexities for standard kNN-LM i.e.
(ω = 0) as well as our weighted versions. Here we show that our method is much better once we apply kNN

the WIKI-2 dataset and hence present fair com-
parisons of the different variants of the model.

Note that again, we see significant improvements
in terms of validation perplexity when using the
kNN-LM scheme by simply adding an L2 regular-
ization when training the language model.

On another note, when taking a closer look at
the validation perplexity before applying kNN, we
note that ω = 10 seems to have the lowest vali-
dation perplexity. This better generalization phe-
nomenon is interesting and has recently been noted
in the machine vision community in the context
of investigating the regularization effects of batch
normalization in classification settings (Dauphin
and Cubuk, 2021). This also relates to the findings
of (Merity et al., 2017), those who used L2 regular-
ization in LSTMs. In this paper, we found initial
indications that the L2 regularization on the activa-
tions might be useful for Transformer models.

Finally, we believe that these two standard bench-
mark datasets in language modeling are sufficient
evidence to demonstrate the merit our of findings.
Further studies with more hyperparameters could
be done on WIKI-103, however, due to computa-
tional costs, we leave this for future work.

4.4 Further investigations into the
representations and possible explanations

To get a better understanding of why the L2 regu-
larization on the activations seems to improve the
performance of kNN-LM, we looked closer at the
learned representations for WIKI-02.

Effect of the target word frequency on the loss:
Figure 2 shows a histogram of word frequency,
where the color represents the respective losses
each word incurred. More concretely, each bar rep-
resents the number of words with a given frequency.
For a given histogram bar, we compute the loss for
each of these corresponding words. The colors rep-
resent the loss i.e. if we have a darker violet color,
we incurred a higher loss for these words, and the
lighter color the bar the smaller the error. Note that
firstly, there is little difference in the loss for the
less frequent words (right tail end of the histogram).

If we shift our attention to the more frequent words
(left side of the histogram) however, we see a differ-
ent picture. Looking at our L2 regularized model,
we note that for the most frequent words, our model
seems to incur lower loss (see the brighter colors
bars at the peak of the histograms) compared to the
standard LM with kNN. This observation suggests
that the main differences in terms of representa-
tions come from the frequent words rather than
rare ones. This is an indication that L2 regulariza-
tion helps representations cluster and hence when
performing the interpolation between the predic-
tions of the LM and kNN, the resulting kNN LM is
more confident in these predictions hence leading
us to obtain lower perplexities for common words.

Secondly, knowing that the main differences are
within the words that are most frequent, we in-
vestigated these representations in more detail. In
particular, we analyzed the most frequent words
and divided the data into "high loss/score i.e.
loss > −10" meaning they contributed a lot to
the loss (bad predictions) and "low loss/score i.e.
loss < −10" meaning they are good predictions i.e.
they contributed a little to the loss.

We employed a simple mixture of Gaussians
model (GMM) (m = 10) and used the log-
likelihood as an indicator for how well the data
are clustered. GMMs allow us to put probability
mass on each of the representations and given that
we are using a mixture of Gaussians, we inherently
capture clusters. Intuitively, this means that if the
likelihood of the GMM is high, the representations
can be easily captured using a mixture of Gaus-
sians, which is indicative of being more clustered
i.e. close to one of the gaussian mixture means.

In Figure 3 we compare the distributions of the
loglikelihoods for the representations that have
been trained using the standard LM and our modi-
fied L2 regularization. In particular, for each repre-
sentation, we obtain the corresponding likelihood
from the GMM (x-axis on Figure 3). As mentioned
before, we split the words into "high loss/scores"
and "low loss/scores" and plot their histograms in

28

Figure 2: Frequency/Loss histograms. The x-axis denotes the frequency of the word with high-frequency words to
the left. The y-axis denotes the number of words with x frequency and the colors of each bar represent the loss
accumulated. (LEFT) Standard LM after kNN, (RIGHT) Our L2 regularized LM after kNN.

Figure 3: x-axis denotes the Loglikelihood under the Gaussian Mixture. y-axis denotes the normalized histogram.
(LEFT) Standard training of the Language Model (RIGHT) using an L2 regularization for the Language Model.

blue and orange respectively. Fig. 3 demonstrates
one key finding, which is that the difference be-
tween the likelihoods of the "high loss/scores" and
"low loss/scores" varies much more dramatically
in the L2 regularized case. Recall that the higher
the likelihood, the higher the "clusterness" is. By
noting that the likelihood differs much more in the
L2 regularized case, we can conclude that the rep-
resentations in the latter are more clustered (for the
low scores) due to the regularization, which could
be one potential explanation why kNN LM is im-
proved. Hence, one of our hypotheses is that kNN-
LM improves the classification accuracy mostly for
the non-frequent words (Khandelwal et al., 2020),
whereas our proposed method with L2 regulariza-
tion, in addition, also improves the classification
accuracy of the frequent words by clustering them
closer together and hence improving kNN-LM.
5 Conclusion
In conclusion, we propose a useful training mecha-
nism that is inspired by the fact that the post-hoc
application of kNN seems to significantly improve
the performance of standard LMs. We have found
that training a LM with L2 regularization at the
final layer, i.e. layer which is used for the post-
hoc kNN search, improves validation performance.

We have also found initial indications that the L2
regularization mostly improves performance for
the most frequent, lower-loss words. In addition,
we have found further evidence for the hypothesis
proposed (Dauphin and Cubuk, 2021) which states
that L2 regularization helps generalization in vi-
sion tasks. This paper found similar results when
working with Transformer models in NLP tasks.

There are, however, some shortcomings in our
work. Firstly, we have only given a preliminary
explanation for why the added L2 regularization
significantly improves upon standard kNN LM, but
we believe that we have given sufficient evidence
that our proposed method promotes clustering of
the representations which subsequently improves
the kNN. Secondly, even though we have found
great and promising improvement using our find-
ings on WIKI-2, further work with more com-
pute should be done on WIKI-103. We however
leave this for future work due to computational
constraints. Lastly, we believe that training models
with post-hoc kNN in mind is a promising area
and hence future work will consider more diverse
datasets from the NLP literature. These findings
motivate exploring various regularizations in differ-
ent Transformer architectures and LM tasks.

29

References
Alexei Baevski and Michael Auli. 2018. Adaptive input

representations for neural language modeling. arXiv
preprint arXiv:1809.10853.

Yann N Dauphin and Ekin D Cubuk. 2021. Deconstruct-
ing the regularization of batch-norm. In International
Conference on Learning Representations (ICLR).

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and
Ross Girshick. 2020. Momentum contrast for un-
supervised visual representation learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 9729–9738.

Armand Joulin, Moustapha Cissé, David Grangier,
Hervé Jégou, et al. 2017. Efficient softmax approx-
imation for gpus. In International Conference on
Machine Learning, pages 1302–1310. PMLR.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke
Zettlemoyer, and Mike Lewis. 2020. Generalization
through Memorization: Nearest Neighbor Language
Models. In International Conference on Learning
Representations (ICLR).

Stephen Merity, Nitish Shirish Keskar, and Richard
Socher. 2017. Regularizing and optimizing lstm lan-
guage models. arXiv preprint arXiv:1708.02182.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. arXiv preprint arXiv:1609.07843.

Ofir Press and Lior Wolf. 2016. Using the output em-
bedding to improve language models. arXiv preprint
arXiv:1608.05859.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

30

