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Abstract

Machine learning in hyperbolic spaces has at-
tracted much attention in natural language pro-
cessing and many other fields. In particular,
Hyperbolic Neural Networks (HNNs) have im-
proved a wide variety of tasks, from machine
translation to knowledge graph embedding. Al-
though some studies have reported the effective-
ness of embedding into the product of multiple
hyperbolic spaces, HNNs have mainly been
constructed in a single hyperbolic space, and
their extension to product spaces has not been
sufficiently studied. Therefore, we propose a
novel method to extend a given HNN in a sin-
gle space to a product of hyperbolic spaces. We
apply our method to Hyperbolic Graph Convo-
lutional Networks (HGCNs), extending several
HNNs. Our model improved the graph node
classification accuracy especially on datasets
with tree-like structures. The results suggest
that neural networks in a product of hyperbolic
spaces can be more effective than in a single
space in representing structural data.

1 Introduction

Machine learning that utilizes the properties of non-
euclidean spaces has attracted much attention in
recent years (Bronstein et al., 2017). In representa-
tion learning on natural language and graphs, where
hierarchical data appear, hyperbolic spaces have
recently been shown to be effective. In natural lan-
guage processing (NLP), hyperbolic spaces have
been applied to a variety of tasks such as word
embedding (Nickel and Kiela, 2017; Tifrea et al.,
2018), document embedding (Zhu et al., 2020b),
natural language inference (Ganea et al., 2018), and
machine translation (Gulcehre et al., 2018; Shimizu
et al., 2021). Hyperbolic spaces have also been
shown to be effective in graph embedding (Cham-
berlain et al., 2017; Sala et al., 2018; Chami et al.,
2019), which is helpful for NLP models to utilize
external knowledge graphs (Chami et al., 2020).

Recent progress in the use of hyperbolic space
is supported by the development of hyperbolic neu-
ral networks (HNNs) (Tifrea et al., 2018), which
consist of components such as linear and atten-
tion layers that are appropriately extended to hy-
perbolic spaces. How to define linear operations
in hyperbolic space is non-trivial, and several dif-
ferent methods have been proposed (Shimizu et al.,
2021; Chen et al., 2021).

Unlike Euclidean spaces, a product space of non-
Euclidean spaces is geometrically different from a
single space of the same dimension, and some stud-
ies have reported that using the product of small hy-
perbolic spaces improves the performance in graph
and word embedding (Tifrea et al., 2018; Gu et al.,
2019). In addition, Shimizu et al. observed that
the superiority of their hyperbolic machine transla-
tion model over the Euclidean counterpart is lost as
the dimensionality of word features increases, and
they proposed using a product of multiple small
hyperbolic spaces as a possible solution. However,
existing HNN frameworks are defined in a single
hyperbolic space, and how to extend HNNs to prod-
uct spaces is still an open question.

Therefore, this paper proposes a novel method
to extend a given HNN in a single space to a prod-
uct of hyperbolic spaces. More specifically, we
construct a general method to extend a hyperbolic
matrix-vector multiplication, a major factor that
distinguishes HNN variants, to a product space.

We apply our method to Hyperbolic Graph Con-
volutional Networks (HGCNs) (Chami et al., 2019)
and show that our method outperforms the base-
lines especially on datasets with tree-like structures,
suggesting that neural networks in a product of hy-
perbolic spaces are more effective for representing
structural data than neural networks in a single hy-
perbolic space.
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Contribution to NLP community

Single-space HNNs have already been applied to
a variety of NLP tasks, and our method is applica-
ble to most of them, with the potential to improve
performance. As a start, we extended HNN++
(Shimizu et al., 2021), a recently proposed HNN
variant, and applied it to machine translation tasks.
The preliminary experimental results show that our
method performs better, at least on small datasets.
We plan to conduct experiments on large datasets
soon.

2 Preliminaries

2.1 Riemannian Geometry

An n-dimensional manifold M = Mn is an n-
dimensional space locally approximated to an n-
dimensional Euclidean tangent space TxM at each
point x ∈ Mn. A Riemannian manifold is a dif-
ferentiable manifold with a metric tensor g. The
exponential map expx : TxM → M and its in-
verse function logx are bijections defined locally
around 0 ∈ TxM. For more details, please refer
to Petersen et al. (2006).

2.2 Hyperbolic Space

A hyperbolic space H = Hn
c is an n-dimensional

Riemannian manifold with a constant negative cur-
vature −c (c > 0). There are several equivalent
models to represent a hyperbolic space. In the
Poincaré Ball model B, a hyperbolic space is repre-
sented as a ball of radius 1√

c
. Other models like the

hyperboloid model and the equivalence between all
models are detailed in Cannon et al. (1997).

2.3 Hyperbolic Neural Networks

Hyperbolic spaces have a structure similar to that
of linear spaces called Gyrovector spaces (Ungar,
2008). The hyperbolic versions of addition and
scalar multiplication are called Möbius Addition ⊕
1 and Möbius Scalar Multiplication ⊗.

The matrix multiplication in hyperbolic space
was proposed by Ganea et al. (2018). First, they
showed that exp0 and log0 correspondence be-
tween hyperbolic space and its tangent space at

1For x,y ∈ B, Möbius Addition is defined as:

x⊕c y :=

(1 + 2c⟨x,y⟩+ c∥y∥2)x+ (1− c∥x∥2)y
1 + 2c⟨x,y⟩+ c2∥x∥2∥y∥2 .

See Appendix A for explicit representation of other operations.

origin are globally extended. Then Möbius Ma-
trix Multiplication ⊗ between a matrix M and x is
defined through tangent space approximation:

M ⊗c x := exp0(M · log0(x)). (1)

Hyperbolic version σ⊗c of any activation function
σ in Euclidean space is defined in the same way:

σ⊗c(x) := exp0(σ(log0(x))). (2)

Shimizu et al. (2021) pointed out that the ap-
proximation using the tangent space at the origin
(Eq. 1) produces distortions. They proposed a new
hyperbolic affine transformation layer (Poincaré
FC layer) and used it to construct a novel HNN
framework, HNN++ (Shimizu et al., 2021).

3 Proposed Method

Neural network layers can be considered to be com-
posed of basic operations: vector addition, scalar-
vector multiplication, matrix-vector multiplication,
and nonlinear activation functions. In this section,
we introduce how to extend the basic operations in
hyperbolic neural networks to the product space of
m hyperbolic spaces, P = Hn1 ×· · ·×Hnm . Here
we will treat the case where H is B (Poincaré Ball
model), and all the curvatures are the same.

3.1 Addition and Scalar Multiplication in a
Product of Hyperbolic Spaces

In Euclidean space, addition + and scalar multi-
plication × are element-wise operations, and there
is no need to consider the interaction across dif-
ferent elements. Therefore, we define alternatives
to these operations in P as element-wise Möbius
operations:

x⊕P y := (x1 ⊕ y1, . . . ,xm ⊕ ym), (3)

r ⊗P y := (r ⊗ y1, . . . , r ⊗ ym), (4)

where x = (x1, . . . ,xm) and y = (y1, . . . ,ym)
are tuples of points in the product space P, and
r ∈ R is a scalar value. Each point xi (or yi)
is a vector in an ni-dimensional hyperbolic space.
⊕ and ⊗ on the right-hand side are the Möbius
operations in a single hyperbolic space.

3.2 Matrix Multiplication in a Product of
Hyperbolic spaces

Matrix multiplication involves interactions be-
tween different elements. Therefore, the extension
of Möbius matrix multiplication to product spaces
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should take into account the interaction between
any two hyperbolic spaces.

Let P′ = Hn′
1×· · ·×Hn′

m′ be the target product
space of m′ hyperbolic spaces of a total dimension-
ality n′ = n′

1 + · · · + n′
m′ . Inspired by the block

matrix multiplication in Euclidean space, we define
Möbius matrix multiplication in P as follows:

M ⊗P x =




M11 · · · M1m
...

. . .
...

Mm′1 · · · Mm′m


⊗P




x1
...

xm




:=




M11 ⊗ x1 ⊕ · · · ⊕M1m ⊗ xm
...

Mm′1 ⊗ x1 ⊕ · · · ⊕Mm′m ⊗ xm


 , (5)

where M ∈ Rn′×n is a matrix, and Mij ∈ Rn′
i×nj

is a submatrix block of M . The off-diagonal blocks
correspond to interactions between two different
hyperbolic component spaces.

It is worth noting that Eq. (5) can be used to ex-
tend an arbitrary hyperbolic linear layer to a prod-
uct space. For example, Shimizu et al. (2021) and
Chen et al. (2021) defined hyperbolic linear layers
F using a matrix parameter M , i.e., F = F(M).2

We can extend the hyperbolic linear layers F to the
product space as follows:

FP(M)(x) :=



F(M11)(x1)⊕ · · · ⊕ F(M1m)(xm)
...

F(Mm′1)(x1)⊕ · · · ⊕ F(Mm′m)(xm)


 .

3.3 Activation Function in a Product of
Hyperbolic spaces

In Euclidean space, activation functions are also
element-wise operations. Activation functions in
product of hyperbolic spaces can be defined as:

σ⊗P(y) := (σ⊗(y1), . . . , σ
⊗(ym)). (6)

3.4 HHGCN
HGCN (Chami et al., 2020) is a Hyperbolic version
of Graph Convolutional Network (GCN) (Kipf and
Welling, 2017), a widely used Graph Neural Net-
work (GNN) architecture. First, in HGCN, each
node’s representation in the (l − 1)-th layer, xl−1

i ,
is linearly transformed, i.e.,

hl
i = (W l ⊗ xl−1

i )⊕ b. (7)

2We omit the bias parameters b for simplicity.

Then, attention-based neighborhood aggregation is
performed for each node through tangent space:

yl
i = Agg(hl)i

:= exphl
i


 ∑

j∈N(i)

(wl
ij loghl

i
(hl

j))


 . (8)

N(i) denotes the set of neighboring nodes of the i-
th node, and hl = {hl

j}j represents all the feature
vectors at the l-th layer. wl

ij is an attention weight
calculated in tangent space:

wl
ij = Softmaxj∈N(i)(MLP(log0(h

l
i), log0(h

l
j))).

Finally, a non-linear activation function is applied
to each node:

xl
i = σ⊗(yl

i). (9)

Now, we describe how to extend the HGCN ar-
chitecture to a product space using the operations
defined above: ⊕P, ⊗P, and σ⊗P . Here, we fo-
cus on the simplest case where the product space
consists of two Hyperbolic spaces of the same di-
mension in each layer. We denote the extended
model in H×H as HHGCN.

In HHGCN, each node’s feature vector repre-
sents a tuple of points in the product space P =
H × H. Let xl,P

i = (xl,1
i ,xl,2

i ) (xl,k
i ∈ H, k =

1, 2) be the feature vector of the i-th node in the
l-th layer. The product-space version of Eq. (7) is
defined as follows:

hl,P
i = (W l ⊗P xl−1,P

i )⊕P b. (10)

Then, we perform neighborhood aggregation for
each single hyperbolic space H, i.e., for k ∈ {1, 2},

yl,k
i = Agg(hl,k)i. (11)

Finally, we apply a non-linear activation function:

xl,P
i = σ⊗P(yl,P

i ). (12)

Note that the above extension can be applied to
a product of any number of hyperbolic spaces.

3.5 Task-Specific Prediction Using HHGCN
As described in Section 3.4, HHGCN outputs em-
beddings xL,P

i ∈ P for each node i, where L de-
notes the last layer. In downstream tasks such as
node classification, we first project the node em-
beddings into a single hyperbolic space using the
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beta concatenation proposed in HNN++ (Shimizu
et al., 2021), and then apply an appropriate task-
specific decoder to the projected representation.
For example, in the link prediction task, we utilize
the Fermi-Dirac decoder (Krioukov et al., 2010;
Nickel and Kiela, 2017) to calculate the probability
score for each edge. In the node classification task,
we project the representations to tangent space by
log0, then perform Euclidean multinomial logistic
regression, following HGCN (Chami et al., 2019).

3.6 HEGCN

We also attempt a combination of Hyperbolic space
H and Euclidean space E, which is expected to
show high performance for less-hyperbolic datasets.
We can define the linear layer like Eq. (5):

M ⊗ x =

(
M11 M12

M21 M22

)
⊗
(
x1

x2

)

:=

(
M11 ⊗ x1 ⊕M12 ⊗ exp0(x2)

M21log0(x1) +M22x2

)
, (13)

where M denotes a matrix, and x = (x1,x2) is a
point of the product space H× E. We can extend
the GCN for this product space H× E in a similar
way to Section 3.4 and call this model HEGCN.

4 Experiments

4.1 Setup

Following the previous studies on Hyperbolic
GCNs (Chami et al., 2019; Chen et al., 2021), we
evaluate our method in two tasks: node classifica-
tion (NC) and link prediction (LP). We use four
network embedding datasets: Disease and Airport
(Chami et al., 2019), PubMed (Namata et al., 2012),
and Cora (Sen et al., 2008). For each dataset, we
show the Gromov’s δ-hyperbolicity (Adcock et al.,
2013; Narayan and Saniee, 2011; Jonckheere et al.,
2008) calculated by Chami et al. (2019) with the
results. Lower δ means higher tree-likeness, and
thus hyperbolic architectures are expected to show
higher performance.

To test the effectiveness of our method and
neural networks in a product space of hyperbolic
spaces, we adopt HGCN and the following Eu-
clidean GNNs as the baselines: GCN (Kipf and
Welling, 2017), GAT (Velickovic et al., 2018),
SAGE (Hamilton et al., 2017), and SGC (Wu et al.,
2019).

We also test the effectiveness of our method
using different hyperbolic space representations:

hyperboloid and Poincaré ball: HHGCNh and
HEGCNh use hyperboloid, while HHGCNp and
HEGCNp use Poincaré ball as the hyperbolic space.
The difference changes the explicit formula of the
Möbius operations used in HNN and may change
computational stability. Note that HGCN uses the
hyperboloid model.

We mainly follow the training setups of previous
studies (Chami et al., 2019; Chen et al., 2021). The
dimensions are all set to n = 16 = 8 + 8 for fair
comparison. We use Riemannian Adam (rAdam)
optimizer (Becigneul and Ganea, 2019) for hyper-
bolic parameters. Curvatures of hyperbolic space
are set to −1 for our product-space models. Please
refer to Appendix D for detailed information.

4.2 Results and Discussion

Table 1 shows the performance of the proposed and
baseline models.

HHGCN vs. HGCN, GCN
For the tree-like datasets with lower δ (Disease,
Airport), HHGCNs show higher performance than
the baselines especially in the node classification
task. Particularly, HHGCNh shows comparable
or better results than the baselines on every task
in these datasets and yields significant improve-
ment in Disease. In contrast, for the datasets with
higher δ (PubMed, Cora), HHGCNs consistently
underperform HGCN. These results suggest that
HHGCN is more effective than the single-space
counterparts especially in hyperbolic datasets.

HHGCN vs. HEGCN
Table 1 demonstrates that HHGCN outperforms
HEGCN on the datasets with lower δ and slightly
underperform with lower δ. These results suggest
that HEGCN is less specialized to tree-like datasets
than HHGCN due to the incorporation of Euclidean
space. On the other hand, unexpectedly, the perfor-
mance of HEGCN in Pubmed and Cora is worse
than those of HGCN, even though HGCN uses only
hyperbolic space. These results may suggest that
Eq. (13) for HEGCN is insufficient to represent the
interaction between spaces with different proper-
ties.

Hyperboloid vs. Poincaré ball
We can observe that HHGCNh and HEGCNh
show stable performance, while HHGCNp and
HEGCNp show performance degradation in the
Disease dataset in the LP task. These results may
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Dataset Disease Airport PubMed Cora
Hyperbolicity δ = 0 δ = 1 δ = 3.5 δ = 11

Method LP NC LP NC LP NC LP NC

GCN (2017) 64.7±0.5 69.7±0.4 89.3±0.4 81.4±0.6 91.1±0.5 78.1±0.2 90.4±0.2 81.3±0.3

GAT (2018) 69.8±0.3 70.4±0.4 90.5±0.3 81.5±0.3 91.2±0.1 79.0±0.3 93.7±0.1 83.0±0.7

SAGE (2017) 65.9±0.3 69.1±0.6 90.4±0.5 82.1±0.5 86.2±1.0 77.4±2.2 85.5±0.6 77.9±2.4

SGC (2019) 65.1±0.2 69.5±0.2 89.8±0.3 80.6±0.1 94.1±0.0 78.9±0.0 91.5±0.1 81.0±0.1

HGCN (2019) 90.8±0.3 74.5±0.9 96.4±0.1 90.6±0.2 96.3±0.0 80.3±0.3 92.9±0.1 79.9±0.2

HHGCNh 96.1±0.8 94.0±1.2 96.7±0.3 90.9±2.3 93.4±1.6 76.0±1.1 92.8±2.1 77.2±1.7

HHGCNp 89.9±5.6 94.7±1.3 94.9±1.3 93.8±0.8 93.2±1.9 75.9±0.4 91.8±3.0 78.4±1.3

HEGCNh 93.6±1.9 94.0±0.8 94.0±0.3 91.5±1.6 94.8±0.8 76.1±0.6 93.2±1.4 78.3±1.2

HEGCNp 86.4±2.0 94.1±1.1 95.7±1.0 92.9±1.1 95.0±1.7 76.2±0.5 93.2±1.2 78.±1.13

Table 1: ROC AUC (%) for the link prediction (LP) task and F1 scores (%) for the node classification (NC) task.
The best scores for each column are shown in bold. We underline the scores of HHGCN and HEGCN if the scores
are higher than the baselines’ scores.

be due to the learning instability of the Poincaré
ball model mentioned by Nickel and Kiela (2018).

HHGCN with HNNs Variants

Recently, Shimizu et al. (2021) proposed HNN++,
which introduced a novel linear transformation in
Poincaré ball with less distortion than the tangent
space approximation Eq. (5). However, to the best
of our knowledge, HNN++ has not been applied to
the HGCN even in a single space. Thus, we apply
the HNN++ to HGCN and HHGCN by replacing
the hyperbolic transformation in Eq. (7) and fur-
ther compare these models. We call the extensions
HGCN++ and HHGCN++ , respectively. We also
extend HyboNet (Chen et al., 2021), a novel HNN
architecture in the Lorentz model, to HHGCN. We
denote this extension as HHGCNHN .

Table 2 shows the results. HHGCN++ yields
higher or comparable performance than HGCN++
in the NC task. In contrast, in the LP task on the
Disease dataset, HHGCN++ shows performance
degradation. On the other hand, HHGCNHN under-
performs HyboNet in most cases except for the NC
task on the Airport dataset.

These results suggest that certain HNN vari-
ants are not effective in extending to the product
space. We leave more in-depth investigation to
future work.

5 Preliminary Experiments on Machine
Translation

5.1 Setup

We also tested the applicability of our method to
machine translation tasks.

In the paper proposing HNN++, Shimizu et al.
constructed a hyperbolic version of the con-
volutional sequence-to-sequence (ConvSeq2Seq)
model (Gehring et al., 2017) by replacing various
operations with the new hyperbolic operations they
proposed, and applied it to machine translation.
We extended their model to the product of two hy-
perbolic spaces using the operations proposed in
Section 3.

They used WMT’17 English-German (Bojar
et al., 2017) dataset containing 4M sentence pairs
as training data. We extract 40K sentence pairs as
a training dataset from it for the preliminary ex-
periments. We train several scaled-down models
with Riemannian Adam for 5K iterations. For more
implementation details, please refer to Appendix
E.

5.2 Results and Discussion

Table 3 shows that our model outperformed
HNN++, albeit with lower overall performance due
to the small size of the training data. All mod-
els show a significant performance drop at D=256.
This may be due to the models being too large for
the training data. Shimizu et al. suggested that the
reason why the Euclidean model performs better
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Dataset Disease Airport PubMed Cora

Method LP NC LP NC LP NC LP NC

HGCN++ 89.1±1.3 88.0±4.3 96.8±0.2 86.8±2.5 93.0±0.2 75.2±1.7 89.2±0.6 80.1±0.6

HHGCN++ 84.3±1.9 90.6±3.3 96.3±0.6 91.4±1.1 92.8±0.2 75.9±0.9 89.3±1.2 79±0.4

HyboNet (2021) 96.3±0.3 94.5±0.8 97.0±0.2 92.5±0.9 96.4±0.1 77.9±1.0 94.3±0.3 81.3±0.9

HHGCNHN 92.6±1.7 94.4±3.9 94.1±0.9 93.6±0.8 94.1±0.8 74.8±0.9 88.0±1.3 74.3±1.6

Table 2: Results of the extension of HNN variants to a product space. We underline the scores of HHGCN++ and
HHGCNHN if these models outperform the corresponding single-space counterparts.

than the Hyperbolic model as the dimensionality in-
creases is that sufficient computational complexity
can be obtained through optimization. The fact that
the Euclidean ConvSeq2Seq has the lowest results
for D=256 may be due to its complexity resulting
in overfitting. Comparative experiments with larger
data sets are still needed, which we plan to do in
the near future.

6 Related Work

GCN in a Product Space

κ-GCN with learnable curvature κ was proposed
by Bachmann et al. (2020). They also attempted
learning on the product of two constant curvature
spaces. Unlike our results, HGCN showed better
performance than their product space model in the
Airport node classification task. It suggests that our
proposed method is more suited to datasets with
tree-like structures.

Hyperbolic-Euclidean Hybrid Model

Graph embedding in H×E considering the interac-
tion between H and E has been done by GIL (Zhu
et al., 2020a). While GIL is specialized for graphs,
our method (Eq. 13) is applicable to general neural
networks in H× E not limited to GNNs.

7 Conclusion

We proposed a general method to extend existing
single-space HNN architectures to a product Space.
We applied our method to HGCN and conducted
experiments across several graph datasets and HNN
architectures. The results show that models using a
product of hyperbolic spaces perform better on tree-
like datasets than models using a single hyperbolic
space especially in the node classification task.

Future Work
We applied our method to the several HNN vari-
ants and found that our method was effective with
some HNN types but not with others. The theoreti-
cal explanation for this difference will be a future
issue.

We plan to conduct machine translation ex-
periments using the entire WMT’17 Endlish-
German training data and to apply our method to
Transformer-based machine translation models in
the near future. We are also going to investigate
the effectiveness and limitations of our method on
other NLP tasks such as natural language inference
and document classification.
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A Operations in hyperbolic space

Möbius Addition ⊕ and Möbius Scalar
Multiplication ⊗ in the Poincaré Ball model

The hyperbolic versions of addition(Möbius Addi-
tion ⊕) and scalar multiplication (Möbius Scalar
Multiplication ⊗) are defined as follows:

x⊕c y :=

(1 + 2c⟨x,y⟩+ c∥y∥2)x+ (1− c∥x∥2)y
1 + 2c⟨x,y⟩+ c2∥x∥2∥y∥2 ,

r ⊗c x :=

1√
c
tanh(r tanh−1(

√
c∥x∥)) x

∥x∥ ,

where x,y are points in a hyperbolic space B and
r ∈ R is scalar value.

These were first introduced in the context of
Einstein’s special theory of relativity in order to
successfully describe the composite law of veloc-
ities such that the absolute value does not exceed
the speed of light (Ungar, 2008).

Exp and Log Maps in the Poincaré Ball model

For v ∈ T0Bn
c \ {0} and y ∈ Bn

c \ {0},

expc0(v) = tanh(
√
c∥v∥) v√

c∥v∥ ,

logc0(y) = tanh−1(
√
c∥y∥) y√

c∥y∥ .

Attention Mechanism in Hyperbolic Space

In order to realize the attention mechanism, cen-
troid (weighted sum) in hyperbolic space had
several definitions depending on the model, but
Shimizu et al. (2021) showed that they are equiv-
alent to Möbius gyromidpoint. For the Poincaré
Ball model, the Möbius gyromidpoint m of hyper-
bolic vectors {bi ∈ Bn

c }Ni=1 with the scalar weights
{νi ∈ R}Ni=1 is defined as:

m = Centroid({νi ∈ R}Ni=1, {bi ∈ Bn
c }Ni=1)

:=
1

2
⊗c

( ∑N
i=1 νi λc

bi
bi∑N

i=1 |νi|(λc
bi
− 1)

)
. (14)

B Decoding Mechanism

B.1 Beta Concatenation

We utilized beta concatetenation proposed in
HNN++ (Shimizu et al., 2021) to project product-
space representations into a single hyperbolic

space:

xout
i = exp0(

βn
βn1

log0(x
L,1
i ),

βn
βn2

log0(x
L,2
i )).

(15)

Where n is the overall dimension, and ni is the
dimension of i-th space (here n1 = n2 = n

2 ). In-
side the exp0 parentheses, the usual concatenation
of two Euclidean vectors is performed. βN :=
B(N2 ,

1
2) (B : beta function) are the scaling factors

to preserve the expectation of the norm.

B.2 Fermi-Dirac Decoder
For link prediction task, we utilize the Fermi-Dirac
decoder (Krioukov et al., 2010; Nickel and Kiela,
2017), a generalization of sigmoid, to calculate the
probability score for edges:

p(i, j) = [e(dH(x
out
i ,xout

j )−r)/t]−1. (16)

where r, t > 0 are hyperparameters and dH is dis-
tance function of hyperbolic space H.

C Dataset Description

We use four network embedding datasets, Disease
(Chami et al., 2019), Airport (Chami et al., 2019),
PubMed (Namata et al., 2012), and Cora (Sen et al.,
2008) following Chami et al. (2019); Chen et al.
(2021). PubMed and Cora are standard bench-
marks, where nodes are scientific papers, edges
are citations between them, and node labels repre-
sent the academic domains of the papers. The first
two datasets are constructed by Chami et al. (2019).
Disease is a tree dataset built by simulating SIR
disease spread model (Anderson and May, 1991),
and Airport is a graph dataset consisting of airports
and air routes obtained from OpenFlights.org 3.

The four datasets are preprocessed by Chami
et al. (2019) and published in their code repository.4

We show statistics of the datasets in table 4. For
more information, please refer to the paper (Chami
et al., 2019).

D Details on Network Embedding
Experiments

We utilize Geoopt (Kochurov et al., 2020) and Rie-
mannian Adam (rAdam) optimizer (Becigneul and
Ganea, 2019) for hyperbolic parameters. For each
dataset and model, we conduct hyper-parameter

3https://openflights.org
4https://github.com/HazyResearch/hgcn
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Name Nodes Edges Classes Node features
Disease 1044 1043 2 1000
Airport 3188 18631 4 4

PubMed 19717 88651 3 500
Cora 2708 5429 7 1433

Table 4: Datasets’ statistics.

search over Dropout ∈ {0, 0.1, 0.3, 0.7, 0.9},
Weight-Decay ∈ {0, 0.01, 0.1, 0.2, 0.4}. The per-
formance is evaluated using five different random
seeds for each condition. We fixed curvatures of
hyperbolic spaces to −1. This is because learn-
able curvature sometimes showed instability. Some
hyper-parameters, such as the initial learning rate
and the number of layers, are fixed as shown in
table 5, with reference to the previous study (Chen
et al., 2021).

E Machine Translation Experiments

Following the setting of HNN++ (Shimizu et al.,
2021), each model is the encoder-decoder model,
both of which are composed of five convolutional
layers with a kernel size of three and a channel
size of D, five convolutional layers with a kernel
size of three and a channel size of 2D, and two
convolutional layers with a kernel size of one and
a channel size of 4D. In each layer of our model,
the hyperbolic affine transformation of HNN++ is
replaced by its extension to the product of two
hyperbolic spaces.

For training and optimization, we mainly fol-
low the setting of HNN++. The main differences
are the size of the dataset and iteration numbers.
We extract (40K, 10K, 1K) sentences from the en-
tire WMT’17 English-German dataset consisting of
(4M, 40K, 3K) sentences for (training, validation,
test). We trained models for 5K iterations instead
of 100K iterations.

We use the same parameter as HNN++ for the
Riemannian Adam optimizer; β1 = 0.9, β2 = 0.98
and ϵ = 10−9. The warm-up period was set as the
first 400 iteration instead of 4000 iteration.
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Dataset Disease Airport PubMed Cora

Task LP NC LP NC LP NC LP NC

Layers 2 4 2 6 2 3 2 3
Initial Learning Rate 0.005 0.005 0.01 0.02 0.008 0.02 0.02 0.02
Max Grad Norm None 0.5 0.5 1 0.5 0.5 0.5 1

Table 5: Hyper-parameters for each task.
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