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Abstract

The current study quantitatively (and quali-
tatively for an illustrative purpose) analyzes
BERT’s layer-wise masked word prediction on
an English corpus, and finds that (1) the layer-
wise localization of linguistic knowledge pri-
marily shown in probing studies is replicated
in a behavior-based design and (2) that syn-
tactic and semantic information is encoded at
different layers for words of different syntac-
tic categories. Hypothesizing that the above
results are correlated with the number of likely
potential candidates of the masked word predic-
tion, we also investigate how the results differ
for tokens within multiword expressions.

1 Introduction

The attention mechanism of Transformers
(Vaswani et al., 2017) has enabled language
models (LMs) to effectively incorporate contextual
information into word representation. One such
model, BERT (Devlin et al., 2019), has been
shown particularly useful in a wide range of down-
stream tasks, outperforming the state-of-the-art
benchmarks in many cases. However, it is yet
to be clear what exactly such LMs learn, and
what information is encoded in their contextual
word representations (CWRs). For this reason,
much work has been devoted to answering these
questions, often referred to as BERTology (see
Rogers et al., 2020 for a comprehensive review).

Among such studies, of particular interest is the
localization of linguistic knowledge. As BERT con-
sists of multiple layers (12 layers for bert-base
and 24 layers for bert-large), it is crucial to un-
derstand what information is encoded in each layer,
and how it differs from one another. However,
the methodologies employed in such studies dif-
fer substantially from each other (§2): some di-
rectly utilize the internal structure of such models
by training probing classifiers, while others study
the behaviors of such models at inference time.

Structure-based probes have often been successful
at assigning particular domains of linguistic knowl-
edge to local regions, yet the reliance on probing
classifiers (and the introduction of extra parame-
ters) makes it unclear if such linguistic knowledge
is just an artifact of the classifier or is truly encoded
in the model. Behavior-based probes do not rely
on external classifiers, but tend to focus on quali-
tative analyses of the outputs from the final layer,
whereas quantitative analysis of layer-wise output
remains understudied in the behavioral paradigm.

In this study, we explore layer localization with
behavioral probing. Specifically, we mask out to-
kens one at a time and check whether BERT pre-
dicts the same word, another word with the same
part of speech, or neither (3). By using different
layers for the prediction, we can determine which
parts of the network correspond to higher or lower
rates of congruent predictions. Along with gener-
ally confirming some of the main observations of
the structure-based probing studies, we find consid-
erable variation by part of speech and some effect
of multiword expression status, and discuss possi-
ble interpretations of these findings (§4).

2 Previous Work

2.1 Structure-Based

Since the advent of BERT (Devlin et al., 2019),
much work has been devoted to revealing what
linguistic knowledge it has. Among such studies,
Tenney et al. (2019a) observed that one line of
work is behavior-based, while the other directly
investigates the structure of the CWRs. Whereas
the former focuses on the qualitative error analy-
ses of BERT’s predictions on certain controlled
tasks, the latter directly probes the internal struc-
ture of the model. Building on the latter line of
the work, Tenney et al. (2019a) apply a probing
method called edge probing (Tenney et al., 2019b),
which allow them to infer what sentence-level in-
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formation BERT encodes based on a given span
by restricting the input to the probing classifier.
They find that BERT’s layer-wise linguistic knowl-
edge resembles classical NLP pipelines; in other
words, lower layers are more responsible for syn-
tactic knowledge and higher layers for semantic
knowledge, although syntactic knowledge is more
localizable at lower layers whereas semantic knowl-
edge is rather spread across the layers.

Jawahar et al. (2019) make similar observations,
based on a suite of probing tasks developed by
Conneau et al. (2018). They find that the lowest
layer is most successful at phrase detection, and the
performance degrades until layer 8, beyond which
it reaches a plateau. In another set of experiments,
they find that lower, middle, and higher layers are
responsible for surface, syntactic, and semantic
information, respectively. Corroborating this result,
Hewitt and Manning (2019) employ a novel method
called a structural probe to retrieve a syntactic tree
from contextualized word embeddings, and find
that the representation from middle layers have
better performance in the tree retrieval task.

With an increasing number of studies employing
probing classifiers, in their comprehensive review
of BERTology, Rogers et al. (2020) raise a warn-
ing that such probing may not provide us with a
full picture of what BERT is: "If a more complex
probe recovers more information, to what extent
are we still relying on the original model?" Indeed,
while some studies use a linear classifier as a probe
to limit the number of newly introduced parame-
ters (e.g., part of Liu et al., 2019), others use more
complex models, such as multi-layer perceptron
(MLP), obscuring the source of success on probing
tasks. Hewitt and Liang (2019) suggested a metric
called selectivity to measure how well a probe re-
flects the actual linguistic knowledge encoded in
the CWRs in question, as opposed to learning the
task independently of such CWRs.

2.2 Behavior-Based
Complementing such limitation of probing studies,
more recent works have attempted to avoid intro-
ducing new parameters through creative probing
methodologies, such as contextual word embed-
ding (CWE) similarity ranking (Gessler and Schnei-
der, 2021), and direct probe (Zhou and Srikumar,
2021).

In fact, the other line of work, which Tenney et al.
(2019a) described as behavior-based, which usu-
ally relies on qualitative (error) analyses of BERT’s

predictions on controlled tasks, is parameter-free
and utilizes BERT’s behaviors at inference time,
and Rogers et al. (2020) also argue for the impor-
tance of this line of work. Such work includes in-
vestigation of semantic knowledge (Ettinger, 2020;
Marvin and Linzen, 2018) and syntactic knowledge
(Goldberg, 2019; Poliak et al., 2018).

For example, analyzing BERT’s masked word
prediction output on controlled tasks developed
in psycholinguistic studies, Ettinger (2020) finds
that BERT struggles with common sense and prag-
matics, role-based event prediction, and negation.
Goldberg (2019) also studies BERT’s masked word
prediction outputs on both naturally occurring sen-
tences and manually crafted stimuli, finding that
BERT is sensitive to subject-verb agreement.

While these studies have revealed a great deal
about BERT’s linguistic knowledge, they have pri-
marily focused on (1) content words, such as verbs
and nouns, and (2) the output from the final layer.
Although the data used in the current study are not
manually crafted or controlled in any way similar
to the above-mentioned studies, it attempts to add
to the existing body of literature by (1) extending
the analyses to all syntactic categories and (2) ana-
lyzing how BERT’s predictions differ across layers.
In light of all this, we ask the following questions:
1. Can the layer-wise linguistic knowledge found
in structure studies be replicated with a behavior-
based approach, namely, layer-wise masked word
prediction analyses (§4.1.1)?
2. Do the results vary by syntactic category
(§4.1.2)?

3 Experimental Setup

We used STREUSLE 4.4 (Schneider et al., 2018;
Schneider and Smith, 2015), a corpus of web re-
views written in English. This corpus contains 723
documents, 3,813 sentences, and 55,590 tokens in
total with rich annotation of various syntactic and
lexical-semantic information (e.g., annotation of
3,013 strong multiword expressions). The BERT’s
prediction data were prepared in the following way:
1. For each sentence, create n variants, where n is
the number of tokens in the sentence, by replacing
one token by [MASK] token.
2. For each variant (where one word is repalced
with [MASK] in step 1) of each sentence, run
vanilla BERT to generate a prediction from each
layer ℓ ∈ L.
3. For each of the n variants of each sentence,
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where [MASK] is now replaced by a predicted
token in step 2, POS-tag the predicted token to
identify its syntactic category.

For the BERT model, we use bert-base-uncased

because bert-base and bert-large have similar
distributions of layers, which Rogers et al. (2020)
call "stretch effect", although they do sometimes
exhibit heterogeneous behaviors, such as responses
to perturbation in word prediction (Ettinger, 2020).
The model was retrieved from the PyTorch imple-
mentation of BERT by huggingface (Wolf et al.,
2020).

For POS, the tag set of 17 POSs from Universal
Dependencies (UD) v2 (Nivre et al., 2020) was
used, and Stanza (Qi et al., 2020) was used for the
automatic tagging of predicted tokens.

The above experiment resulted in the prediction
of, and the tagging of, L×S×N = 722,670 masked
tokens, where L, S, and N are the number of layers,
the number of sentences, and the (mean) length of
the sentences, respectively. In addition to analyzing
the descriptive statistics, in order to quantify the
relative contribution of each layer to POS match
and word match, differential scores at each task
(POS match or word match) for each layer ∆(ℓ)T
were obtained by computing the incremental gain
from the previous layer (Equation 3 of Tenney et al.,
2019a):

∆(ℓ)T = Score(ℓ)T −Score(ℓ−1)
T (1)

As a summary statistic of these scores, (pseudo)
expectation of differential scores (Equation 4 of
Tenney et al., 2019a) was also calculated:

Ē∆[ℓ] = ∑L
ℓ=1 l ⋅∆(ℓ)T∑L
ℓ=1 ∆(ℓ)T

(2)

This is an "expected layer", at which the gain scores
are centered around. If the differential scores were
uniformly distributed, the expected layer would
simply be the middle layer, which is layer 6. If the
contribution of lower layers were higher (i.e., dif-
ferential scores were higher at lower layers), then
the expected layer would be lower than 6, and vice
versa.
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Figure 1: Layer-wise Accuracy of POS Match, Word
Match, and POS Match without Word Match

4 Results

4.1 Quantitative Results
4.1.1 Overall
The top graph in Figure 1 illustrates the accuracy
score1 of POS match, word match, and POS match
without word match (i.e., the predicted word is
not the same as the original word, but is the same
POS). Notably, POS match tends to increase at
lower layers and approaches plateau towards the
middle to high layers, whereas word match tends
to increase linearly from lower to higher layers.
Consequently, the proportion of the tokens with
only POS match peaks at around layers 5 and 6 and
starts declining beyond that point.

The middle and bottom graphs in Figure 1 illus-
trate the differential scores of POS match and word
match, respectively. The vertical red dotted lines
represent the expected layer defined in §3. The dif-
ferential scores for POS match are clearly centered
around lower layers followed by a sharp decline be-
yond middle layer, with the expected layer of 3.68.
In contrast, the differential scores for word match
are relatively more uniformly distributed across
layers, and the expected layer is 5.22. This sup-
ports the findings from previous work that syntactic
knowledge is more localizable at lower to middle

1Accuracy was chosen here for direct comparability; the
proportion of the top predictions that are of the same POS as
the original token, the proportion of the top predictions that
are of the same word as the original token, and the proportion
of the top predictions that are of the same POS but different
word as the original token.
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N POS POSM word wordM
op

en
ADJ 3169 4.04 4.24 6.45 6.35
ADV 3080 3.42 3.76 5.74 5.30
INTJ 108 3.48 9.33 7.13 8.75
NOUN 7265 3.98 4.48 7.53 6.99
PROPN 1406 6.68 6.11 8.05 7.88
VERB 5328 3.96 3.68 6.73 6.38

cl
os

ed

ADP 3368 3.16 3.52 5.01 5.18
AUX 2950 3.10 4.43 5.14 5.08
CCONJ 1803 5.48 5.32 5.88 4.74
DET 3525 2.16 2.54 3.11 3.43
NUM 555 5.70 6.81 6.73 7.23
PART 1314 1.80 1.31 2.08 1.40
PRON 5264 3.91 4.61 6.76 5.96
SCONJ 808 5.05 4.45 5.71 5.45

Table 1: Expected Layer by UPOS. POSM and wordM
stand for POSMWE and wordMWE, respectively.

layers (Tenney et al., 2019a; Liu et al., 2019) and
that semantic knowledge is spread across layers
(Tenney et al., 2019a).

4.1.2 By Syntactic Category
Table 1 summarizes the expected layers for POS
match and word match for all tokens, as well as
for tokens that are part of multiword expressions
(MWEs), by UPOS.2 In this section, we will fo-
cus on the former. First, in general, the expected
layers for POS match and word match differ sub-
stantially by syntactic category. Whereas lower
layers contribute much more for POS match for
PART (Ē∆[ℓ] = 1.80), middle to higher layers con-
tribute more for POS match for PROPN (Ē∆[ℓ]
= 6.68). A similar observation is made for word
match: on the one hand, lower layers contribute
more for PART(Ē∆[ℓ] = 2.08), and higher layers
contribute more for PROPN (Ē∆[ℓ] = 8.05) on the
other hand.

Although no straightforward generalizations can
be made, for word match, we observe a tendency
that expected layers tend to be higher when the
original tokens are in open class, such as PROPN
(Ē∆[ℓ] = 8.05) and NOUN (Ē∆[ℓ] = 7.53), whereas
they tend to be lower when the original tokens are
in closed class, such as PART (Ē∆[ℓ] = 2.08) and
DET (Ē∆[ℓ] = 3.11).3 This seems to suggest that
higher layers tend to contribute more to word match
for tokens in syntactic categories with more word
types (i.e., open class), and that lower layers tend to
contribute more for tokens in syntactic categories
with fewer word types (i.e., closed class).

2Miscellaneous tags, i.e. PUNCT, SYM, and X, are ex-
cluded from the analysis.

3Open and closed classes are based on the classifica-
tion by UD project’s (Nivre et al., 2020) website: https:
//universaldependencies.org/u/pos/index.html

However, notable exceptions from closed class
include NUM (Ē∆[ℓ] = 6.73) and PRON (Ē∆[ℓ] =
6.76). The former belongs to closed class because
its atomic elements are finite (i.e., 0-9); however,
with the infinite number of combinations of such
elements, this class may be behaving similarly to
open class. This is clearly not the case for the
latter—PRON has a finite number of word types,
which are fewer than the ones in open class. One
plausible explanation is that identifying a correct
pronoun requires a resolution of subject-verb agree-
ment, which is shown to be handled well by BERT
(Goldberg, 2019; van Schijndel et al., 2019) es-
pecially at layers 8 and 9 (Jawahar et al., 2019).
However, upon closer examination, expected lay-
ers for personal pronouns in accusative case (Ē∆[ℓ]
= 8.19) or those in (in)direct object positions (Ē∆[ℓ]
= 8.08) are found to be much higher than those in
nominative case (Ē∆[ℓ] = 6.34) or in subject po-
sitions (Ē∆[ℓ] = 6.29), although the latter should
benefit from the subject-verb agreement resolution
at higher layers. Given this observation, it may
be the case that personal pronouns in accusative
case or (in)direct object positions are more likely to
necessitate long-distance coreference resolution in
English, and such long-distance dependencies are
shown to be handled better at higher layers (Jawa-
har et al., 2019). However, this hypothesis remains
inconclusive (see §4.2 for more discussion).

4.1.3 Multiword Expressions
As an additional analysis of the effect of the number
of potential candidates on expected layer, we calcu-
late the expected layer only for tokens that are part
of MWEs, based on the annotation of strong MWE
in STREUSLE (Schneider et al., 2018; Schneider
and Smith, 2015). Although the strong MWEs in
STREUSLE consist of heterogeneous sets of ex-
pressions, such as idioms, light verb constructions,
and noun compounds, we assume that, overall, this
linguistic environment is more constrained and has
fewer potential candidates for masked word predic-
tion.

The POSM and wordM columns in Table 1 rep-
resent the expected layers of POS match and word
match only for the tokens that are part of MWEs,
respectively. The expected layers are colored in
red if they are higher for MWEs than for all tokens,
and in blue if they are lower for MWEs than for
all tokens. In general, on the one hand, for word
match, they are lower for MWEs than for all to-
kens, which is congruent with the hypothesis from
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ℓ prediction
3 to, a, him, me, them, her, the, us, one, people
6 him, me, her, them, us, to, people, everyone, it,

you
12 us, her, me, we, them, everyone, our, him, it,

stephanie
Context: Stephanie’s knowledge of the market and prop-
erties in our price range, made [MASK] (original: us)
feel secure in our decision to buy when we did. (reviews-
341397-0002)

Table 2: Selected Example 1 from STREUSLE

§4.1.2 that lower layers contribute more when the
number of potential candidates is relatively small.
On the other hand, however, the expected layers
for POS match tend to be higher for MWEs than
for all tokens. The precise reason why this was the
case is left for future work; however, we provide a
potential account for these observations below.

One possible explanation for the higher expected
layers of POS match is that semantic information
plays an important role in predicting certain se-
quences of POSs observed in MWEs. For exam-
ple, the common occurrences of noun compounds
could be a contributing factor to the higher ex-
pected layer for POS match only for NOUNs that
are part of MWE (Ē∆[ℓ] = 4.48) compared to that
of all NOUNs (Ē∆[ℓ] = 3.98). Given that the mean-
ing of the second token (the head of the compound)
is crucial in detecting its (dis)preference on form-
ing a compound, it may require more semantic
information for BERT to correctly identify that the
first token is NOUN rather than ADJ, resulting in a
higher expected layer. Indeed, for all NOUNs that
are part of MWE, the most common incorrect pre-
diction was ADJ at all layers from layer 2 through
12, which was not the case for NOUNs that are not
part of MWE (see §4.2 for an example).

4.2 Qualitative Results

In this section, we present a set of selected exam-
ples from the STREUSLE corpus to illustrate the
observations made in §4.1.

Table 2 illustrates the identification of a personal
pronoun at each layer of BERT (only showing lay-
ers 3, 6, and 9). From lower to higher layers, it
is clear that the ranking of the correct pronoun us
is steadily promoted. In fact, it is not until layer
11 that the correct pronoun us receives the highest
prediction probability. In §4.1.2, one hypothesis
that can potentially account for the higher expected
layer of PRON (personal pronouns in object posi-
tions or in accusative case in particular) was the

ℓ prediction
3 own, new, prison, personal, old, back, hospital,

private, usual, current
6 own, private, bedroom, parking, damn, front,

hotel, hospital, office, kitchen
12 car, garage, front, apartment, bedroom, office,

cell, back, truck, elevator
Context: they fixed my [MASK] (original: garage) doors
in literally less than an hour. (reviews-341397-0002)

Table 3: Selected Example 2 from STREUSLE

long-distance dependency. In Table 2, pronouns
our and we are readily available in relatively close
proximity, but the correct pronoun us is not iden-
tified until layer 11. This seems to suggest that
pronouns that are ACC-marked or in object posi-
tions pose unique challenges not explicable only
by the distance of the dependency.

Table 3 illustrates BERT’s predictions of the first
token of a noun compound garage doors. As dis-
cussed in §4.1.3, at layer 3, many of the predic-
tions are generic adjectives (e.g., own, new, old,
private, usual, current), although the meaning of
the word door seems to be captured to some extent,
as we can see from some of the predictions (e.g.,
prison, back, hospital). At layer 6, such prediction
of nouns that are specific to the meaning of the
word door becomes more dominant. This is even
more so at layer 12, where such nouns occupy most
of the predictions despite the presence of a cue, my,
which strongly collocates with own. This supports
our observation that, for some syntactic categories
including NOUN, MWE’s production of certain
sequences of POSs necessitates more semantic in-
formation to restore the POS of the original word,
resulting in a higher expected layer.

5 Conclusion

In this study, we set out to investigate if (1) the
layer-wise linguistic knowledge found in structure
studies can be replicated with a behavior-based de-
sign and if (2) the results vary by syntactic category.
By analyzing BERT’s layer-wise masked word pre-
diction, we have shown that the localization of lin-
guistic knowledge found in various probing studies
was indeed replicated; more specifically, syntactic
knowledge was encoded primarily in lower layers,
whereas semantic knowledge was spread across the
12 layers.

We also observed that the contribution of partic-
ular layers on syntactic and semantic information
varied substantially, depending on the syntactic
category (i.e., UPOS) and on the syntactic class
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(i.e., open vs. closed class) more generally, of the
original token. Hypothesizing that the number of
potential candidates is one of the contributing fac-
tors to this difference, we showed that, in general,
the expected layers were higher for POS match and
lower for word match for the tokens that are part
of MWEs (a supposedly more constrained environ-
ment).

Our contribution is twofold. First, by leverag-
ing BERT’s layer-wise outputs, we confirmed the
previous studies without relying on external prob-
ing classifiers or introducing extra parameters that
can potentially obfuscate the locus of the observed
linguistic knowledge (i.e., language model vs. prob-
ing classifier). Second, by extending the analyses
to all open and closed class categories rather than
limiting the scope to popular content-words, such
as verb, noun, and adjective, we show that the en-
coding of syntactic and semantic knowledge about
words of different UPOS varies substantially.

Lastly, we acknowledge that this study has a
few limitations. First, the layer-wise masked word
prediction essentially feeds intermediate layers di-
rectly to the classification layer, thereby inferring
the linguistic information encoded in the interme-
diate layers. However, this is not what BERT is
trained for; that is to say, arguably, only the final
layer is optimized for the masked word prediction
task, and other layers are not. Hence, the interme-
diate layers’ lower POS and word match accuracy
may not be due to the "absence" of syntactic or se-
mantic knowledge encoded in those layers; rather,
they may simply suggest that those intermediate
layers are not trained for such tasks.

Second, although we provided a possible expla-
nation for our observations and showed a few exam-
ples that seem to support our hypotheses, these are
highly speculative and not meant to prove anything.
We consider this a limitation of our approach, and
a more controlled experiment is needed to make
stronger claims or to test our hypotheses, and this
is left for future work.
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