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Abstract
In order to build more human-like cognitive
agents, systems capable of detecting various
human emotions must be designed to respond
appropriately. Confusion, the combination of
an emotional and cognitive state, is under-
explored. In this paper, we build upon prior
work to develop models that detect confusion
from three modalities: video (facial features),
audio (prosodic features), and text (transcribed
speech features). Our research improves the
data collection process by allowing for continu-
ous (as opposed to discrete) annotation of con-
fusion levels. We also craft models based on
recurrent neural networks (RNNs) given their
ability to predict sequential data. In our exper-
iments, we find that text and video modalities
are the most important in predicting confusion
while the explored audio features are relatively
unimportant predictors of confusion in our data.

1 Introduction

Humans are adept at recognizing the emotions of
others. They can identify whether another person
has positive, negative, neutral, or more nuanced
emotions by considering their facial expressions,
voice, and words. To construct more human-like
cognitive systems, it is important that, just as hu-
mans do, computational systems can infer emo-
tions of the users that they interact with. Modeling
confusion is relatively under-explored and can be
difficult to detect computationally. Confusion can
occur when someone does not know how to pro-
ceed with a task or when reconciling old beliefs
with confounding information. The American Psy-
chological Association’s Dictionary of Psychology
defines confusion as “a mental disturbance charac-
terized by bewilderment, inability to think clearly
or act decisively, and disorientation for time, place,
and person” (Association, 2021). Potential applica-
tions of a confusion-detecting agent include task-
driven dialogue chat-bots and detecting a learner’s
confusion in online learning environments.

We present models that leverage data across sev-
eral modalities - facial expressions, speech signals
with prosody, and transcribed spoken language -
that not only can be used to predictively model
confusion but also to extract insights with respect
to which features of which modalities are clearer
indicators of confusion. In this work, we answer
the following research questions:

RQ1 How can we improve upon prior data collec-
tion methods to obtain a more precise multi-
modal dataset with confusion labels?

RQ2 How accurate of a model can we construct that
classifies the degree of confusion at different
points within a task?

RQ3 What facial, audio, and language features
serve as good predictors of confusion (or a
lack thereof)?

2 Related Work

Detecting confusion has mostly been explored in
educational settings to discern students’ confusion.
As MOOCs (Massively Open Online Courses) have
become more prevalent, researchers have focused
on building models that accurately detect students’
confusion. Defining a learner’s confusion as “an
individual state of bewilderment and uncertainty
as to how to move forward,” Atapattu et al. (2020)
found that linguistic-only features were highly ac-
curate predictors of confusion. Using a dataset of
nearly 30, 000 anonymous posts from Stanford’s
MOOC discussion forum, they used natural lan-
guage processing resources, e.g., sentiment anal-
ysis, and a MANOVA test to extract feature im-
portance. While Atapattu et al. (2020) focused on
linguistic-only features, Shi et al. (2019) analyzed
facial expressions to classify learners’ confusion.
They used statistical learning models that leveraged
a combination of histogram of oriented gradients
(HOG) features and local binary patterns (LBPs)
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in tandem with a prediction system, composed of
a support-vector machine (SVM) and a convolu-
tional neural network (CNN). The CNN-SVM had
the best performance, indicating that facial expres-
sions can be good predictors of confusion.

Our research differs from these past experiments
in that we aim to create a multimodal model. Fur-
thermore, we incorporate additional speech anal-
ysis to craft a more richly informed predictor of
confusion. The study most closely related with
our own is Kaushik et al. (2021), which experi-
mented with a random forest classification scheme
applied over discrete time intervals extracted from
two-person interactions. Notably, this work con-
sidered interpretable metrics such as disfluencies
(like um), questions, and pauses, although these
were less correlated with confusion than the best-
correlated facial expressions. We expand upon the
study by Kaushik et al. (2021), repeating the hu-
man subject set-up of two people collaboratively
solving a task over Zoom. While that study had
participants label their level of confusion across a
30-second interval, our research explores continu-
ous annotation instead of discrete spans. We expect
that continuous confusion labels will enable more
useful reference data for classification.

3 Methodology

3.1 Data Collection

In this IRB-approved study, subjects were recruited
through email to participate in a “conversational
behavior study.” We did not debrief participants
until after the study was complete that the true aim
was to analyze confusion. Participants were paired
by availability to work together through a series
of three confusion-evoking tasks. We had partici-
pants complete the tasks in pairs to elicit intuitive
and meaningful interactions. Our goal was to con-
struct a dataset of multimodal text, speech audio,
and video-based facial expression features with
confusion-inducing tasks. Additionally, we sought
to improve upon the prior research of Kaushik et al.
(2021) by supporting continuous annotation of con-
fusion levels by participants. The first and third
tasks were adapted from Kaushik et al. (2021); in
the first task, participants were given four minutes
to find a 30 minute meeting time given two calen-
dars which actually had no overlapping availability
(see Figure 1).

The second and third tasks were logic puzzles
(one was the widely known puzzle titled “Cheryl’s

Figure 1: In one task, participants were given two calen-
dars without overlapping availability. They were asked
to find a 30 minute meeting time at which they were
both available.

Figure 2: In our continuous confusion annotation, par-
ticipants were instructed to use the four radio buttons
to continuously annotate their confusion levels. They
were instructed to change the radio button whenever
they noticed a change in their own confusion level.

Birthday”). Given a list of potential birthdays and
clues about which of those dates could not have
been Cheryl’s birthday, participants were asked to
reason through hints, rule out dates, and determine
Cheryl’s true birthday.1 Participants were given
four to seven minutes to solve the riddles with pe-
riodic hints sent via Zoom chat. After participants
completed the three tasks, they were then told that
the true purpose of the experiment and asked to an-
notate their confusion levels throughout each task
utilizing our website: the Confuse-o-Meter. The
website displayed the playback of the participants
solving the task on top of a set of radio buttons
with the following labels: Not Confused, Slightly
Confused, Very Confused, and Extremely Confused.

1https://en.wikipedia.org/wiki/Cheryl%27s_Birthday
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Figure 3: Our method for continuous annotation allowed
for us to label each video frame with the participant’s
indicated confusion level. Above is the distribution
of labels for each video frame. Task 1 was the least
confusing task, as shown by the fact that the majority of
the labels appear in the Not Confused state.

As seen in Figure 2, participants were instructed
to click on the appropriate radio button whenever
they noticed a change in their confusion level.
From the website, we obtained data in the follow-
ing form: [(timestamp of change, new confusion
label), (timestamp of next change, new confusion
label),. . . ]. We used this encoding to produce con-
fusion labels for every time-step of data. This ap-
proach allowed us to generate a dataset in which
every time-step of data was accurately labeled with
the participant’s confusion level.

Some tasks were harder than others. We in-
tended for the tasks to progress in difficulty so that
we could collect ample Not Confused and Confused
data. The distribution of the participants’ confusion
ratings in the first and last task are shown in Figures
3 and 4, respectively. It is clear that the participants
found the first task to be less confusing, with the
majority of the labels being in the Not Confused
state. A higher proportion of the labels fall in the
Quite Confused and Very Confused categories for
tasks 2 and 3.

3.2 Feature Extraction

The OpenFace (Baltrušaitis et al., 2015, 2018) soft-
ware package was used to extract 17 different Ek-
man and Friesen (1976) facial action units (FACs)
defined by per video frame. Audeering’s openS-
MILE (Schuller et al., 2009; Eyben et al., 2010)
toolkit was used to extract 34 different audio fea-
tures, including pitch, intensity, speech rate, and
MFCCs per frame. Finally, Amazon Transcribe

Figure 4: Task 3 was the most confusing task. Although
the majority of the labels fall under A Little Confused,
there are a considerable number of video frames labeled
as Quite Confused and Very Confused.

Table 1: Text Encoding Feature Descriptions

Feature Type Description

is_question bool
token is part of
question

is_pause bool
token is ≥ 0.398s
pause within
utterance

curr_sentence_
length

int
number of words
in current sentence

speech_rate float
words/min.
of current sentence

is_edit_word
is_reparandum
is_interregnum
is_repair

bool
generated by Deep
Disfluency

was used to transcribe speech and deep-disfluency
Hough and Schlangen (April, 2017) was used to ex-
tract disfluent words in the form of transcribed text.
Similar to Kaushik et al. (2021), disfluencies like
edits, repair, reparandum, and interregnum word
tokens were further identified.

Using the output of Amazon Transcribe, each
participant’s text was divided into a sequential list
of tokens, where a token could be a spoken word
or a period of silence. For each token, we extracted
8 features, as shown in Table 1.

Since Amazon Transcribe’s output was tagged
with timestamps, we were able to align the text,
audio, and video features. With missing data elimi-
nated or smoothed out by inserting the averages of
data in nearby frames, the audio and visual feature
vectors for each word token were then taken to be

190



the averages of all the frames within the token’s
given time-span. Participant confusion labels over
each time-span were finally collapsed to the most-
occurring label for each word/token. Participant
confusion labels were “smeared” (or duplicated)
over frames according to their time-step, such that
each frame was associated with the confusion label
that the participant had selected at that time marker.

Figure 5: Text Features: The y-axis is the proportion
of tokens that were: (a) a part of a spoken question, or
(b) a distinct pause in the participant’s speech. Observe
that a higher proportion of tokens are part of a question
or a pause when the participant is highly confused.

3.3 Exploration of Hidden Markov Models

We explored Hidden Markov Models (HMMs) be-
cause of their interpretability and applicability to
sequential data. The HMM relies on the Markov
assumption, which means that the state of the sys-
tem at time step i is only dependent on the state
of the system at time step i − 1. Experimenting
with different temporal increments based on video
frames or word tokens, our model was unable to
accurately predict confusion. This left us with a
trade-off: either use all our frame-by-frame data
and have the time increment be so small that the
HMM yields a diagonal-heavy transition matrix or
have longer increments but make our dataset pro-
hibitively small by averaging over longer intervals.

3.4 The Neural Modeling Approach

We designed recurrent neural networks (RNNs)
given their ability to extract temporal dependencies
inherent to sequences (Schäfer and Zimmermann,
2006; Ororbia II et al., 2017). In essence, RNNs
are stateful ANNs that “remember” information in
prior time-steps < t when processing data at t.

While taking a neural engineering approach of-
fers a great deal of flexibility in terms of the
type of architecture that one might design to
process streams of different modalities (meaning
there are many possible model designs we could

craft), in this work, we take a simple approach.
For each data modality, we crafted one RNN
modality-processing model that specifically imple-
ments p(yt|xm

0 ,xm
1 , ...,xm

t ; Θm) = fm(xm
t ; Θm)

where yt is the (integer) confusion label2 at time
t and xt ∈ RO×1 is the specific feature vector
(with O feature values) for modality m, where
m = {vis, aud, txt} (vis means visual, aud means
audio, and txt means text/symbols) and Θm con-
tains all of the learnable weight parameters. Con-
cretely, any modality-processing RNN with H hid-
den neurons is specified by the dynamics:

ht = ϕh(W
m · xm

t +Vm · ht−1 + bm) (1)

ŷt = ϕo(U
m · ht + cm) (2)

where ϕ(v) = max(0, v) is the linear rectifier used
for the hidden layer activation function, ϕ(o) =
exp(o)/

∑
j exp(o)[j] is the softmax used for the

output layer, · denotes matrix-vector multiplication,
and ⊙ denotes the Hadamard product.
Wm ∈ RH×O is the input-to-hidden weight ma-

trix, Vm ∈ RH×H is the recurrent weight matrix,
and Um ∈ RO×H is the output/feature emission
matrix while bm ∈ RH×1 and cm ∈ RO×1 are
bias vectors. The RNN weight parameters Θm =
{Wm,Vm,Um,bm, cm} are initialized using a
scaled, centered Gaussian distribution and param-
eters are fit data using backpropagation through
time to calculate the gradients of the cost function
L(ŷt,yt) =

∑T
t=1−

∑
j(yt ⊙ log(ŷt))[j]. The

resulting ∂L(ŷt,yt)
∂Θm (the partial derivatives) is used

to adjust Θ using stochastic gradient descent based
on the Adam update rule (Kingma and Ba, 2014).

Given the three modality-processing RNNs we
trained, i.e., fvis(xvis

t ,Θvis), faud(xaud
t ,Θaud),

f txt(xtxt
t ,Θtxt), final label predictions were made

using a late-fusion aggregation scheme (Snoek
et al., 2005). In other words, we computed
the final predicted label yt as follows: yt =
argmax(αvisy

vis
t +αaudy

aud
t +αtxty

txt
t ), which

returns the index of class within the average of the
three modal probability distributions. Importance
weights αvis, αaud, and αtxt were set to 1.0, which
means we assume equal weight per modality.

4 Results

4.1 Recurrent Neural Modeling Results
Our RNN modality-processing system was trained
only on single modalities, with the final predicted

2We further encode this as a one-of-C binary vector yt ∈
RC×1, where C is the number of confusion levels/classes.
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Figure 6: Training and validation loss (for the video
modality) of the RNN system. It is evident that after 5
epochs, the model begins to severely overfit the training
data, as the training loss continues to decrease while the
validation loss begins to increase.

label yt aggregated through the late-fusion scheme
described above. We had 20 participants and held
out one randomly selected female and male partic-
ipant to validate model performance. In Figure 6,
we present training and validation loss curves (total
loss value plotted against epoch of training) for the
model trained on video features only. This model
performed better than the unimodal text and audio
models, as well as the late-fusion trimodal model.

An RNN trained on only video features was able
to achieve the lowest loss and best accuracy perfor-
mance, suggesting video data conveyed the most
meaningful knowledge about the confusion state.
However, this model begins to overfit the training
data around epoch 5 (Figure 6), at which point the
training loss continues to decrease while the valida-
tion loss begins to increase. Changing parameters
like the number of hidden neurons did not reduce
the model overfitting though future work will in-
vestigate regularization schemes. Given our small
dataset, the model appears to struggle to generalize
to the two unseen participants. When we early-stop
the training after 5 epochs to combat overfitting,
we obtain the validation accuracy values for each
uni-modal model shown in Figure 7.

4.2 Modality-Based Data Analysis
To inspect which features were possible predictors
of confusion, we created box plots and bar charts
to examine the distribution of feature values from
participants while in the Not Confused state versus
the Very Confused State. The features examined in
this analysis were selected based on which had the
highest difference in median value between the Not

Figure 7: Unimodal and trimodal RNN model perfor-
mance: the video-only model performs the best, fol-
lowed by the trimodal late-fusion, text-only, and audio-
only models.

Figure 8: Box plots for select video features where
the y-axis is the facial action unit reading produced by
OpenFace: a 0-1 scale quantifies how heavily a facial
action unit is being produced by a participant.

AU01 Inner brow raiser
AU02 Outer brow raiser
AU05 Upper lid raiser
AU20 Lip stretcher
AU26 Jaw drop

Table 2: The facial action units displayed in Figure 8.

Confused and Very Confused states. In Figure 5,
observe that some results make sense: participants
are more likely to pause and ask questions when
they are very confused versus when they are not
confused at all. The facial action units are shown in
Figure 8 and in Table 2. Intuitively, it makes sense
that these facial action units are tied to confusion.

Some analysis results, in contrast, are more sur-
prising: we found nearly no difference between the
distributions of the audio features extracted in the
Not Confused versus the Very Confused states. This
suggests that prosodic features are potentially less
effective predictors of confusion in this study.
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5 Discussion

Given the results of the previous section, we dis-
cuss the contributions of our work driven by our
initially presented questions. Specifically, we make
the following contributions which we next state as
answers to our original research questions:

RQ 1: The annotation method used by Kaushik
et al. (2021) involved participants marking their
confusion level for every 30-second block. We im-
proved upon this approach by implementing the
Confuse-o-Meter website, which allowed partici-
pants to continuously annotate their confusion lev-
els. This method for annotation was found to pro-
vide a richer dataset in which we were able to ob-
tain confusion labels for every time-step of data.

RQ 2: The RNN results showed that we were
able to build a model that could relatively accu-
rately classify confusion in the test set participants.

RQ 3: There were inconclusive results on which
facial, audio, and language features were the best
predictors of confusion because different methods
yielded conflicting results. However, based on our
limited results, we reason that the following fea-
tures may be linked with confusion: text disfluen-
cies, pauses, questions, AU01 (inner brow raiser),
AU02 (outer brow raiser), AU05 (upper lid raiser),
AU17 (lid tighten), AU20 (lip stretcher), AU23 (lip
tighten), and AU26 (jaw drop).

The main limitation of our work is the size of
the collected dataset – with only 20 participants,
it makes sense that our models, particularly the
highly nonlinear RNN system, overfit to the train-
ing samples. For any choice of two participants,
it is unlikely that a model trained on 18 other par-
ticipants would generalize to the test participants
since confusion is a complicated emotion and not
all humans display it the same way. It would take a
larger dataset in order to generalize to the broader
population. Additionally, our models predicted the
Not Confused states more often than the Confused
states. The distribution of our confusion dataset is
similarly unbalanced, as seen in Figure 9.

6 Conclusions

In this study, our goal was to build a model that
was capable of accurately predicting confusion and
to understand which text, audio, and video features
were accurate predictors of confusion. Given that
the RNN has low interpretability, we utilized sta-
tistical methods to accomplish the latter half of
this goal. Furthermore, we improved upon previ-

Figure 9: The confusion label distribution indicates
that participants generally spent more time in the not
confused states as opposed to the confused states.

ous methods of data collection to allow for con-
tinuous annotation of confusion states. This de-
sign choice provided us with a more precise mul-
timodal dataset with rich confusion reference la-
bels across time. To computationally model the
predictive label distributions and perform confu-
sion classification, we constructed a computational
model based on recurrent neural networks (RNNs),
which lack interpretability but proved to be reason-
ably accurate even with our limited data. Future
work will include generalizing our RNN compu-
tational model further to better handle the differ-
ent modalities (in an intermediate modality fusion
scheme as in Ororbia et al. (2019)) found within
our dataset, as opposed to our current method of
taking the (late-fusion) weighted consensus of three
separately trained modality-processing RNNs. In
addition, another future next step would be to re-
peat our study to collect a larger dataset that better
represents the general population. This may also
reduce the overfitting observed in our predictive
confusion models. Additional research could in-
vestigate dimensionality reduction techniques and
alternative forms of statistical analysis to explore
measured features in our data.
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