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Abstract

Character identification is a key element for
many narrative-related tasks. To implement
it, the baseform of the name of the character
(or lemma) needs to be identified, so differ-
ent appearances of the same character in the
narrative could be aligned. In this paper we
tackle this problem in translated texts (English–
Finnish translation direction), where the chal-
lenge regarding lemmatizing foreign names in
an agglutinative language appears. To solve
this problem, we present and compare several
methods. The results show that the method
based on a search for the shortest version of the
name proves to be the easiest, best performing
(83.4% F1), and most resource-independent.

1 Introduction

Character identification is both a complex and a
difficult task that can be solved using different
methods, from manual (Declerck et al., 2012) to
automatic (Goh et al., 2012). One of the necessary
steps for character identification is to detect which
exact character appears in the text (Labatut and
Bost, 2019). For such detection, lemmatization is
required.

Lemmatization is a process of assigning to a
wordform its lemma (Kanerva et al., 2019). It is
one of the important tasks in Natural Language Pro-
cessing (henceforth NLP), since many other NLP
methods require it during the preprocessing stage.
For agglutinative languages, such as Finnish, cor-
rect lemmatization can turn out to be a difficult task
because one word can have many wordforms (e.g.
a Finnish word may have more than 50 wordforms.
Consider an example for English name Lizzy in
Finnish translation: Lizzy, Lizzystä (from / about
Lizzy), Lizzylle (to Lizzy), Lizzyn (Lizzy’s)). Cur-
rent state-of-the-art models that use Neural Net-
works can help with solving this task. For example,
such a lemmatization model is implemented as part
of the Turku neural parser pipeline, which currently

yields the best results for Finnish lemmatization
(Kanerva et al., 2019). However, their accuracy,
though close to 100%1, is not perfect, so lemmati-
zation may require further refinement which would
help to enhance the end result for character identi-
fication.

In this paper we discuss enhancing foreign
characters’ identification for English characters in
Finnish texts, via improving lemmatization of char-
acters’ names. The structure of the paper is as
follows: first we provide an overview of the re-
lated work (Section 2), subsequently we describe
our data (Section 3), after which we discuss the
creation of the gold standard for our methods and a
definition of character in the context of our research
(Section 4). We continue the paper with describing
the methods (Section 5) that we introduced and
used. Finally, we present our results and analyze
them (Section 6). We conclude our paper in Sec-
tion 7. Code for the paper is available at https:
//github.com/AleksanKo/naacl2022.

2 Related work

Lemmatization for agglutinative languages, such
as the one targeted in our study (Finnish), has been
tackled from different perspectives. The first at-
tempts to solve the problem for Finnish were the
FINTWOL tool (Koskenniemi, 1983) and Morfo
(Jäppinen and Ylilammi, 1986). Around three
decades later one of the most known non-neural
methods, Omorfi (Pirinen, 2015) was developed.
Omorfi uses finite state transducers and can be
used further for enhancing lemmatization (Silfver-
berg et al., 2016). The current state-of-the-art is
represented by Turku neural parser pipeline (Kan-
erva et al., 2018), (Kanerva et al., 2019) that treats
lemmatization as a sequence-to-sequence problem
using the OpenNMT neural machine translation

1It ranges from 95.1% to 97.7%, depending on Finnish
morphological annotation it is applied to (Kanerva et al.,
2019).
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toolkit (Klein et al., 2017) and yields 95%-97%
accuracy.

In our research, we are focusing on retrieving
canonical forms of foreign names. This may be
challenging since foreign names are not typically
expected by the lemmatizer, so it may be prone to
errors. However, this step is necessary in case of
agglutinative languages: otherwise one character
may split into two or more characters (for exam-
ple, instead of Catherine, we would have three
entities: Catherine, Catherinea and Catherinen),
which affects further the results for building char-
acter networks or narrative.

3 Data

The data used in our experiments is a corpus of
Finnish translations made by Kersti Juva (a subcor-
pus of the Classics of English and American Litera-
ture in Finnish corpus, or CEAL2). The corpus con-
sists of the short novel Washingtonin Aukio, 2003
(“Washington Square”, 1880) by Henry James and
the novels Ylpeys ja ennakkoluulo, 2013 (“Pride
and Prejudice”, 1813) by Jane Austen and Kolea
talo, 2006 (“Bleak House”, 1853) by Charles Dick-
ens. The corpus is stored as text files, 3 files and
384,053 words in total.

4 Creation of gold standard

Before applying our methods (see Section 5), we
had to choose a gold standard character names’
list, so that we can evaluate our methods. To per-
form this task, we got the information from differ-
ent internet sources that contain information about
characters from the novels in our dataset (see Ap-
pendix A).

While creating a gold standard character names’
list, we also faced many questions about characters,
such as: what is a literary character? Who do we
consider a character from the point of the narrative?
Who do we consider a character from the point of
character extraction where we are forced to filter
the results of automatic Named Entity Recogni-
tion3? Do we take into consideration off-screen
characters (characters that are only mentioned in
the text and do not participate in the plot)? To an-
swer these questions, we need to define what / who
the character is.

2https://www.kielipankki.fi/corpora/ceal-2/
3This is part of the preprocessing used in our experiments,

see Section 5.

The literary character can be seen as a construct
whose definition and features depend on the study
area (Margolin, 1990). Jannidis (2013) considered
a character “a text- or media-based figure in a sto-
ryworld, usually human or human-like” or “an en-
tity in a storyworld”. Overall, characters are inter-
twined with narrative and storyworld, contributing
to their development from many aspects.

We considered a literary character every figure
that was relevant for the narrative development
(thus, e.g. names of famous persons that are men-
tioned but do not appear in the novel were not
included). So we decided to include both onscreen
(entities that are actively participating in the sto-
ryworld) and off-screen (entities that are passively
contributing to the construction of the storyworld)
characters (e.g. in case of Washington Square, it
was the mother of the main character that gets men-
tioned only twice). We also included all possible
names that can be used for naming a certain charac-
ter by splitting the full name (e.g. Elizabeth Bennet
would also get versions Elizabeth and Bennet) and
by analyzing possible versions (Lizzy for Elizabeth
Bennet) that were mentioned in the internet sources
(see Appendix A). So Elizabeth Bennet would get
the following names: Bennet, Eliza, Eliza Bennet,
Elizabeth, Elizabeth Bennet, Lizzy. The creating
of the gold standard was carried out only by one
annotator.

5 Methods

To apply our methods, we have to carry out the
preprocessing first. This includes the following
workflow:

1. Applying Named Entity Recognition on
Finnish translations of English texts;

2. Filtering the named entities identified by label,
removing all entities that are not persons;

3. Getting the lemmas for the remaining named
entities.

For Named Entity Recognition on Finnish texts
and further lemmatization, a Python library named
Stanza (Qi et al., 2020) was used, because it
provided a state-of-the-art level of Named Entity
Recognition for this language. Finnish language
models are represented in Stanza by Turku neural
parser pipeline (Kanerva et al., 2019), so we will be
using the Turku neural parser pipeline’s lemmatizer
(Kanerva et al., 2018) as a baseline.
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We have used and compared three methods of
finding correct names’ lemmas. These methods
were applied on the output of the preprocessing, i.e.
lists of names that were results of applying Named
Entity Recognition on Finnish translations, then
filtering only person-type entities, and finally lem-
matizing them. The methods were implemented
using Python and are as follows:

1. Method 1: Check for the shortest version of
the name. This method was based on two
assumptions: 1) that the language is agglutina-
tive, so the stem is modified a lot with the help
of affixes, and 2) that a character name will
appear many times, so not all its wordforms
contain morphemes from the target language
and there will be at least one occurrence of
the correct lemma. Consider the following ex-
ample: if we have the right lemma of the char-
acter name (Catherine) and wrong versions
that were however recognized as lemmas by
the lemmatizer (Catherinen, Catherinea), the
right version is the shortest, so searching in
the sorted list of names [Catherine, Cather-
inea, Catherinen] should yield the right result.

2. Method 2.1 and Method 2.2: Check whether
the name exists using Wikipedia4 or Wik-
tionary,5 respectively (in our case, the English
version of these resources). This method re-
quires that for most of the names there were
articles in Wikipedia and in Wiktionary, and
since we were using English versions of these
resources, wrong forms that contained Finnish
suffixes would be discarded. This assump-
tion relied heavily on the genre of texts of
the corpus, namely classic British and Amer-
ican literature, so the character’s name was
an actual name in the real world. If we con-
sider the example from Method 1, Catherine
would return an article from both Wikipedia
and Wiktionary, while Catherinen and Cather-
inea would return an error which means that
there was no such page, and, presumably, no
such name in the English language.

3. Method 3: Check if the word occurrence con-
tains suffixes (in our case, Finnish suffixes). In
this implementation only suffixes correspond-
ing to Finnish genitive and partitive cases

4https://en.wikipedia.org/
5https://en.wiktionary.org/

were checked, since the lemmatizer usually
made mistakes in such forms. For example, if
we check for the words that end on -a/ä and
-n, the wrongly lemmatized Catherinen and
Catherinea would not be included in the end
results.

6 Results

We evaluated the results of our methods and the
baseline according to the following criteria:

• Precision (fraction of true positive instances
among all extracted instances), recall (fraction
of true positive instances that were retrieved)
and F-score (harmonic mean of precision and
recall).

• Language independence (whether the method
depends on certain language features and / or
language resources, such as corpora, or not).

• Need for external non-linguistic resources
(whether the method requires external re-
sources to perform checking or not).

The overall count of results can be found in Ta-
ble 1. The Gold standard column contains the
number of character names (number of true posi-
tive instances, or all possible versions that can be
used for naming all the characters that appear in
the novel), Method 1 covers results for checking
for the shortest version of the name, Method 2.1
and Method 2.2 - for checking in Wikipedia / Wik-
tionary, and Method 3 - for checking for suffixes.

In Table 2 and Table 3 we present the results for
the precision and recall for each method and the
baseline, respectively. The results for F-score were
counted only on average level and can be seen in
Table 4.

It is quite noticeable from Table 1 that Method
2.2. (search for a correct wordform using Wik-
tionary) usually retrieves less names than any of the
other methods (it has the lowest count of names for
Bleak House, and the second lowest for Washington
Square). However, in terms of recall, which can
be seen in Table 3, the results varied significantly
for this method: from 46% to 92% (compared with
other methods where recall did not go lower than
55%).

Method 1 performed well on both a short text
(Washington Square) and a significantly longer
novel (Bleak House). It reached 100% recall for
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Work Gold standard Baseline Method 1 Method 2.1 Method 2.2 Method 3

Washington Square 20 22 18 21 17 12
Pride and Prejudice 48 80 76 65 60 65

Bleak House 126 184 128 88 68 109

Table 1: Names count for the three methods and the baseline

Work Baseline Method 1 Method 2.1 Method 2.2. Method 3

Washington Square 73% 89% 76% 88% 92%
Pride and Prejudice 59% 63% 69% 73% 65%

Bleak House 58% 84% 85% 85% 83%
Average precision 63.3% 78.7% 76.7% 82.0% 80.0%

Table 2: Precision of the three methods comparing to the baseline. Average precision is added for reference. Best
result in each row shown in bold.

Work Baseline Method 1 Method 2.1 Method 2.2. Method 3

Washington Square 80% 80% 80% 75% 55%
Pride and Prejudice 98% 100% 94% 92% 88%

Bleak House 85% 86% 60% 46% 72%
Average recall 87.7% 88.7% 78.0% 71.0% 71.7%

Table 3: Recall of the three methods comparing to the baseline. Average recall is added for reference. Best result in
each row shown in bold.

Pride and Prejudice, but precision for this text was
lower than for other two: 63%.

Both external sources that were used for Method
2 (Wikipedia and Wiktionary) showed the worst
recall results on Bleak House (46% and 60%) but
scored over 90% on Pride and Prejudice. In terms
of precision, checking in Wiktionary (Method 2.2)
performed better than using Wikipedia for both
Washington Square and Pride and Prejudice, while
the usage of both resources led to the same result
for Bleak House. We assume that this result can
be attributed to the difference between the names,
surnames and nicknames used in these novels.

Method 3 achieved the second best precision
overall (and the best precision for Washington
Square), but did not show good results in terms
of recall (worst for two texts out of three). While
applying this method, we also noticed that, without
applying additional checks, it seems to filter out
a certain amount of true positive cases, since the
suffixes in question (partitive and genitive) contain
one or two letters and can easily be just parts of
correct lemmas.

In Table 4 we present values for the aforemen-

tioned criteria of evaluation, i.e. language indepen-
dence and need for other resources, as well as the
average precision, recall and F-score.

Only one method can be considered language-
independent: search for the shortest version of
lemma (Method 1). It can also be considered the
only method that does not require a lot of external
sources of knowledge, since even searching for the
suffixes requires knowledge of Finnish grammar.
The only knowledge that is required for the first
method is knowledge about the type of language
(agglutinative / fusional), but since the problem
with wrongly lemmatized names is mostly the prob-
lem of agglutinative languages, this knowledge can
be considered basic.

It is worth noting that lemmatization and scrupu-
lous study of extracted names has also shown
changes in translation regarding the original text.
Thus, there is no Guster (the servant of Mr.
Snagsby and Mrs. Snagsby) in the Finnish ver-
sion of Bleak House but Molly, due to the word-
play. Such changes made the creation of the gold
standard more difficult since it was based on the
original namings of characters. We suggest that
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Criteria Baseline Method 1 Method 2.1 / Method 2.2 Method 3

Average precision 63.3% 78.7% 76.7% / 82.0% 80.0%
Average recall 87.7% 88.7% 78.0% / 71.0% 71.7%

Average F-score 73% 83.4% 77.3% / 76.1% 75.6%
Language independence - partly yes no no

External resources - no Yes, database Yes, linguistic knowledge

Table 4: Comparison of the methods (also regarding the baseline). Best result in each row shown in bold.

word alignment with original texts could help find
such cases automatically. However, word align-
ment would not solve the lemmatization in these
cases, since the name in the original (English) and
in the translation (Finnish) differ.

There were also some issues related to misprints
in the Finnish translations (e.g. in the translation
of Washington Square sometimes names Lavinia
and Catherine were misprinted as Lavina and Cath-
erna) which lead to additional wrong results. Such
errors were fixed, so the final version of results
contained only right versions of names.

7 Conclusion

Perhaps surprisingly, a rather simple method that
searches for the shortest version of the character’s
name (Method 1) yielded one of the best results
with average precision of 78.7%, the best overall re-
call (88.7%) as well as the best overall F1 (83.4%).

Searching for a name in Wikipedia (Method 2.1)
led to slightly lower precision (77.6%). Searching
for a name in Wiktionary (Method 2.2) was over-
all slightly worse than Method 2.1 (F1 76.1% vs
77.3%), but almost on the same level as checking
if the name contains suffixes (Method 3): average
precision for both was about 71%.

In addition, Method 1 did not require any ad-
ditional resources and it was relatively language-
independent which would allow it to be used with-
out any modifications for other agglutinative lan-
guages. We suggest that a combination of these
methods (for example, simple combination of
Method 1 and Method 3 should help e.g. in case
when the characters do not have common names in
genres like fantasy or sci-fi) will further improve
the search for the right lemmas for foreign names
in texts written in agglutinative languages and thus
enhance the character identification.
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