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Abstract
Borrowing ideas from Production functions in
micro-economics, in this paper we introduce a
framework to systematically evaluate the per-
formance and cost trade-offs between machine-
translated and manually-created labelled data
for task-specific fine-tuning of massively mul-
tilingual language models. We illustrate the
effectiveness of our framework through a case-
study on the TyDIQA-GoldP dataset. One of
the interesting conclusions of the study is that
if the cost of machine translation is greater
than zero, the optimal performance at least cost
is always achieved with at least some or only
manually-created data. To our knowledge, this
is the first attempt towards extending the con-
cept of production functions to study data col-
lection strategies for training multilingual mod-
els, and can serve as a valuable tool for other
similar cost vs data trade-offs in NLP.

1 Introduction

Transformer based Massively Multilingual Lan-
guage Models (MMLMs) such as mBERT (De-
vlin et al., 2019) , XLM-RoBERTa (Conneau et al.,
2020) and mT5 (Xue et al., 2021) are surprisingly
effective at zero-shot cross-lingual transfer (Pires
et al., 2019; Wu and Dredze, 2019). However,
while zero-shot transfer is effective, often the per-
formances across different languages is not con-
sistent. Low-resource languages (Wu and Dredze,
2020) and the languages that are typologically dis-
tant from the pivot language (Lauscher et al., 2020)
are known to benefit the least from zero-shot trans-
fer, which can often be mitigated by using target-
language specific labelled data for the task during
fine-tuning.

One common approach for collecting such data
in the target language is to translate the training
data available for the pivot-language to the target
by using an off-the-shelf Machine Translation (MT)
system. This is usually referred to as the translate-
train setup (Hu et al., 2020; Turc et al., 2021).

Few-shot transfer is another alternative; as shown
by Lauscher et al. (2020), a few labelled examples
in the target language, that can be obtained cheaply,
can lead to substantial improvements over the zero-
shot performance.

However, there has not been much work on com-
paring the performance across these two strategies.
In one such study, Hu et al. (2020) compare the
performance of translate-train with few-shot trans-
fer on TyDIQA-GoldP (Clark et al., 2020) dataset,
but they only evaluate the few-shot case with 1000
examples, which does not provide any insight into
how the performance varies with increasing dataset
sizes for these two approaches. Additionally, there
are trade-offs related to the data acquisition costs
as well. The cost per training instance is expected
to be much smaller for an MT-based approach than
manual translation or labeling of examples. How-
ever, depending on the nature of task, language,
and quality of the MT output, the amount of data
required to achieve the same performance through
these two approaches can be drastically different.
More importantly, fine-tuning the MMLMs with
a combination of the data from the two strategies
could be the cheapest alternative for achieving a tar-
get accuracy, which, to the best of our knowledge,
has not been explored yet.

Inspired by the above observations and gaps, in
this paper, we ask the following question: Given a
pre-determined budget to fine-tune a multilingual
model on a task for which some data is available in
a pivot language, what is the best achievable accu-
racy on a target language by (a) training the model
on the pivot-language data, (b) different amounts
of machine-translated and (c) manually-collected
data in the target language. Solving this requires
an understanding of the exact nature of the perfor-
mance and cost trade-offs between the two kinds of
target language datasets and their relative costs of
acquisition, apart from factors such as the amount
of pivot language data, the task, the MMLM, and
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the languages concerned.
This problem of modeling and measuring the

trade-offs between different input factors and
their costs is well-studied in the field of micro-
economics. A sophisticated machinery has been
developed in the form of Production Functions and
allied analytical methods (Miller and Blair, 2009;
Cobb and Douglas, 1928), in order to solve the
following generic problem: with the best available
technology, how are the inputs to a production pro-
cess (eg. Labor and Capital) related to its output,
that is the quantity of goods produced. In this paper,
we adapt this framework to address the aforemen-
tioned question of MMLM fine-tuning trade-offs.

The key contributions of our work are threefold.
1. We extend the idea of production functions to
performance functions that model the relationship
between input data sizes and performance of a sys-
tem; we propose a possible analytical form for this
function and derive the performance trends and op-
timal data collection strategies under fixed costs.
2. We illustrate the usefulness of this framework
through a case study on a Q&A task – TyDIQA–
GoldP (Clark et al., 2020) and systematically study
the various trade-offs for 8 languages. 3. Our study
provides several important insights such as (a) if
the cost of MT data creation is non-zero, then the
optimal performance under a fixed budget is al-
ways achieved with either only manually-created
data or a combination of the two; (b) the ratio of the
two datasets for the least cost combination usually
remains constant at different levels of performance.

To the best of our knowledge, this is the first
work that applies the idea of production func-
tions to analyze the cost-performance trade-offs of
MMLM fine-tuning. The proposed framework can
be extended to a multitude of NLP problems where
the trade-offs similar to the ones discussed above,
are common (e.g., pre-training vs. fine-tuning data).
To encourage reproducible research, we have made
our code, the performance data, and a detailed list
of the results publicly available 1.

2 Theoretical Foundations

One of the foundational pillars of neoclassical eco-
nomics is the idea of Production Functions. Simply
put, a production function is a mathematical for-
malization of the relationship between the output
of a firm (industry, economy) and the inputs that
have been used in obtaining it (Khatskevich and

1github.com/kabirahuja2431/PerformanceFunctionAnalysis

Pranevich, 2018; Miller and Blair, 2009). A multi-
factor production function is defined as a map

Q : x → f(x), ∀x ∈ R+n (1)

where Q ∈ R+ is the quantity of output, n is
the number of the inputs, the non-negative func-
tion f is continuously differentiable for all x =
(x1, . . . , xn) when xi ∈ R+. A sophisticated and
extensive set of analytical machinery has been de-
veloped over the years in microeconomics theory
that allows one to closely model and analyze not
only the relationship between the inputs and out-
puts2 of a firm, but also the interdependence be-
tween the inputs (i.e., xis). Thus, one can effi-
ciently compute and clearly visualize the various
trade-offs and optimal configurations of the produc-
tion system.

Production functions have been extensively used
to model and study systems as diverse as educa-
tion (Bettinger et al., 2020; Bowles, 1970), envi-
ronment (Lu et al., 2019; Halicioglu and Ketenci,
2018), sustainability (Yankovyi et al., 2021), cogni-
tion (Todd and Wolpin, 2003) and of course, differ-
ent types of industries (Husain et al., 2016; Batiese,
1992). Along similar lines, in this work we de-
velop the concept of Performance Function that
models the performance of an MMLM given the
amount of translated and manually labeled data.
In this section, we begin by formalizing the nota-
tions and defining some key concepts from micro-
economics, appropriately adapted to our context.
Then we present the functional form of the per-
formance function, and discuss certain practical
constraints and assumptions that we will make in
our formulation.

2.1 Notation and Definitions
Consider a multilingual model M pre-trained on a
set of languages L, which is to be fine-tuned for a
task T, for which P labelled examples are available
in a pivot language p ∈ L. Some or all of the
P pivot language examples can be automatically
translated to a target language l ∈ L through an
MT system to obtain T (≤ P ) examples. Further,
let M be the amount of examples for l that have
been labelled or translated manually.

Definition 1 Performance Function, Π =
π(T,M |l, p, P,M,T), denotes the best possible
performance (as per the current state-of-the-art) of

2Production functions can also be defined when there are
m outputs i.e. Q ∈ Rm and f : Rn → Rm.
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a system in language l for a task T, that has been
built on top of a pre-trained MMLM M, P labelled
examples in language p ̸= l, T translated exam-
ples by an MT system, and M manually created
examples.

Here, Π ∈ [0, 1] is any appropriate and accepted
measure of performance, such as accuracy or F1-
score. To simplify the notation we will often drop
the given conditions from the equation and denote
Π = π(T,M). The conditional factors, whenever
not obvious from the context, will be explicitly
stated. Note that T and M are respective equiva-
lents of K and L of the neoclassical Capital-Labor
production functions. Capital investment in tech-
nology or mechanization is similar to machine-
translated data, whereas manual dataset creation
would require investment on labor.

Definition 2 Total cost of operation (or simply
the cost), κ(T,M) = κt(T )+ κm(M), is the total
cost of procuring translated and manually created
datasets for l for the task T.

We further assume that the translation and man-
ual collection costs are scalar multiples of the unit
costs, i.e. κt(T ) = ctT and κm(M) = cmM ,
where ct > 0 is the cost of translating a single ex-
ample from P into language l automatically, while
cm > 0 is the cost of collecting one training exam-
ple in l manually. Therefore,

C = κ(T,M) = ctT + cmM (2)

Usually, cm > ct. Also, note that we are ignor-
ing the costs of pivot data collection and computa-
tional costs of pre-training and fine-tuning, partly
because we are interested in studying the trade-
off between T and M . Also, P is useful for any
target language, and therefore, the amortized cost
of creating P tends to zero as the number of tar-
get languages increases. Similarly the amortized
cost of pre-training tends to zero as the number
of tasks grows. The task-specific training cost is
proportional to training data-size, P +T +M , and
therefore, can be partially consumed in ct and cm.

Definition 3 Isoperf curves are the contours of
the performance function that represent the rela-
tionship between T and M for a fixed performance
value Πc.

Definition 4 Isocost curves are the contours of the
cost function that represent the different possible

ଵ ଶ ଷ ସ

Figure 1: Hypothetical T-M diagram illustrating isop-
erfs, isocosts, points of tangency and expansion path.

combinations of T and M that result in equal over-
all costs.

Both isoperfs and isocosts are drawn on a T-M
diagram (K-L diagram in micro-economics), which
is illustrated in Fig. 1. The x and y axis represent
the input factors T and M, respectively. The or-
ange curves are the hypothetical isoperfs, known
as isoquants in economics. As the name suggests,
each point on these curves represents T-M combi-
nations that result in the same (iso) performance
(perf), denoted in the diagram by Π1, Π2, etc. Intu-
itively, it can be seen that two isoperfs never inter-
sect; as we move towards right and up, Π increases
because either T or M or both increase. Thus,
Π1 < Π2 < Π3 < Π4. The origin, T = 0, M = 0,
represents an isoperf corresponding to the zero-shot
performance on l when M is fine-tuned only on P .

The blue lines represent the isocosts. Consid-
ering the nature of the cost function defined, the
isocost curves will be straight lines parallel to each
other with slope − ct

cm
. Like isoperfs, the cost of

operation increases for the isocosts as we move
towards right and top in the T-M diagram.

Definition 5 Least Cost Operating Point on an
isoperf refers to the (possibly multiple) point where
the total cost of operation is lowest for a given
performance.

Under the assumption of smooth and convex isop-
erfs,3 the isocost corresponding to the least cost
of operation will be a tangent to the isoperf, and
the optimal allocation of the T and M is given by
the point of tangency. The isocosts shown in Fig. 1

3Isoperfs are convex for declining marginal rate of techni-
cal substitution.
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correspond to the least cost curves for respective
isoperfs, and the points of tangency are represented
by the points E1, E2, etc.

Definition 6 Expansion path is a path connect-
ing the point of tangency of different isoperf and
isocost curves, tracing out the cost minimizing com-
bination of the data resources with increasing per-
formance and costs.

Expansion paths are important in determining re-
source allocations strategies. For instance, when
a higher budget is available for dataset expansion
in a particular language, should one invest more in
translation or in manually collected data? And how
does this equation change in the long run, as the
system moves towards higher performances?

Thus, isoperfs and isocosts when studied col-
lectively can help determine the allocation of the
amount of translation and manual data for a desir-
able performance value that minimizes the cost of
operation.

2.2 Selecting a Functional Form for π

In production analysis, one of the difficult prob-
lems is to decide on the functional form of the pro-
duction function that can on one hand accurately
represent the input-output relationship, and on the
other, is amenable to close-formed analysis (Griffin
et al., 1987). Clearly, a linear production function
would be an inappropriate choice for π(T,M), as
T and M are not perfect substitutes of each other.
A popular choice in such case is the Cobb-Douglas
performance function (Cobb and Douglas, 1928),
which is of the form TαMβ . However, the two
datasets do not have multiplicative, but rather an
additive effect. Therefore, we propose the follow-
ing performance function:

Π = π(T,M) = azs + atT
αt + amMαm (3)

where azs, at, am ≥ 0 and 0 ≤ αt, αm ≤ 1. The
positive coefficients of the input factors are moti-
vated by assuming that under a reasonable transla-
tion and manual annotation quality, the addition of
data from these sources should not hurt the zero-
shot performance which is given by azs (when
T = M = 0). Bounding the exponents below
1 ensures that the performance is not allowed to in-
crease linearly with increasing data in one of these
sources, as we always see diminishing returns with
respect to data for any machine learning model.

The commonly used training setups can be ob-
tained as special cases of the above equation. The
translate-train setup, can be obtained by setting
T = P and M = 0 in the equation, giving ΠTT =
azs+atP

αt . Similarly, ΠFS = azs+amkαm gives
the few-shot setup with k examples. We denote this
functional form as AMUE (Additive Model with
Unequal Elasticities).

The expression for tangency point can be derived
by setting dM/dT |Π=Πc to the slope of the isocost,
−ct/cm, which gives the following equation for
the expansion path.

M =

(
ctamαm

cmatαt

) 1
1−αm

T
1−αt
1−αm (4)

Thus, M/T (also called the labor-to-capital ratio)
increases with performance if αm > αt, remains
fixed when αm = αt, and decreases with perfor-
mance when αm < αt. Similarly, the ratio of costs
of acquiring manually created data to translated
data, Mcm/Tct is proportional to amMαm/atT

αt ,
which is the ratio of the contributions of the two
datasets to the performance Π.

More often than not, actual production systems
are too complex to be modeled accurately with sim-
ple functional forms. We expect a similar situation,
where AMUE might be well suited for modeling
and visualizing the trends. However, to obtain the
actual operating cost and expansion path that are
practically useful, one would need to model the
behavior of the performance function more accu-
rately. To this end, we also experiment with Gaus-
sian Process Regression (GPR) for defining the
performance function. As we shall see in the next
section, GPR is able to fit the data more effectively,
though we shall stick to AMUE as the two show
identical trends and the latter also allows us to gain
deeper insights and richer visualizations.

2.3 Some Practical Considerations
Definition 7 Cost Ratio, defined as ct/m = ct

cm
,

is the relative cheapness of the translation data,
when compared to the cost of obtaining a manually
created data point.

We expect the cost ratio to be much smaller than 1.
However, both translation and manual annotation
costs vary according to the complexity (in case of
translation, just the lengths of sentences) of the
task at hand. cm might also vary with the choice
of the target language l, while ct can be assumed
to be uniform across the languages supported by
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the commercial MT systems like Google or Bing.
In the experiments for our case study, we calculate
the expansion paths for different values of ct/m to
systematically study the nature of the trade-offs
between the two sources of data.
Realizable region: The forms of the performance
function as well as cost function defined above do
not place any constraint on the values that the input
factors, i.e. T and M , can take, which means that
the amount of data can be increased indefinitely in
order to improve the performance. However, we
are aware that the amount of translated data is up-
per bounded by the amount of pivot data available,
i.e. T ≤ P . While this constraint can be explic-
itly worked out into the equations (by replacing T
with min(T, P )), we stick to the original forms to
preserve the smoothness of AMUE . Instead, we
define a realizable region R : T ≤ P , and if a
tangency point lies outside R we explicitly search
for the minimum cost point on the part of the isop-
erf curve that lies in the realizable region. Note
that, in such cases the isocost curves correspond-
ing to the minimum cost point will no longer be
tangents to the corresponding isoperfs, and will
usually lie at the boundary between the realizable
and non-realizable regions.

3 Case-Study on TyDiQA-GoldP

In order to understand the efficacy of the proposed
framework, we conduct a case-study on a popular
multilingual Question Answering task (cf. T) us-
ing TyDiQA-GoldP (Clark et al., 2020) dataset and
consider mBERT as the MMLM M. In the follow-
ing subsections, we provide the details of the task
and training setup for generating the performance
Π for different combination of the input factors,
the procedure for estimating the parameters of the
performance functions, and the findings.

3.1 Task and Dataset

We consider the Minimum Answer Span Task from
the Typologically Diverse Question Answering
benchmark or TyDiQA-GoldP for conducting the
experiments. The choice of this particular dataset
stems from two main properties of the benchmark.
First, question-answering tasks are amenable to
translation. Secondly, TyDiQA-GoldP is com-
prised of manually labelled datasets for nine ty-
pologically diverse languages. This enables us to
study the effect of different amounts of manually-
created data M on the performance of the MMLM.

The amount of M varies significantly from lan-
guage to language with 1.6k examples for Korean
to 15k examples in Arabic. 3.7k examples are
available for English which we shall consider as
the pivot language p in all the experiments. We use
Azure Translator4 to obtain the translated data T in
eight target languages. The answer span alignment
between English and the translated languages are
obtained based on the technique described in Hu
et al. (2020). We measure the performance Π as the
average F1-score between the predicted and actual
answer-spans for the test examples.

3.2 Fine-tuning Setup

We fine-tune mBERT on the TyDiQA-GoldP
dataset with different values of the input factors,
T and M , for each target language, along with the
amount of English pivot data, P . Different values
of T are chosen by translating 0%, 10%, 40% ,
70% or 100% of the English pivot data. Eleven
different values in the range [0, |Dl|] (Dl is the size
of the available training data in l) and seven val-
ues between 0 and 3.7k are selected for M and
P , respectively. Considering eight different target
languages, this results in 3080 different fine-tuning
configurations. In each configuration, we use 3
different random seeds and train for 5 epochs with
a learning rate of 2e-5 and a batch size of 32. The
models are also jointly trained5. We use XTREME
repository (Hu et al., 2020) and the Hugging Face
Transformer Library (Wolf et al., 2020) to conduct
all our experiments.

3.3 Parameter Estimation of the Performance
Function

Upon estimating the performance values for the
various fine-tuning configurations, we formulate
the parameter estimation for the performance func-
tions π as a regression task, with T and M as
inputs and Π as the output. we use a Non Lin-
ear Least Squares algorithm (Levenberg, 1944) to
fit the AMUE functional form (cf. Equation (5)),
while specifying the bounds on the function param-
eters. For GPR, we use an RBF Kernel added with
a White Kernel to model the noise in the observa-
tions, and the kernel parameters are optimized us-
ing L-BFGS-B optimization algorithm (Byrd et al.,
1995) with 10 restarts. Note that, we fit different

4https://www.microsoft.com/en-us/
translator/business/translator-api/

5We empirically observed that joint training performs bet-
ter than curriculum learning (P → T → M )
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l at αt am αm

P = 3696

ar 3.7e-01 1.9e-07 2.0e+00 2.2e-01
bn 5.8e-04 6.9e-01 2.3e+00 3.0e-01
fi 7.4e-02 3.9e-01 1.2e+00 3.0e-01
id 2.5e-13 2.5e-01 1.2e+00 2.9e-01
ko 2.6e-15 2.1e-03 1.5e+00 2.6e-01
ru 7.8e-13 5.6e-01 7.1e-01 3.5e-01
sw 5.2e-02 4.2e-01 1.1e+00 3.7e-01
te 5.1e-19 2.5e-01 1.2e+01 1.5e-01

P = 2000

ar 1.7e-01 2.9e-01 2.9e+00 2.1e-01
bn 9.9e-01 1.2e-01 1.9e+00 3.4e-01
fi 9.4e-02 4.6e-01 1.6e+00 3.0e-01
id 4.0e-01 1.2e-01 1.5e+00 3.0e-01
ko 3.0e-13 4.1e-01 1.6e+00 2.8e-01
ru 5.8e-03 6.5e-01 1.1e+00 3.4e-01
sw 9.2e-02 4.3e-01 1.2e+00 3.7e-01
te 1.6e-01 3.0e-01 1.2e+01 1.5e-01

Table 1: Values of AMUE performance function param-
eters for different languages.

performance functions for each combination of l
and P . Additionally, we also conducted several
experiments with other functional forms including
Cobb-Douglas, linear, log-linear and polynomial
functions ( > 1 degree) which either showed higher
margins of error or over-fitting.

3.4 Results

First, we evaluate how well the two proposed per-
formance functions are able to predict the perfor-
mance for different fine-tuning configurations. For
this, we split the 3080 different training configura-
tions into training (80%) and test (20%) sets. The
test root mean squared error (RMSE) and coeffi-
cient of determination (r2) values for AMUE and
GPR were found to be 5.84, 0.90 and 2.43, 0.98
respectively. Thus, both the models can fit the data
reasonably well, though as expected, GPR provides
a better fit. Check Appendix for more details.
Expansion Paths: Table 1 shows the estimated
values of the AMUE parameters for different lan-
guages and pivot sizes. For all the languages, am
is greater than at by at least an order of magnitude,
meaning that the manually collected data ends up
having a significantly higher contribution towards
the model’s performance. For P = 2000, we

see comparatively higher values of at (though still
< am). This indicates that the machine-translated
data might be more beneficial when there is a
paucity of training data available in the pivot lan-
guage, and thus a lower zero-shot performance to
begin with.

For P = 3696, Arabic, Indonesian and Korean
has αm > αt and therefore, the corresponding
expansion curves (Eqn 4) will have an increasing
M/T ratio with increasing Π. On the other hand
for Swahili, Telugu and Finnish, αm < αt, and
hence the expansion curves will bend towards the
x-axis in the T-M diagram, indicating a declining
M/T ratio. In such cases, as we continue to in-
crease the performance at the minimum cost, the
optimum strategy would be to collect higher and
higher amount of translation data as compared to
manually labelled data.

However, notice that the αm and αt are close
to each other for majority of the cases resulting in
nearly linear expansion paths, a situation that is
often encountered in economics whenever the pro-
duction function is homogenous. We did not start
with a homogenity assumption on π(M,T ); rather,
the estimated parameters indicate so. This has two
interesting implications: 1) M/T remains nearly
uniform at the different levels of performance; 2)
the slope of the expansion path is approximately
( ctamcmat

)
1

1−αm (by setting αm = αt in Eqn 4), mean-
ing if the cost ratio ct

cm
is greater than at

am
, the op-

timal strategy would be to collect more manually
labelled data (since 1

1−αm
> 1 by definition) and

vice-versa. Thus, by just looking at the value of
these parameters we can gain key insights about
the optimal data allocation strategies.

These strategic insights can also be clearly visu-
alized through the isoperf, isocost and expansion
path curves on the T-M diagrams, as shown in Fig.
2. Due to paucity of space, we show the diagrams
for two languages – Swahili (sw) and Telugu (te) –
with two different cost ratios for the former (Fig. 2a
and 2b), and two different pivot sizes for the latter
(Fig. 2c and 2d). Refer appendix (6,7, 8, 9) for rest.

For ct/m = 0.1, l =sw (Fig. 2a), the expan-
sion path follows a straight line roughly with a
slope ( ctamcmat

)
1

1−αm = 3.2. This indicates that even
though M is 10 times more expensive than T , the
optimal allocation policy is to still collect about
thrice as much amount of M as T . However, for
ct/m = 0.01, which is less than at

am
, the slope of the

expansion path drops to ≈ 0.08, as demonstrated
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Figure 2: M-T diagrams showing expansion paths obtained through AMUE for Swahili and Telugu for different
values of P and ct/m. The shaded region represents R (cf. Sec.2.3).

by the theoretical expansion path on the right side
of the M = T line in Fig. 2b. This suggests that
we can rely on collecting a higher amount of trans-
lation data to increase the performance in this case
because the manually collected data is much more
expensive. As we move to the performance values
> 70, we reach at the boundary of the realizable
region (marked by translucent gray rectangle), and
can no longer keep on collecting more translation
data to increase the performance as by definition
T ≤ P . Beyond this point, to increase the perfor-
mance, collecting higher amounts of manual data
becomes inevitable.

For Telugu, we study the effect of two differ-
ent values of P and keep ct/m fixed at 0.1. At
P = 3696, the isoperfs are nearly parallel to x-
axis with the expansion path lying along the line
T = 0 (Fig. 2c), which is expected as at

am
≈ 0

in this case (see Table 1). This particular expan-
sion path indicates that data obtained by translating
English examples into Telugu does not have any no-
table performance improvement, though demands
additional cost. The optimal strategy in this case
is to only collect manually annotated data. This
is not entirely surprising; the translate-train setup

in Hu et al. (2020) also shows low F1-scores for Tel-
ugu than the zero-shot setup.6 Interestingly, when
P = 2000 (Fig. 2d), T provides non-trivial perfor-
mance gains. The expansion curve is bent slightly
to the left of the M = T line, similar to Fig. 2a.
This trend of higher at/am for lower P is observ-
able for all languages (Table 1).
Performance and Cost Trade-off: Fig. 3 plots
the cost vs the performance value traced out by
the expansion paths for the 8 target languages. To
calculate the total cost, we assume ct = 0.007,
which was estimated according to the standard
translator Pricing offered by Azure7, and consider
ct/m = 0.01. For all the languages, we observe a
declining slope as we increase the value of C. Thus,
it becomes increasingly more expensive to improve
the performance of the models as we move to the
higher values of Π (law of diminishing returns).
Comparing AMUE isoperfs with GPR isoperfs:

6Note that this does not invalidate the assumption we made
in section 2.2. Hu et al. (2020) fine-tuned their models only on
translated data, while we do train them with English Data as
well and observe similar performance as zero-shot for Telugu.

7https://azure.microsoft.com/en-us/
pricing/details/cognitive-services/
translator/
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Figure 3: Performance vs the minimum costs for differ-
ent languages. The performance function considered is
AMUE . For c = 0.1 case refer to Fig. 10 in appendix.
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Figure 4: Comparing the Isoperfs and their correspond-
ing optimum isocosts for AMUE and GPR production
functions.

Figure 4 displays the isoperfs and the correspond-
ing optimum isocosts obtained using AMUE and
GPR based performance functions. As can be ob-
served, both functions predict similar trends across
their isoperfs; however, as expected, the curves are
shifted due to different margin of errors for the two
models.

4 Discussion and Conclusion

In this work, we have proposed a micro-economics
inspired framework to study the performance and
cost trade-offs between manually annotated and
machine-translated data for training multilingual
models, and demonstrated its efficacy through a
case-study on the TyDiQA-GoldP dataset. The key
findings from this case-study are: 1. Some amount
of manually collected data in a target language is
crucial to attain optimal performance at minimum
cost irrespective of how much cheaply MT data can

be procured, as long as the cost is non-zero. 2. The
ratio of manually collected and machine-translated
data at least cost operating point remains nearly uni-
form at the different levels of performance 3. The
usefulness of translated data is higher when the
amount of pivot language data is less. There are
several other insights that can be drawn from the
T-M diagrams and other plots, which could not be
presented here due to the paucity of space.

This work can be expanded in several ways. In
the current work we considered a single-pivot and
single-target case. Generalizing this to the case
where the model is allowed to be trained on multi-
ple pivot languages and then be evaluated on multi-
ple targets is of considerable interest. This implies
extension to multiple-output production functions
with multiple (> 2) input factors.

Here, we have not considered the effect of mul-
tiple technology on the isoperfs. For our problem,
multiple technologies may correspond to the dif-
ferent MMLMs such as mBERT, XLMR and mT5,
different MT systems, and even different training
curricula. Identifying the optimal allocation policy
considering the presence of such multiple techno-
logical alternatives would be an interesting exercise.
In particular, it will be interesting to explore the
impact of translation quality on the trade-offs. An
important limitation of the current framework is
that it presumes availability of certain amounts of
M and T datasets such that the performance func-
tion can be estimated. However, in practice, one
would like to understand the trade-offs before col-
lecting the data. Recently, Srinivasan et al. (2021)
showed that it is possible to predict the zero-shot
and few-shot performance of MMLMs for differ-
ent languages using linguistic properties and their
representation in the pre-training corpus. Under-
standing if there exists a similar dependence of the
performance trade-offs with the linguistic proper-
ties of different languages can help us generalize
our framework to the new languages without the
need for explicit data collection.

Finally, we believe that performance function-
based analysis can be applied to a multitude of
three-way trade-offs among technology, cost and
data that are commonly encountered in the NLP
world. The economics of language data can be a
new direction of study with important practical and
theoretical applications.
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A Appendix

A.1 Derivations
Here we derive the expression for the curve traced
by the expansion path as given in equation 4. As de-
scribed in section 2.2 AMUE performance function
is given by:

π(T,M) = azs + atT
αt + amMαm

Setting π(T,M) = Πc i.e. a constant value, we
can obtain an analytic expression for the isoperf
curves from this functional form, which is given
by:

M =

(
Πc − azs − atT

αt

am

) 1
αm

(5)

Since the expansion path is the locus of the
points of tangency between isoperf and isocost
curves, we can compute the slope of the isoperf
curve and set them equal to each other. The slope
for isoperf curve can be computed as:

Mαm =

(
Πc − azs − atT

αt

am

)

αmMαm−1dM

dT
= −αtat

am
Tαt−1

dM

dT
= − αtat

αmam

Tαt−1

Mαm−1

The slope of the isocost curve is simply − ct
cm

,
equating them we get:

ct
cm

=
αtat
αmam

Tαt−1

Mαm−1

Mαm−1 =
αtatcm
αmamct

Tαt−1

M =

(
ctamαm

cmatαt

) 1
1−αm

T
1−αt
1−αm

A.2 Training Setup
We typically run the fine-tuning experiments on
NVIDIA-P100 GPUs with 16 GB of memory. A
fine-tuning job with 3 random seeds typically takes
2 hours to run on the specified compute. Having
access to 64 of such GPUs we ran multiple jobs in
parallel. For fitting performance functions and do-
ing analysis on expansion paths CPU only compute
of Intel(R) Xeon(R) CPU E5-2690 was utilized.

We use mBERT configuration bert-base-
multilingual-cased for fine-tuning, which supports
104 languages and has around 178 million
parameters.

A.3 Goodness of Fit
Table 2 shows the train and test RMSE and r2 for
GPR and AMUE . For training set we also compute
the errors corresponding to different fine-tuning
setups like translate-train , few-shot etc, which in-
dicates that our models can accurately fit different
regions of the performance landscape. The point
is again illustrated in Figure5 which compares the
predictions of AMUE and GPR with the actual F1-
scores for different values of the amount of manual
data (i.e. M ), keeping T , P , and p as fixed.

AMUE GPR

Data Split Fine-tune
setup RMSE ↓ r2 ↑ RMSE ↓ r2 ↑

Train

Zero-Shot 4.19 0.95 4.43 0.95

Translate-Train 5.10 0.93 3.68 0.96

Few-Shot 5.75 0.90 1.63 0.99

Few-Shot
+ Translate-train 4.71 0.93 1.53 0.99

Overall 5.04 0.93 1.86 0.99

Test Overall 5.84 0.90 2.43 0.98

Table 2: RMSE and r2 values for the two performance
functions on training and test sets.

0 1000 2000 3000
M

70

80

Π

l = sw
P, T = 3696

AMUE Prediction

GPR Prediction

Actual Values

Figure 5: Performance function estimated by AMUE
and GPR. Π ≡ F1-score (scaled by 100).
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Figure 6: M-T diagrams for different languages for P = 3696 and ct/m = 0.1
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Figure 7: M-T diagrams for different languages for P = 2000 and ct/m = 0.1
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Figure 8: M-T diagrams for different languages for P = 3696 and ct/m = 0.01
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Figure 9: M-T diagrams for different languages for P = 2000 and ct/m = 0.01
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Figure 10: Performance vs the minimum costs for dif-
ferent languages for c = 0.1. As expected the overall
costs are now lower than in figure 3, since the manual
data is cheaper in this case.
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