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Abstract

Most existing reading comprehension datasets
focus on single-span answers, which can be
extracted as a single contiguous span from a
given text passage. Multi-span questions, i.e.,
questions whose answer is a series of multiple
discontiguous spans in the text, are common
in real life but are less studied. In this paper,
we present MultiSpanQA1, a new dataset that
focuses on questions with multi-span answers.
Raw questions and contexts are extracted from
the Natural Questions (Kwiatkowski et al.,
2019) dataset. After multi-span re-annotation,
MultiSpanQA consists of over a total of 6,000
multi-span questions in the basic version, and
over 19,000 examples with unanswerable ques-
tions, and questions with single-, and multi-
span answers in the expanded version. We in-
troduce new metrics for the purposes of multi-
span question answering evaluation, and estab-
lish several baselines using advanced models.
Finally, we propose a new model which beats
all baselines and achieves the state-of-the-art
on our dataset.

1 Introduction

The task of reading comprehension, where models
are required to process a text and answer questions
about it, has seen rapid progress in recent years.
As systems have increasingly matched humans on
popular datasets (Rajpurkar et al., 2016, 2018), re-
searchers have developed newer, more complex
formulations of the task, such as very long contexts
and answers (Kwiatkowski et al., 2019), multi-hop
reasoning (Yang et al., 2018), and discrete oper-
ations over the content of paragraphs (Dua et al.,
2019). One thing these datasets have in common is
that the answer is constrained to be a single span
that can be extracted or computed from the context.

However, in practice, the answer to a question
will often consist of multiple parts. As in the exam-
ple in Figure 1, the answer set contains 10 countries,

1Available at: https://multi-span.github.io

Question: Which countries does the Danube River flow
through?

Passage: ... Originating in Germany, the Danube flows
southeast for 2,850 km (1,770 mi), passing through or
bordering Austria, Slovakia, Hungary, Croatia, Serbia,
Romania, Bulgaria, Moldova and Ukraine before draining
into the Black Sea. ...

Answer set: {Germany, Austria, Slovakia, Hungary,
Croatia, Serbia, Romania, Bulgaria, Moldova, Ukraine }

Figure 1: Example of a multi-span question and answer
pair.

some of which are discontiguous in the passage.
Such cases are largely ignored in existing reading
comprehension research, in part because there are
no datasets of multi-span questions.

In this paper, we introduce MultiSpanQA, a new
reading comprehension dataset consisting of 6,536
multi-span examples. The raw questions and pas-
sages are extracted from Natural Questions (“NQ”:
Kwiatkowski et al. (2019)), a large-scale open-
domain QA dataset. Trained annotators were asked
to identify question–passage pairs where the an-
swer was multi-span, and annotate the spans. In ad-
dition to the basic version of the dataset consisting
entirely of multi-span answers, we also prepare an
expanded version with a selection of unanswerable
questions, and questions with single- and multi-
span answers, intended to reflect a more realistic
QA setup.

We further classify answer semantics into 5 cat-
egories, and manually label the logical structure of
the answer spans. We introduce metrics to evaluate
multi-span QA systems across these different tasks.

We propose several baselines, and a new model
which casts the task as a sequence tagging problem.
The proposed model combines a sequence tagger
with a span number predictor, span structure pre-
dictor, and span adjustment module. Experimental
results show that the proposed model surpasses
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all baselines and achieves 59.28% exact-match F1
score and 76.50% partial-match F1 score.

To summarize, our contributions are:
• A new reading comprehension dataset con-

taining 6.5k high-quality multi-span answers,
along with analysis and metrics for multi-span
QA.
• A novel label set for capturing the semantics

of multi-span answers, with annotations.
• A new model for multi-span reading compre-

hension which achieves state-of-the-art results
on our dataset.

2 Related Work

2.1 Question Answering Datasets

Extractive QA Most existing extractive QA
datasets such as SQuAD (Rajpurkar et al., 2016),
SQuAD2.0 (Rajpurkar et al., 2018), SearchQA
(Dunn et al., 2017), and QuAC (Choi et al., 2018)
restrict the answer passage to a single span of text.
SQuAD and SQuAD 2.0 limit the answer passage
to a short paragraph from Wikipedia; the best-
performing systems have now exceeded human
performance on these datasets. QuAC frames the
task in a dialogue setting by introducing a teacher
and student, where the student repeatedly asks the
teacher questions about a topic and the teacher tries
to find answers from the given passage. That is,
it supports information seeking through multi-turn
conversation. TriviaQA (Joshi et al., 2017) and
HotpotQA (Yang et al., 2018) extend the answer
context from single passage to multiple passages,
while HotpotQA further requires reasoning over
multiple passages to answer the question. However,
all of these datasets limit the answer to a single text
span from the provided answer context.

DROP (Dua et al., 2019) requires systems to re-
solve (possibly multiple) references in a question,
and perform discrete operations (such as addition,
sorting, or counting) over them. However, because
these operations are mostly numeric, the spans are
almost exclusively semantically homogeneous and
related to numeric values. MASH-QA (Dua et al.,
2019) extends the answer space to texts that span
across a longer document, but this dataset is highly
domain-specific, in the healthcare domain. Quoref
(Dasigi et al., 2019) and Natural Questions (“NQ”:
Kwiatkowski et al. (2019)) both contain multi-span
answers. Quoref requires systems to resolve coref-
erence among entities, to aid in span-selection. NQ
is a large-scale dataset that provides questions with

very long answer contexts. The proportion of multi-
span answers is around 10% and 2% in Quoref and
NQ, respectively. However in each case, multi-
span answers are captured as a single span, with no
annotation of the internal structure of the compo-
nent spans. WikiHowQA and WebQA (Cui et al.,
2021) both focus on non-factoid (e.g., how, why)
questions, with answers mostly being long spans
or full sentences.

Generative QA Generative QA datasets usually
require systems to answer questions in the form
of several sentences, either selected from the pro-
vided answer context or generated based on it. Wik-
iQA (Yang et al., 2015) and MS Marco (Nguyen
et al., 2016) are two open-domain generative QA
datasets, where answers in WikiQA are mostly sen-
tences from the answer passage, while answers
in MS Marco are free-form sentences generated
by crowd workers. NarrativeQA (Kociský et al.,
2018) is a dataset of movie and book summaries.
SearchQA (Dunn et al., 2017), ELI5 (Fan et al.,
2019), and CoQA (Reddy et al., 2019) are three
multiple-document datasets. SearchQA is con-
structed from question–answer pairs crawled from
Jeopardy!, and most questions can be answered
with a short (99% less than 5 tokens) extractive
span from a single document. ELI5 requires sys-
tems to generate paragraph-length answers by sum-
marizing information from multiple documents.
CoQA contains conversational questions, with free-
form text as answers.

Cloze style Cloze datasets such as CNN/Daily
Mail (Hermann et al., 2015), Children’s Book Test
(CBT) (Hill et al., 2016), and BookTest (Bajgar
et al., 2016) require systems to predict a missing
word from a passage. However, researchers have
shown that this task is artificial, and can be largely
solved with simple methods and relatively little
reasoning (Chen et al., 2016).

2.2 Multi-span Models
Dua et al. (2019) proposed to predict the num-
ber of output spans for each question, by apply-
ing a single-span predictor recursively, making
training complex. Segal et al. (2020) first pro-
posed to treat multi-span QA as a sequence tagging
task, in the form of a multi-head architecture (Dua
et al., 2019) to perform arithmetic operations be-
tween the predicted spans. Hu et al. (2019) applied
the non-maximum suppression (NMS) algorithm
(Rosenfeld and Thurston, 1971) to prune redundant
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bounding boxes from the top-k predicted spans of a
single-span predictor. Pang et al. (2019) proposed
HAS-QA, which supports multi-span prediction
by computing answer probabilities at the question,
paragraph and span levels. A common feature of
these works is that the predicted spans are fed into
an aggregation module, and the answers are usu-
ally a single span chosen from the prediction, or
a number computed from them. Cui et al. (2021)
proposed a model which can extract list-form an-
swers across multiple spans. Their work mainly
focuses on capturing the sequential and progressive
relationships between long-span descriptions.

3 Dataset Construction and Composition

In this section, we describe how we construct Mul-
tiSpanQA, and provide a statistical breakdown of
its composition.

3.1 Data Collection and Preprocessing

The question–passage pairs were selected from Nat-
ural Questions (NQ: Kwiatkowski et al. (2019)),
a large-scale open-domain QA dataset made up
of (question, passage, long answer, short answer)
quadruples where: the questions are real queries
issued to the Google search engine; the passage is
a Wikipedia page which may or may not contain
the information required to answer the question;
the long answer is a paragraph from the page con-
taining all information required to infer the answer;
and the short answer is one or more text spans that
answer the question. Both long and short answers
can be NULL if no viable answer candidate exists
on the page.

To create MultiSpanQA, we first extract NQ
questions annotated with multiple short answers,
and consider the long answer to be the answer pas-
sage. We then remove paragraphs that don’t con-
tain any question part, to eliminate the information-
retrieval component of NQ and focus more on the
short answer extraction problem. To make the
dataset easy to use, we strip HTML from the pas-
sages, so that they only contain plain text. As table
structure cannot be captured in the plain text af-
ter removing HTML, we remove the passages that
contain tables. Ultimately, around 6700 candidates
remain where each candidate is a triple of (question,
passage, set of answer spans).

To aid the annotation process, we classifies the
samples into 5 categories according to the expected
answer type of questions using a BERT-based clas-

Answer type % Example

DESCRIPTION 16.4 other gases
LOCATION 18.6 Vermont
HUMAN 46.1 George Benson
NUMERIC 7.3 9,677 ft
OTHER ENTITY 15.4 Torah

Table 1: Proportion and examples of answer types in
MultiSpanQA.

sifier trained on the TREC Question Classification
dataset (Li and Roth, 2002). The classes are DE-
SCRIPTION, LOCATION, HUMAN, NUMERIC, and
OTHER ENTITY. Table 1 shows the breakdown
and an example of each answer type class.

3.2 Issues in Existing Dataset
NQ was originally annotated by around 50 annota-
tors, with an average annotation time of 80 seconds
per instance. However, we found a number of is-
sues with the dataset: (1) grammatical errors in
questions, due to them being actual queries submit-
ted to the Google search engine by real users; (2)
answer boundary inconsistencies or errors, such as
the entity University of Melbourne being annotated
as an answer in one example but The University
of Melbourne being annotated in another; and (3)
wrong or incomplete answers: some questions are
not answered or are answered incompletely in the
annotated answer span, for example, to answer the
question Which countries does the River Danube
flow through?, 10 countries should be included
in the answer span while only 9 are annotated.
These issues are relatively uncommon overall in the
dataset, but occur disproportionately in multi-span
answers.

3.3 High Quality Re-annotation
We (re-)annotated all the data using the Brat annota-
tion tool (Stenetorp et al., 2012).2 Three annotators
were provided with a category-specific annotation
guide (broken down across the 5 predicted answer
types), and annotated the data on a per-category
basis.3

For each annotation instance, we show the ques-
tion, passage, and the original multiple answer
spans to the annotator. The first-pass annotation
was according to the following four categories:

2http://brat.nlplab.org
3The annotation guide is available in the github repository

along with the data.
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Answer structure % Example

Conjunction 82.6
Q: What purpose do aircraft carriers serve for aircraft?
Passage: carrying, arming, deploying, and recovering

Multi-part-
disjunction (Redun-
dant)

4.5
Q: When does the Force Unleashed 2 take place?
Passage: The game takes place approximately six months after the events
of the first game, and a year before the first Star Wars.

Multi-part-
disjunction (Non-
Redundant)

9.6
Q: When was the last year they made the Toyota Matrix?
Passage: Sales of the Matrix were discontinued in the United States in
2013, and in Canada in 2014.

Complex 3.1
Q: When was the Battle of Dien Bien Phu and what was the result?
Passage: The battle occurred between March and May 1954 and cul-
minated in a comprehensive French defeat that influenced negotiations
underway at Geneva among several nations over the future of Indochina.

Shared Structure 0.2
Q: What does Triangle Transit offer?
Passage: scheduled, fixed-route regional and commuter bus service

Table 2: Answer structure breakdown and examples.

• Good example: the question is clear, and the
answer spans are labelled consistent with the
annotation guide, in which case accept the
instance as is.
• Bad question: the question is ungrammati-

cal or not aligned with the passage content,
in which case rewrite the question while pre-
serving its original intended meaning where
possible (otherwise reject).
• Bad answer span(s): the answer span(s) are

incorrect or incomplete, in which case remove
the inappropriate spans and select the correct
spans.
• Bad question–answer pair: the question

doesn’t align with the passage content (e.g.
there is no answer there) or there are not mul-
tiple answer spans in the passage (e.g. there
is only a single answer span), in which case
reject the instance.

Although all examples in our dataset contain
multiple answer spans, the semantic structure
varies considerably. We hand-annotate this via a
novel 5-way annotation scheme, as follows (see
Table 2 for examples):

• 1. CONJUNCTION: Each span is part of the
answer, and the answer is complete only when
all of the spans are combined
• MULTI-PART-DISJUNCTION: Each span is

a complete (but independent) answer to the
question, with one of the following structures:

– 2. REDUNDANT: the multiple spans re-

fer to the same concept or entity. For
example, in the example in Table 2, each
span is a full answer to the question, spec-
ified using different temporal reference
points.

– 3. NON-REDUNDANT: the different
spans refer to different concepts or enti-
ties, each of which is independently cor-
rect in its respective context. For exam-
ple, in the example in Table 2 each span
is independently correct in the context of
a particular national market.

• 4. COMPLEX: The question is complex (made
up of multiple sub-parts), and each span is
an answer to a different sub-part, the inter-
nal logic of which is not enumeration. For
example, in the example in Table 2, the two
spans are independent answers to the two sub-
questions in the original question.
• 5. SHARED STRUCTURE: Spans are enumer-

ated in the form of a syntactically-coordinated
structure, sharing either a modifier or a head
(i.e. the first word(s) of the first span or last
word(s) of the last span). For example, in the
example in Table 2, the three spans share the
syntactic head bus service, and the full an-
swer is equivalent to scheduled bus service +
fixed-route regional bus service + commuter
bus service.
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#Spans 2 3 4–5 6–8 9–12 13–21

Count 3,791 1,414 915 337 71 8

Table 3: Number of answer spans in MultiSpanQA.

3.4 Dataset Statistics

The annotation was performed by three trained an-
notators with an average annotation time of 70 sec-
onds per instance. To test the inter-annotator agree-
ment (IAA), we randomly selected 100 instances
for each pairing of the three annotators to anntotate.
The same annotation (of all spans) of an instance is
considered as an agreement, and any difference in
one instance is considered as a disagreement. The
average pairwise IAA is 0.86 for answer spans and
0.94 for answer structures (both based on macro-
averaged exact match F1 score), with some dis-
agreements between CONJUNCTION and MULTI-
PART-DISJUNCTION (NON-REDUNDANT). To bet-
ter understand the composition of MultiSpanQA,
we compare our annotations with those in NQ, and
provide some basic statistics. Compared to the
original annotations in NQ, the annotators rejected
3.1% of instances, re-wrote the question for 5.6%
of instances, and modified the answer span annota-
tions for 22% of instances.

MultiSpanQA contains 6,536 instances with
5,230 for training, 653 for validation, and 653 for
test. Table 3 provides the distribution of the num-
ber of answer spans in the dataset, from which we
see the number of spans ranges from 2 to 21, but
80% of instances contain 2 or 3 spans, and only
about 1% of instances contain more than 9 spans.

3.5 Dataset Expansion

In its basic form, the MultiSpanQA dataset con-
tains only multiple-span answers, and the correct
answer can always be located in the passage (in
the form of multiple answer spans). However, in a
real-world QA scenario, single-span answer ques-
tions and unanswerable questions (i.e. the answer
is not contained in the passage) would realistically
exist. To create a more realistic and challenging
variant of the dataset, we add a comparable num-
ber of single-span question–answer pairs and unan-
swerable instances to MultiSpanQA, by randomly
sampling from NQ and applying the same prepro-
cessing. The total size of the expanded dataset
is 19,608 instances (three times the basic version,
partitioned similarly to the basic version).

4 Models

Formally, given a question and passage pair 〈q, p〉,
the task of multi-span QA involves finding all an-
swer spans s1, s2, ...sn, which are neither dupli-
cated nor overlap with each other, as well as predict
the answer structures.

4.1 Baselines

Single-span Baseline Because most existing
reading comprehension datasets only have single-
span answers, single-span architectures are widely
used in reading comprehension research. Usually,
a pre-trained model is used to encode the question
and passage, and output a contextualised represen-
tation for all input tokens. Then two feed-forward
networks are used to compute a score for each to-
ken which indicates whether the token is the start
or end of the answer. Finally, a softmax layer fol-
lowed by an argmax function is used to produce
the start and end positions of the answer.

To make MultiSpanQA trainable for a single-
span architecture, we experimented with two pre-
processing methods, and created two baselines ac-
cordingly:

1. Mark the start of the answer as the start po-
sition of the first answer span and mark the
end of the answer as the end position of the
last answer span. In this way, the model can
learn to find the shortest span that includes all
answer spans. We select the best prediction
for evaluation.

2. Suppose an instance has n answer spans, we
replace the instance with n instances, one for
each span with a single-span answer.

In this way, we can apply single-span answer mod-
els to our dataset.

For evaluation, to enable multi-span prediction,
we output the 20 highest-scoring predictions, and
tune a threshold t to select the answer spans with a
confidence score larger than t that optimises perfor-
mance on the training set. We remove overlapping
predictions based on confidence scores, rejecting
predictions with lower confidence scores. Note that
for both baselines, we apply the pre-processing to
the training data only.

Sequence Tagging Baseline Following Segal
et al. (2020), we cast question answering as a
sequence tagging task, predicting for each token
whether it is part of an answer. In our experiments,
we use the popular IOB tagging scheme to mark
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Figure 2: Proposed multi-span QA model architecture.

answer spans in the passage where B denotes the
first token of an answer span, I denotes subsequent
tokens within a span, and O denotes tokens that are
not part of an answer span.

4.2 Proposed Model

By investigating the failures of the sequence tag-
ging baseline, we find there is an issue that the
model struggles to capture global information. For
example, the number of answer spans may be spec-
ified in the question, but cannot be imposed as a
constraint on the tagger. To better use such global
information, we propose a span encoder, a number
of span predictor, an answer structure predictor, and
a span adjustment module (as in Figure 2), which
can be combined with any on-the-fly sequence tag-
ger (encoder).

Contextualiseed Encoder Given a pair of ques-
tion q and passage p, we first encode the question
and context together using a sequence pair encoder
as:

H = Encoder(〈q, p〉) ∈ Rl×h (1)

where H = [H[CLS];Hq;Hp] is the contextualised
token representation of all input tokens with a
pooled global token [CLS], h is the hidden-layer
size, and l is the input length.

After encoding, we fetch the hidden states of the
context tokens and input them to a linear classifier
to perform a preliminary token-level answer span

prediction, as:

Tp = FFN(Hp) ∈ Rlp×t (2)

where lp denotes the length of passage, and t de-
notes the number of labels (t = 3 in for IOB tag-
ging scheme).

Span Encoder According to the argmax of
preliminary predictions Tp, we take the continu-
ous token representations of the predicted spans
as span representation s1, s2, ...sn, where si =
[Hsi , Hsi+1, ...Hsi+k−1] ∈ Rk×h , k is the length
of the span, which varies across spans. Average
pooling is then applied to the span representations
si to generate a fixed-length span representation
Si ∈ R1×h.

We then concat the hidden state of [CLS] to-
ken H[CLS] with the span representations Si as
Ispan = [H[CLS], S1, ...Sn], and input them into a
span encoder as:

I = SpanEncoder(Ispan) ∈ R(n+1)×h (3)

Objective Function We fetch the hidden state of
span-level [CLS] token I[CLS] and input it to two
feed-forward networks to predict the number of
answer spans and the answer structure, respectively,
as below:

Pnum = FFN(I[CLS]) (4)

Pstructure = FFN(I[CLS]) (5)

We use cross-entropy loss for answer span and
structure prediction, and mean-square loss for
span number regression. For training, we use the
weighted sum of the three losses:

L = Lspans + λ1Lnum + λ2Lstructure (6)

Finally, a span adjustment module is used to
explicitly combine the predicted span number with
the span texts. We first assign a confidence score
to each label of the preliminary classification using
a softmax layer:

αconf = softmax(Up) ∈ Rlp×t (7)

The confidence of a predicted answer span ai is
defined as the maximum confidence of the tokens
within ai. Suppose there are k spans that been
tagged as answers and the predicted number of
span is n, if n < k, we rank the predicted spans by
confidence score, and keep the top-n answer spans
as answers.
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Method
MultiSpanQA MultiSpanQA (expand)

Exact Match Partial Match Exact Match Partial Match

P R F P R F P R F P R F

Single (v1) 1.07 0.37 0.55 28.04 69.99 40.04 8.98 5.53 6.85 59.83 71.27 65.05
Single (v1) + t 1.32 0.53 0.76 27.89 73.48 40.44 8.81 5.82 7.01 57.63 73.03 64.42

Single (v2) 15.92 5.55 8.23 58.86 48.23 53.02 12.60 7.77 9.61 67.64 58.36 62.66
Single (v2) + t 16.20 12.98 14.41 60.31 76.78 67.56 13.36 12.05 12.66 63.01 73.09 67.73

Tagger 52.45 61.11 56.45 75.91 74.53 75.22 39.43 43.54 41.38 70.79 69.42 70.10

Multi (joint) 54.51 62.55 58.25 77.53 75.49 76.50 40.14 42.88 41.47 73.09 69.68 71.35
Multi (full) 58.12 60.50 59.28 79.56 73.23 76.26 42.74 41.81 42.26 74.05 68.06 70.47

Table 4: Model performance on MultiSpanQA test set. “Single” without “t” means the single-span baseline with
single-span prediction. “Single” with “t” means we additionally tune a confidence score threshold to choose
multiple spans from the n-best single-span predictions. “Tagger” means the sequence tagging baseline. “Multi
(joint)” represents the proposed tagger model joint training with span number prediction and structure prediction,
“Multi (full)” signifies “Multi (joint)” with the proposed span adjustment module.

Answer Type Exact Match Structure

P R F Acc

DESCRIPTION 25.56 34.34 29.31 82.50
LOCATION 57.22 67.30 61.85 93.06

HUMAN 70.10 75.55 72.72 84.83
NUMERIC 41.02 44.13 42.52 72.41

OTHER ENTITY 64.89 65.08 64.99 77.55

Table 5: Results on MultiSpanQA (expanded) dev set
over different question types.

5 Experiments

5.1 Setup

For all baselines and our model, we use the Hug-
gingFace implementation of BERTBase (Wolf
et al., 2019; Devlin et al., 2019) as our en-
coder with max_sequence_length = 512 and
doc_stride = 128 to deal with long passages. For
the proposed span encoder, we use a multi-head
self-attention layer with 4 heads followed by a lin-
ear layer to encode the spans. The maximum span
number is set to 30 for the input of the span encoder.
For training, we use the BertAdam optimizer with
default hyperparameters and learning rate of 3e-5.
All models are trained with a batch size of 4 for
3 epochs. We use a two-layer feed-forward net-
work with a ReLU activation function for all linear
layers.

5.2 Evaluation Metrics

For answer structure prediction, we use accuracy to
evaluate the model performance. For answer span
prediction, we evaluate in terms of exact match and
partial match performance.

Exact match An exact match occurs when a pre-
diction fully matches one of the ground-truth an-
swers, and the F1 score is computed by treating
the predicted and ground-truth answer spans as a
set of spans. We use micro-averaged precision, re-
call, and F1 score for evaluation based on the stan-
dard formulation of Precision = TP/(TP+FP ),
Recall = TP/(TP + FN), and F1 = 2 ∗
Precision ∗Recall /(Precision+Recall), where
TP (True Positive) is the number of answer spans
correctly predicted by the model, FP (False Posi-
tive) is the number of spans incorrectly predicted
by the model, and FN (False Negative) is the num-
ber of answer spans not predicted by the model.
In the case of an unanswerable question with the
expanded dataset, we use a virtual span which indi-
cates no answer.

Partial Match To measure the overlap between
the predictions and ground truth answers, we pro-
pose the partial match precision, recall, and F1 by
treating each predicted span or ground-truth answer
span as a string. In detail, for each pair of predic-
tion pi and ground truth answer tj , we define the
partial retrieved score and partial relevant score as
the length of the longest common substring (LCS)
between pi and tj , divided by the length of pi and
tj , respectively, as:

sretij = len(LCS(pi, tj))/len(pi) (8)

srelij = len(LCS(pi, tj))/len(tj) (9)

Suppose there are n predictions and m ground
truth answers for a question. Since we do not know
the correspondence between predictions and an-
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#Span Exact Match Structure

P R F Acc

1 34.95 45.09 39.38 –
2-3 54.13 64.08 58.69 81.92
4-7 62.50 63.70 63.09 91.89
>7 82.25 71.83 76.69 81.25

Table 6: Results on MultiSpanQA (expanded) dev set
categorised by number of spans.

swers, we compute the partial retrieved score be-
tween a prediction and all answers and keep the
highest one as the retrieved score of the predic-
tion. Similarly, for each ground truth answer, the
relevant score is the highest one between it and
all predictions. The precision, recall, and F1 are
finally defined as follows:

Precision =

∑n
i=1maxj∈[1,m](sij

ret)

n
(10)

Recall =

∑m
j=1maxi∈[1,n](sijrel)

m
(11)

F1 =
2 ∗ Precision ∗Recall
Precision+Recall

(12)

We use micro-averaged scores for all metrics.

5.3 Results and Analysis
Table 4 shows the dev set results on MultiSpanQA,
where the left part is results on multi-span questions
only (the basic dataset), and the right part is the
results on the expanded dataset (including single-
span answers and unanswerable questions).

Single-span model From the table, we see that
single-span (v1) gets very low exact match scores
but higher partial match scores (compared to exact
match), as it is trained to find a single long span
that overlaps with all answer spans. By comparison,
single-span (v2) improves the exact match scores
on the basic dataset because it is trained on indepen-
dent single-span answers. This is also the reason
that: (1) single-span (v1) always gets a lower score
in partial match precision and a higher score in par-
tial match recall compared with single model (v2);
and (2) after applying the tuned threshold, single-
span (v2) gets a clear boost while single-span (v1)
does not exhibit a substantial change in results. The
overall performance of the single-span baselines is
relatively low, simply because the models can only
predict a single-span answer, which is incompatible
with the MultiSpanQA dataset.

Sequence tagging model Compared to the
single-span baselines, the sequence tagging mod-
els perform much better. Without changing the
encoder, there is an improvement of over 30 abso-
lute points on the exact match metrics, and about
8 for the partial match F1 metric in MultiSpanQA.
Performance is boosted using joint training with
span number prediction and answer semantics pre-
diction. Our proposed model achieves the best F1
score in most settings.

Another interesting finding is that single-span
models usually attain higher precision, while se-
quence tagging models attain higher recall. This
demonstrates that single-span models are more ac-
curate in the single-span answer they predict, while
sequence tagging models predictably tend to make
more predictions.

Comparing the two datasets Comparing re-
sults on the two datasets, we see that single-span
baselines are boosted over the expanded dataset
(where we add single-span answers and unanswer-
able questions), as single-span answers are more
tractable for these simpler models. The relative im-
provements for sequence tagging models are more
modest, but they still have a clear advantage over
the single-span baselines.

Difficulty analysis To explore the difficulty of
the MultiSpanQA dataset, we report the dev set re-
sults categorised by answer type in Table 5 and cat-
egorised by the number of spans in Table 6. From
the answer type perspective, the model performs
best on HUMAN questions, followed by OTHER

ENTITY and LOCATION (largely following the nat-
ural distribution of the respective classes in the
dataset). There is quite a drop for the NUMERIC

class, and a big drop again for the DESCRIPTION

class, which was also the class our annotators found
most difficulty with.

From the perspective of the number of spans, the
model performs best on questions with many (> 7)
answers. We think this is because the answers are
usually a list of spans with similar semantics, often
structured as a simple coordination. The perfor-
mance drops as the answer number decreases be-
cause the syntactic pattern in which answer spans
occurs is less predictable.

Answer Semantics From the answer type per-
spective, LOCATION answers usually have easily
predictable structure, while the structure of NU-
MERIC answers is the most difficult to predict.
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Figure 3: Confusion matrix of answer structure predic-
tion, based on log values.

From the perspective of the number of spans, an-
swers consisting of 4–7 spans are relatively easy
to predict and there is no significant difference be-
tween answers contain few (2 or 3) spans or many
(> 7) spans. Figure 3 shows the confusion matrix
of the answer structure predictions. We can see
that our model tends to predict CONJUNCTION and
NON-REDUNDANT, and there are no REDUNDANT

or SHARE predictions.

The overall answer structure accuracy is 84.38%,
which is slightly higher than the proportion of
CONJUNCTION (the majority class) in the dataset.
This suggests that directly applying a simple feed-
forward network to the pooled encoder output is
ineffective for answer semantics prediction, and
that this should be an area for future model refine-
ment.

6 Conclusion

We present MultiSpanQA, a reading comprehen-
sion dataset where answers consist of multiple dis-
crete spans. As part of this, we proposed a method
for classifying the semantic structure of answers,
based on the semantic relation between answer
spans. We also provide an expanded version of
the dataset which includes unanswerable questions
and single-answer questions, to make it both more
challenging and more realistic. We additionally pre-
sented a number of models for multi-span QA ex-
traction, and found that the best-performing model
was sequence tagging-based, augmented by a span
number prediction module and span adjustment
module.
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