
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 839 - 851

July 10-15, 2022 ©2022 Association for Computational Linguistics

GRAM: Fast Fine-tuning of Pre-trained Language Models
for Content-based Collaborative Filtering

Yoonseok Yang∗, Kyu Seok Kim∗, Minsam Kim∗, Juneyoung Park†

Riiid AI Research
{yoonseok.yang, kyuseok.kim, minsam.kim, juneyoung.park}

@riiid.co

Abstract

Content-based collaborative filtering (CCF)
predicts user-item interactions based on both
users’ interaction history and items’ content
information. Recently, pre-trained language
models (PLM) have been used to extract high-
quality item encodings for CCF. However, it is
resource-intensive to train a PLM-based CCF
model in an end-to-end (E2E) manner, since op-
timization involves back-propagating through
every content encoding within a given user in-
teraction sequence. To tackle this issue, we
propose GRAM (GRadient Accumulation for
Multi-modality in CCF), which exploits the
fact that a given item often appears multi-
ple times within a batch of interaction his-
tories. Specifically, Single-step GRAM ag-
gregates each item encoding’s gradients for
back-propagation, with theoretic equivalence
to the standard E2E training. As an exten-
sion of Single-step GRAM, we propose Multi-
step GRAM, which increases the gradient
update latency, achieving a further speedup
with drastically less GPU memory. GRAM
significantly improves training efficiency (up
to 146×) on five datasets from two task
domains of Knowledge Tracing and News
Recommendation. Our code is available at
https://github.com/yoonseok312/GRAM.

1 Introduction

Collaborative filtering (CF) is a popular technique
used for mining relationships between items and
users. Recently, CF has been successfully applied
to various tasks including Knowledge Tracing and
Recommender Systems (Smith and Linden, 2017;
Bennett et al., 2007; Melville et al., 2002). How-
ever, conventional CF only considers item-user in-
teractions, and disregards any item-/user-specific
information. This leads to the so-called cold-start
problem (Lam et al., 2008), where the CF model

*These authors contributed equally.
†This author is the corresponding author.

fails to make predictions for unseen users/items,
even when they resemble observed users/items.

To remedy this issue, Content-based Collabo-
rative Filtering (CCF) incorporates items’ content
information into the item encoding. This not only
addresses the cold-start problem, but also leads to
significant performance improvement (Wu et al.,
2019, 2021a; Lu et al., 2018). Specifically, large
pre-trained language models (PLM) (Devlin et al.,
2019; Brown et al., 2020) have shown great po-
tential for extracting items’ content information.
However, fine-tuning PLMs for CCF requires pro-
hibitive computational resources in terms of (1)
training time and (2) GPU memory footprint.

This issue arises due to CCF’s multi-modal na-
ture, where item representations are learned from
both tabular user records and their textual infor-
mation. As a given item appears multiple times
within a batch of users’ records, its textual encod-
ing needs to be computed every time it appears
within the batch. Moreover, the need to store in-
termediate activations for hundreds of millions of
parameters in PLM requires high GPU memory
footprint (Wang et al., 2020).

To that end, we propose Single-step GRAM,
GRadient Accumulation for Multi-modality in
CCF, which alternately trains the task specific mod-
ule and content encoder module. Accumulating gra-
dients for repeated items in a training step, Single-
step GRAM provides 4 times faster training while
being theoretically equivalent to standard E2E train-
ing.

As a natural extension of Single-step GRAM,
we also propose Multi-step GRAM which accu-
mulates gradients across multiple training steps.
Multi-step GRAM (1) provides an even higher ra-
tio of acceleration without significant performance
loss and (2) consumes less than 40% GPU memory
of E2E. Results show that the computational speed
can increase up to 146× (45× on avg.) with less
than 1% drop in AUC.

839

https://github.com/yoonseok312/GRAM

The contributions of our paper are as follows:

• We present GRAM (Single-step & Multi-step)
which accelerate training of CCF by accumulat-
ing the gradients of redundant item encodings.

• We empirically show that GRAM, especially
Multi-step GRAM, noticeably reduces GPU
memory footprint compared to E2E training.

• We evaluate GRAM in a variety of settings on 5
real-world datasets in two task domains, News
Recommendation and Knowledge Tracing.

2 Related Works

2.1 Collaborative Filtering and Content-based
Filtering

Collaborative filtering (CF) (Su and Khoshgof-
taar, 2009) attempts to predict user-item interaction
based on past history. CF alone disregards any user-
specific or item-specific information, leading to the
inability to extract useful features from user infor-
mation or item content. This especially leads to
low performance on cold-start users and items. Var-
ious content-based filtering methods (Van Meteren
and Van Someren, 2000; Basilico and Hofmann,
2004) have been proposed to mitigate these issues
through labeled meta-data. It uses raw textual fea-
tures of item, instead of requiring other users’ data
during a user’s recommendation like CF. However,
these approaches require manual labelling and lack
the extensive usage of the content itself.

2.2 Content-based Collaborative Filtering

Content-based Collaborative Filtering (CCF) in-
corporates content into CF in order to unify the
strengths of CF and content-based filtering. It con-
sists of two major components: content-encoder
(CE) and collaborative filter (CF) components con-
nected in an end-to-end fashion. Major task do-
mains where items’ raw textual content may signif-
icantly aid CF include:

News Recommendation (NR), a task of pre-
dicting whether a user will click an article among
others, provided with the user’s past interactions.

Knowledge Tracing (KT), a task of predicting
whether a user will correctly responds to a question
or not based on the user’s past responses.

In this section, we briefly review the widely-used
approaches to utilize content information in CCF,
with a focus on thse two domains.

2.2.1 Training Content-Encoder (CE) in CCF

Existing works mainly train or fine-tune CE module
in an E2E fashion to obtain a useful content rep-
resentations for the given CF task. In NR, NRMS
(Wu et al., 2019) applied Glove (Pennington et al.,
2014) word representation and Multi-head Self-
attention (MHSA) (Vaswani et al., 2017) to encode
the article’s text to the item representation. Simi-
larly in KT, EERNN (Su et al., 2018) used BiLSTM
(Huang et al., 2015) to process Word2Vec (Mikolov
et al., 2013) representations of question text into
question representation. The representation is then
fed into another LSTM layer to make final predic-
tion on the user response.

While aforementioned methods directly use
content-encoder’s output as item vectors, there has
also been work to use CE’s output to regularize
item vectors. Topical Attention Regularized Matrix
Factorization (TARMF) (Lu et al., 2018) uses Ma-
trix Factorization as CF and attention-based GRU
network as CE to incorporate review data in pre-
dicting user-item ratings. Alternatively training CF
and CE module, it uses the CE output to regularize
the item representations in CF.

Most recently, researchers started to fine-tune
large Pre-trained Language Models (PLMs) with
generic language understanding as a CE module for
better content representation. In NR, NRMS-PLM
(Wu et al., 2021a) fine-tunes BERT (Devlin et al.,
2019) in an E2E manner, achieving meaningful
performance gain.

2.3 Efficient Fine-tuning of Large PLMs

While PLMs show powerful performance as a
content-encoder in CCF, fine-tuning PLMs is
known to be inefficient (Houlsby et al., 2019) as
it includes updating billions of parameters. Al-
though it is possible to use PLM’s output as fixed
features for downstream tasks, numerous studies
(Devlin et al., 2019; Reimers et al., 2019) empha-
size such feature-based approach cannot match the
performance of E2E fine-tuning. Thus, researchers
have considered fine-tuning a subset of the PLM
architecture (Devlin et al., 2019) and adding task-
specific parameters (Houlsby et al., 2019) to reduce
cost and performance degradation.

However, the computational complexity deteri-
orates even more under multi-modal settings like
CCF. In such cases, PLM is called numerous times
for a single-user, adding a new dimension of com-
putational load, making E2E training almost impos-

840

sible. SpeedyFeed (Xiao et al., 2021) was proposed
to accelerate the fine-tuning of PLM for news rec-
ommendation through combination of several meth-
ods. However, they are mainly engineering heavy
implementations with domain dependencies. For a
general training scheme in CCF, we propose a novel
method that can be applied in an orthogonal man-
ner to aforementioned techniques like (Houlsby
et al., 2019) and (Xiao et al., 2021), while achiev-
ing remarkable speed boost in such multi-modal
CCF settings.

3 Preliminaries

Notation Description

Iu Interaction sequence of user u
ci Content of item i
Iun = (eun, r

u
n) n-th interaction of user u

eun = CE(cun) Embedding of content cun from CE
B(t) Mini-batch B at update time-step t
[BI , Bu] Set of unique [items, users] in B
[lt, lI] Length of [tokens, interactions] in [c, I]
d Content embedding dimension
L CCF minimization objective

Table 1: Notations for Content-based CF(CCF)

In this section, we formally setup CCF frame-
work and its notations for efficient discussion.
CCF framework consists of two major components:
content-encoder (CE) and collaborative filter (CF)
components connected in an end-to-end fashion.

3.1 CF component
CF component predicts user u’s response r to an
arbitrary item based on the user’s past interactions
Iu = (Iu1 , I

u
2 , ..., I

u
|Iu|) where each n-th interaction

Iun = (eun, r
u
n) is represented as a tuple of item

representation eun and the user’s response to the
item run. In other words, the CF module aims to
estimate the probability:

CF (Iu; eu|Iu|+1) = P (ru|Iu|+1|Iu1 , Iu2 , ..., Iu|Iu|; e
u
|Iu|+1)

3.2 CE component
CE component outputs the item representation e:
eun = CE(cun) where cun is the token sequence of
the corresponding item. The model parameters
θCE and θCF of the CE-CF pipeline is then trained
in an end-to-end fashion based on cross-entropy
loss for response prediction. The summary of no-
tation used for CCF is provided in Table 1. The
existing approaches to tackle CCF are formatted
and presented in Table 2, along with the pipeline
we adopt for our later experiments.

Task Model CE CF
NRMS Glove, MHSA MHSA

NR NRMS-PLM BERT MHSA
Our Experiments BERT MHSA

KT EERNN W2V, BiLSTM LSTM
Our Experiments BERT LSTM

Table 2: CE-CF Pipeline Choice for CCF

3.3 Inefficiency of E2E in CCF
In CCF, end-to-end fine-tuning of the CE (PLM)
suffers from cubic computational complexity in
terms of sequence length, due to the data multi-
modality. Let’s assume average text token length
of lt and average interaction record length of lI
with each mini-batch B containing users Bu.

Attention-based CE module would be called lI
times, producing forward/backward-pass computa-
tional complexity of O(|Bu| · lI(l2t d+ ltd

2)) where
d represents embedding dimension.

Under similar average sequence length of per-
item tokens and per-user interactions lt ≈ lI , the
resulting cubic complexity in terms of sequence
length significantly increases space and time com-
plexity of model training and becomes the limiting
bottleneck factor.

4 Proposed Method

For efficient training, we propose GRadient
Accumulation for Multi-modality in CCF (GRAM)
with two variants: Single-step GRAM and Multi-
step GRAM.

4.1 Single-step GRAM
Single-step GRAM trains CE module and CF mod-
ule separately. To update the CE module, Single-
step GRAM accumulates gradients of redundant
items, effectively reducing the number of gradient
computation for each step. As shown in Figure 1,
Single-step GRAM can accelerate training by lim-
iting the number of gradient calculation to the num-
ber of unique items in the batch. With this, Single-
step GRAM can reduce the algorithmic complexity
of CE to O(|BI | · (ltd2 + l2t d)) per mini-batch up-
date, from E2E’s O(|Bu| · lI(l2t d+ ltd

2)).
Proposition. Given parameters (θf , θg) , suppose
a neural network in separable form with y =
g(h; θg), h = f(x; θf), and loss L(θf , θg). Define
pseudo-target h̃ as

h̃ := f(x; θf)−
∂L

∂h

∣∣∣∣
h=f(x;θf)

, (1)

841

Figure 1: Comparison to E2E Training: Let’s assume a mini-batch B of 12 interactions consisting of 3 users and 5
unique items. For the content encoder, E2E computes 12 gradients from each interaction, while GRAM computes 5
only, based on accumulated gradient signal in pseudo-target h̃i from each item i.

and pseudo-loss L̃(θf) for another network
f(x; θ′f) as

L̃(θf) :=
1

2

(
h̃− f(x; θ′f)

)2

. (2)

Then, the gradient of θf w.r.t L is equivalent to
the gradient of θ′f w.r.t L̃,

i.e.
∂L

∂θf
=

∂L̃

∂θ′f

∣∣∣∣
θ′f=θf

. (3)

While GRAM trains CF module and CE mod-
ule separately, it guarantees a theoretically equiv-
alent parameter update with E2E as shown in the
Proposition (proof in Appendix A). Yielding iden-
tical outcome of E2E back-propagation with fewer
gradient computation, Single-step GRAM enables
efficient training under hierarchical multi-modal
setting like CCF by accumulating gradient buffer
in the pseudo-target for items that are updated mul-
tiple times in a mini-batch.

4.2 Multi-step GRAM
Instead of a single update, we can accumulate gra-
dient buffers for multiple mini-batch updates, gain-
ing additional speed boost. In other words, CF /
CE modules may separately update multiple times
across multiple mini-batches, further elaborated in
the following section. However, this relaxation of
GRAM’s alternating period no longer guarantees
equivalence with E2E back-propagation.

As the CE module can use multiple steps to up-
date item representations, Multi-step GRAM can

also reduce GPU memory footprint drastically com-
pared to E2E.

4.3 Training Scheme of GRAM

Algorithm 1: GRAM

Input :{B(t)
I }T−1

t=0 : mini-batch,
θ(0): initial parameters

Output :θ(T): resulting parameters

while t = {0, ..., T − 1} do
(1. Produce content representations)

h
(t)
i ← CE(ci; θ

(t)
CE),∀i ∈ B

(t)
I (4)

(2. Update CF parameters)

θ
(t+1)
CF ← θ

(t)
CF − opt(∇L(θ(t)CF)) (5)

(3. Update content representations)

h̃
(t)
i ← h

(t)
i −∇L(h

(t)
i),∀i ∈ B

(t)
I

(6)
if t mod N = 0 then

(4. Update CE parameters)

θ
(t+1)
CE ← θ

(t)
CE − opt(∇L̃(θ(t)CE))

(7)
end
t← t+ 1

end

See Algorithm 1 for the pseudo-code of GRAM.
We denote gradient accumulation step as N . The

842

algorithm becomes Single-step GRAM for N = 1
and it becomes Multi-step GRAM for N > 1.

First, CE produces content representation h
(t)
i

for CF module to complete the forward-pass for
unique items i in the mini-batch B(t). Then, we
update the CF module’s parameters using standard
back-propagation with a normal CF training objec-
tive L in Eq.(8), while simultaneously updating the
content representation (output from CE module) by
treating it as trainable embedding h̃

(t)
i .

L :=
∑

u∈B(t)
u

L(Iu, {h(t)i |∀i ∈ B
(t)
I }; θ

(t)
CF) (8)

Lastly, for items of which embeddings are mod-
ified in Eq.(6), the CE module is trained to fol-
low/regress towards the modification with respect
to pseudo-target h̃(t)i and pseudo-loss L̃ in Eq.(9).

L̃ :=
1

2

∑

i∈B(t)
I

(h̃
(t)
i − CE(ci; θ

(t)
CE))

2 (9)

Based on updated content representations, we
repeat the process with t ← t + 1. Note that for
Eq.(6), Stochastic Gradient Descent with a learning
rate of 1 should be used to guarantee the theoret-
ical equivalence with E2E. For Eq.(5) and Eq.(7),
choice of a optimizer (e.g. Adam) doesn’t impact
the equivalence with E2E.

4.4 GRAM’s Speed Boost ratioR
Given a mini-batch B of |Bu| users’ interaction
sequences, the standard E2E back-propagation up-
dates CE module for

∑
u∈Bu

|Iu| (i.e. number of
total interactions), while Single-step GRAM up-
dates CE module for |BI | (i.e. number of unique
items) times only. Since PLM based CE mod-
ules are usually significantly larger than the head
(CF module) attached for downstream task such
as News Recommendation, the following ratio of
speed boost for CE module applies in a close to di-
rectly proportionate manner for the entire training
procedure.

R :=

∑
u∈Bu

|Iu|
|BI |

=
#interactions(B)

#items(B)
(10)

The ratio R monotonically increases as mini-
batch size becomes larger. Thus, larger mini-batch

size would yield larger efficiency boost via Single-
step GRAM. This is why Multi-step GRAM can
achieve even more speed boost compared to Single-
step GRAM. If the gradient accumulation latency
becomes 1 epoch for Multi-step GRAM, the speed
boost ratioR becomes:

R :=
#total interactions in dataset

total items in dataset
(11)

Considering there are significantly less number
of items compared to the total number of inter-
actions in real-world datasets, GRAM with high
enough update latency can achieve remarkable
speed boost. However, we can also expect that
longer accumulation latency would hurt model per-
formance and convergence. In the following sec-
tion’s experiments, (i) training efficiency boost and
(ii) performance degradation from different alter-
nating frequency are closely monitored on various
GRAM alternating periods (Single-Step, 10-Step,
Half-Epoch, Full-Epoch).

While GRAM utilizes gradient accumulation
across duplicate item representations to boost train-
ing, the resulting speed boost is orthogonal with
traditional gradient accumulation as it focuses on
increasing effective batch size under limited com-
putational resource.

5 Experimental Settings

We first define the scope of tasks and metrics used
in the experiments. Detailed description of datasets
and methods are provided in section 5.1 and section
5.2, respectively.
Tasks: Experiments are conducted on two major
task domains of CCF: Knowledge Tracing(KT) and
News Recommendation(NR), where models pre-
dict whether a student/reader will solve/click an
question/article, as a classification task.
Metrics: Overall AUC and cold-start item AUC
(CSAUC) are measured for KT. AUC, MRR,
nDCG@5, nDCG@10 are measured for NR. As
cold start problem is intrinsically abundant in news
recommendation environment (Wu et al. (2019)),
we did not measure CSAUC separately. Wall-clock
training time until convergence is reported for all
experiments. For fair comparison of training time,
all models are run on equivalent device (NVIDIA
A100 GPU) in an isolated manner.

843

Dataset Users Total Items Total Interactions CS Items CS Interactions Average lt

Spanish 2,643 4,628 279,747 200 3,191 5.32
French 1,202 4,078 174,749 200 1,970 5.24

POJ 22,110 2,597 898,384 200 10,523 271.34
TOEIC 1,240,955 9,336 94,264,845 684 321,933 147.47
MIND 750,434 104,150 3,760,125 11.52(639.57)

Table 3: Dataset Information. For MIND, both average lt of title alone and lt of title + abstract + body are reported.

5.1 Experimental Details

To evaluate our model, we used five real-world
datasets: four datasets in KT, and one dataset in NR,
on which both textual content data and user interac-
tion data are available. Experiments on Duolingo
French and Spanish dataset are done with single
NVIDIA A100 GPU, and those on POJ, TOEIC,
and MIND are done with eight NVIDIA A100
GPUs, in distributed data parallel training. The
results were shown to be statistically significant (p
< 0.05).

Detailed per-dataset description is written below,
and specification is in Table 3. 1 Dataset collection
methods are mentioned in Appendix F.

5.1.1 Datasets

(KT) Duolingo (Spanish, French): Language
Translation (Settles et al., 2018) contains ques-
tions and responses for Duolingo users. Following
(Srivastava and Goodman, 2021), we collapsed the
original token level mistakes to question level bi-
nary labels. We used Spanish and French dataset.
(KT) POJ: Computer Programming was col-
lected from Peking online platform and consists
of computer programming questions.
(KT) TOEIC: Language Comprehension from
EdNet (Choi et al., 2020) is the largest publicly
available benchmark dataset in education domain
consisting of student interaction logs.
(NR) MIND: Microsoft News Dataset is one of
the largest English dataset for monolingual news
recommendation. MIND dataset provides news
articles’ title, abstract, and body text for news con-
tent modeling. For comparison with other models,
we only utilized the news title, following Wu et al.
(2019, 2021a). As Multi-step GRAM’s significant
speed boost allowed us to utilize more features, we
also provide results on utilizing all textual features
for Multi-step GRAM as well.

1Train / Test set were randomly split in 8:2 ratio. 10% of
train dataset were randomly chosen for validation set.

5.2 Baseline Methods

5.2.1 E2E & GRAM
To fairly compare GRAM’s training methodology
against the standard E2E, we apply GRAM/E2E
on an identical model architecture, defined for KT
and NR respectively. Model choices are shown in
Table 2. To the best of our knowledge, this work is
the first study to fine-tune BERT for KT. Detailed
model architectures are described in Appendix D.

Based on this model architecture, we com-
pare: E2E training, single-step GRAM 1S, 10-
Step GRAM 10S, 0.5-Epoch GRAM 0.5E, and
1-Epoch GRAM 1E on the aforementioned met-
rics. We also provide benchmarks for other existing
approaches, as elaborated in the following section
5.2.2. Note that E2E training in NR has the same
structure as NRMS-PLM in (Wu et al., 2021a).

5.2.2 Other Baselines
In addition to the shared CCF model architecture
defined above, we also include other approaches
for extensive comparison.
NoFinetune approach directly adopts fixed item
representation encoded from PLM without fine-
tuning. Only the CF component is trained, receiv-
ing PLM’s fixed output as the input.
NoContent approach does not incorporate any tex-
tual content at all. Each item representation is ran-
domly initialized before being trained along with
the standalone CF component. For KT, we used
DKT (Piech et al., 2015).
(KT) Content Regularized CF (CRCF) is our
implementation of the proposed regularization in
TARMF with equivalent CF and CE modules of
GRAM. As TARMF’s content-encoder and user
feature vector should go through additional itera-
tions of optimization in sequential recommenda-
tion, we adopt hierarchical user encoder like E2E
setting to eliminate the need of model retraining.
(KT) LM-KT formulates KT as auto-regressive
modeling task to fine-tune pre-trained GPT-2. The
method’s major bottleneck to other sequential rec-
ommendation domains is that the model’s sequence

844

length has to increase in a multiplicative fashion:
O(lt × lI) in Table 1. 2

(KT) EERNN is a specific instance of CE-CF
pipeline where Bi-directional LSTM (CE) encodes
question text’s W2V representation into question
embedding. CF consists of another LSTM layer.
(NR) NRMS is another specific instance of CE-CF
pipeline where CE uses Glove word embedding
and Multi-Head Self-Attention layers. Its CF com-
ponent is also based on MHSA layers.
(NR) SpeedyFeed used (i) auto-regressive model-
ing, (ii) BusLM, (iii) Dynamic Batching, and (iv)
Cache mechanism to speedup PLM-based news rec-
ommendation. For fair comparison, we used equiv-
alent CE module for both GRAM and SpeedyFeed.

Further experimental details are in Appendix D.

6 Results and Discussion

6.1 Knowledge Tracing
Performance Comparison: In general, E2E and
GRAM in Table 43 shows best performance across
datasets. Difference among GRAM variants high-
lights how Multi-step GRAM’s performance grad-
ually deviates from the E2E baseline as alternating
period increases. As claimed in the previous sec-
tion 4.1, GRAM(1S)’s performance most closely
matches the E2E baseline. Confidence intervals of
the two methods are reported in Appendix E.

NoFinetune and NoContent achieve significantly
worse performances on both metrics on all datasets,
as compared to the full CCF setting with both CE
and CF fine-tuned properly. Also, NoContent does
not show any inference power on cold-start items,
reporting AUC values around 50. LM-KT and
EERNN showed lower performance in AUC and
CSAUC than E2E or GRAM(1S), respectively.

As shown in Figure 2, we empirically confirm
that standard E2E training converged to better lo-
cal minima than CRCF, at all regularization hyper-
parameter values used in (Lu et al., 2018). GRAM
1S even converges faster than all variants of CRCF
while maintaining E2E performance. CRCF also
showed larger degradation in CSAUC. We noticed
that as the degree of regularization increases, time
for convergence increases notably.
Speed Comparison: We first highlight the reduc-
tion in training time via GRAM. Across 4 datasets,

2LM-KT baseline was only tested on Duolingo datasets as
other datasets’ large average token length prevents LM-KT
from considering more than a few items per each user.

3For CRCF, best result is reported among hyper-parameter
ablations in Figure 2.

Dataset Method AUC CSAUC Speed-up

TOEIC E2E 75.7 64.2 1(135hr)
GRAM 1S 76.0 63.0 5.7

GRAM 10S 75.8 65.1 1.7
GRAM 0.5E 75.7 64.7 26

GRAM 1E 75.3 64.6 146
EERNN 75.8 62.3 10

NoFinetune 69.1 64.3 343
NoContent 74.4 49.4 2547

POJ E2E 69.0 65.4 1(123m)
GRAM 1S 69.0 65.5 4.5

GRAM 10S 69.1 65.0 3.8
GRAM 0.5E 68.7 64.7 9.1

GRAM 1E 68.8 64.5 12.5
EERNN 68.6 64.0 1.3

NoFinetune 68.3 65.8 41.0
NoContent 63.8 50.9 30.8

Spanish E2E 75.1 68.7 1(74m)
GRAM 1S 75.1 68.3 3.5

GRAM 10S 74.4 67.2 2.1
GRAM 0.5E 74.4 67.0 2.8

GRAM 1E 74.7 67.0 5.7
CRCF 1S 74.9 66.2 1.2
CRCF 1E 74.3 66.3 2.1

EERNN 74.3 66.3 1.6
LM-KT 74.6 68.7 0.5

NoFinetune 72.5 66.2 24.7
NoContent 67.0 49.3 37.0

French E2E 74.8 74.7 1(39m)
GRAM 1S 75.0 75 3.3

GRAM 10S 74.2 73.2 3.5
GRAM 0.5E 74.1 73.2 4.3

GRAM 1E 74.4 73.3 7.8
CRCF 1S 74.7 73.0 1.0
CRCF 1E 74.4 72.9 1.8

EERNN 74.0 71.3 1.2
LM-KT 74.3 74.7 0.3

NoFinetune 71.4 69.4 9.8
NoContent 67.0 49.5 13.0

Table 4: Prediction Performance / Speed-up in Knowl-
edge Tracing. Training time is reported for E2E training,
and best results among content finetuning methods are
marked in bold.

GRAM 1S achieves 4.3× speedup of the E2E base-
line, while GRAM 1E achieves acceleration of 43×.
We observe GRAM 1E achieves most significant
training time acceleration as expected, since the
boost ratio R of Eq.(11) is the largest in epoch-
wise alternation. The power of GRAM 1E mul-
tiplies as the size of dataset increases, achieving
remarkable 146× speed up for the largest dataset,
TOEIC. Among all datasets, TOEIC has the largest
boost ratioR based on Table 3 which explains the
largest efficiency gain.

GRAM 1E also out-speeds EERNN at all
datasets despite the fact that EERNN uses W2V
embeddings and a single LSTM layer for its CE.
In terms of GRAM’s alternating period, we note

845

Figure 2: Comparison between GRAM, E2E, and CRCF. For CRCF, regularization parameter is marked as well.

that the impact on speed boost is not monotonic
on some datasets, potentially due to increased vari-
ance of optimization switching between the CE
component and the CF component.

Based on GCP GPU cost for ondemand A100
($2.93/hr), training E2E model in TOEIC costs
$3,161. GRAM 1E drastically reduces the training
cost to $21.

AUC MRR nDCG nDCG Speed-up
Method @5 @10

(Title-only)

E2E 68.9 33.3 36.8 43.2 1(10.4hr)
GRAM 1S 69 33.5 37.1 43.4 2.5
GRAM 10S 68.6 33.7 37.3 43.4 1.9
GRAM 0.5E 68.7 32.9 36.2 42.7 13.5
GRAM 1E 68.7 33.1 36.6 42.8 17.3
NRMS 67.2 33.3 35.5 42 13.9
SpeedyFeed 68.3 33.4 36.6 43 2.0
NoFineTune 66.8 32.4 35.7 41.9 33.5

(Title+Body)

E2E 1(*202hr)
GRAM 0.5E 69.6 34 37.6 44 45
GRAM 1E 69.3 34.1 37.8 44 56

Table 5: Prediction Performance and Training Speed
on MIND Dataset. Training time is reported for E2E
training. Overall best results among content finetuning
methods are marked in bold, and best results utilizing
title only are underlined.

6.2 News Recommendation
Performance Comparison: As shown in Table 5,
Single-step GRAM matches performance of E2E
training, and Multi-step GRAM shows less than
0.5% performance loss. Multi-step GRAM’s ca-
pability to incorporate abstract and body of the
news article (Title+Body) significantly improved
the performance beyond all methods relying on
title information alone.

SpeedyFeed (Xiao et al., 2021) shows worse per-
formance than all GRAM methods. This may due
to SpeedyFeed’s cache mechanism, as it fails to op-
timize news representations that were generated in
recent time steps, unlike GRAM. We also noticed
that SpeedyFeed’s performance is highly sensitive
to its hyper-parameters on the method’s cache pol-
icy. Increasing max cache step hyper-parameter
for faster training easily caused the training loss to
spike, deteriorating the model convergence.

An ensemble of Single-step GRAM and Multi-
step GRAM is currently ranked 4th in the MIND
official leaderboard provided by Microsoft.4 Even
without state-of-the-art CF module (Fastformer
(Wu et al., 2021b)) and CE module (UniLM (Dong
et al., 2019)), the ability to encode the body of the
news article with GRAM shows a comparable per-
formance with state-of-the-art News Recommenda-
tion models.
Speed Comparison: Multi-step GRAM shows
consistent speed boost in MIND dataset, where

4https://msnews.github.io/

846

Title-only GRAM 1E is 17.3× faster than E2E.
SpeedyFeed’s acceleration, on the other hand,
was lower than that of GRAM 1S. Although
SpeedyFeed’s central batching collects unique
items in the forward pass, it still requires gradient
computations for PLM’s weights on every interac-
tion during backpropagation, having limited speed
gain. Also, SpeedyFeed’s auto-regressive formu-
lation, the most significant factor of speed boost,
was not applicable to MIND dataset, which does
not provide negative samples (news impression list)
per each positive interaction (news click) step.

While Wu et al. (2019) reported that using all
textual information increases model performance
significantly in a small version of MIND dataset,
baseline results from Wu et al. (2019, 2021a) only
utilize news title due to computational complex-
ity. With eight A100 GPUs, E2E training with all
textual features is estimated to require 202 hours 5

($4,735 of training cost) to converge. For this rea-
son, we were unable to produce the result for E2E
with all textual information. In contrast, GRAM 1E
requires only 3.6 hrs ($84) to converge, requiring
56× less training time compared with E2E.

CE Batch GPU Memory in %, (Gb)
Method Size TOEIC MIND

E2E N/A 95.2, (38.6) 95.1, (38.4)
GRAM 1E 8 12.1, (4.8) 12.5, (5.1)

32 16.0, (6.5) 34.9, (14.1)

Table 6: GPU Memory Consumption, with CF batch
size of 4 in single NVIDIA A100. E2E doesn’t have
CE batch size as CE module naturally receives all items
included in CF batch size as input.

6.3 GPU Memory Consumption

In E2E training, the entire computational graph as
well as activations of all layers should be stored,
resulting in a large GPU memory footprint (Wang
et al., 2020). In this perspective, splitting CF mod-
ule and CE module in GRAM brings down the
required GPU memory during computation. As
(1) the model size of the CF module is relatively
small (single LSTM/MHSA) and (2) CE module
of Single-step GRAM updates all item represen-
tations in a given batch in one step, the memory
reduction is not significant in Single-step GRAM.

However, Multi-step GRAM can bring down

5Estimated time is calculated based on per epoch time
for E2E with all texts and number of epochs to converge for
Title-only E2E.

the memory requirement significantly as its CE
module uses multiple steps to update item represen-
tations. Table 6 compares the memory consump-
tion between E2E and GRAM 1E with content
encoder batch size of 8 and 32, respectively. Over-
all, GRAM 1E consumes less than 40% of mem-
ory compared to E2E. While only GRAM 1E is
compared, Multi-step GRAM in general consumes
similar memory given the same content encoder
batch size.

7 Conclusion and Future Work

In this paper, we proposed GRAM as an efficient
method to train content-based collaborative filter-
ing models. Single-step GRAM splits the CE mod-
ule and CF module during training, accumulat-
ing gradients for items appearing repeatedly in
a batch. This effectively reduces the number of
CE module’s gradient computation and negates the
need to store the intermediate activations for both
of the modules at once. Extending Single-step
GRAM, we increase the gradient accumulation la-
tency for Multi-step GRAM, gaining additional
training speed boost and memory footprint reduc-
tion.

GRAM was empirically evaluated on 5 different
tasks to demonstrate its efficiency and comparable
prediction power. Utilizing GRAM’s efficiency,
Knowledge Tracing model trained with GRAM 1E
will be deployed in Santa6, an AI-powered English
learning platform with 4 million users.

A limitation of our method is that we introduce
an additional hyperparameter of gradient accumu-
lation latency for Multi-step GRAM. We expect a
more sophisticated gradient accumulation scheme
may adaptively choose the gradient accumulation
latency. Another potential extension of our re-
search is to scale up GRAM for CCF tasks involv-
ing higher-dimensional inputs, such as images and
videos.

Acknowledgements

We thank the anonymous reviewers of ACL Rolling
Review, Seunghyun Lee (Riiid AI Research), and
Suyeong An (Riiid AI Research) for their helpful
feedback. We also thank Wansoo Kim (Riiid In-
fra) for helping us scale up our experiments to the
Google Cloud Platform.

6https://www.aitutorsanta.com/

847

References

Justin Basilico and Thomas Hofmann. 2004. Unifying
collaborative and content-based filtering. In Proceed-
ings of the twenty-first international conference on
Machine learning, page 9.

James Bennett, Stan Lanning, et al. 2007. The netflix
prize. In Proceedings of KDD cup and workshop,
volume 2007, page 35. New York, NY, USA.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Youngduck Choi, Youngnam Lee, Dongmin Shin,
Junghyun Cho, Seoyon Park, Seewoo Lee, Jineon
Baek, Chan Bae, Byungsoo Kim, and Jaewe Heo.
2020. Ednet: A large-scale hierarchical dataset in
education. In International Conference on Artificial
Intelligence in Education, pages 69–73. Springer.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages 4171–
4186.

Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xi-
aodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou,
and Hsiao-Wuen Hon. 2019. Unified language model
pre-training for natural language understanding and
generation.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational Conference on Machine Learning, pages
2790–2799. PMLR.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec-
tional lstm-crf models for sequence tagging. arXiv
preprint arXiv:1508.01991.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2020.
Tinybert: Distilling bert for natural language under-
standing. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing:
Findings, pages 4163–4174.

Xuan Nhat Lam, Thuc Vu, Trong Duc Le, and Anh Duc
Duong. 2008. Addressing cold-start problem in rec-
ommendation systems. In Proceedings of the 2nd
international conference on Ubiquitous information
management and communication, pages 208–211.

Qi Liu, Zhenya Huang, Yu Yin, Enhong Chen, Hui
Xiong, Yu Su, and Guoping Hu. 2019. Ekt: Exercise-
aware knowledge tracing for student performance
prediction. IEEE Transactions on Knowledge and
Data Engineering, 33(1):100–115.

Yichao Lu, Ruihai Dong, and Barry Smyth. 2018. Co-
evolutionary recommendation model: Mutual learn-
ing between ratings and reviews. In Proceedings of
the 2018 World Wide Web Conference, WWW ’18,
page 773–782, Republic and Canton of Geneva, CHE.
International World Wide Web Conferences Steering
Committee.

Prem Melville, Raymond J Mooney, Ramadass Nagara-
jan, et al. 2002. Content-boosted collaborative fil-
tering for improved recommendations. Aaai/iaai,
23:187–192.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositionality.
Advances in neural information processing systems,
26.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language processing
(EMNLP), pages 1532–1543.

Chris Piech, Jonathan Bassen, Jonathan Huang, Surya
Ganguli, Mehran Sahami, Leonidas J Guibas, and
Jascha Sohl-Dickstein. 2015. Deep knowledge trac-
ing. Advances in Neural Information Processing
Systems, 28:505–513.

Nils Reimers, Iryna Gurevych, Nils Reimers, Iryna
Gurevych, Nandan Thakur, Nils Reimers, Johannes
Daxenberger, Iryna Gurevych, Nils Reimers, Iryna
Gurevych, et al. 2019. Sentence-bert: Sentence em-
beddings using siamese bert-networks. In Proceed-
ings of the 2019 Conference on Empirical Methods in
Natural Language Processing. Association for Com-
putational Linguistics.

Burr Settles, Chris Brust, Erin Gustafson, Masato Hagi-
wara, and Nitin Madnani. 2018. Second language ac-
quisition modeling. In Proceedings of the thirteenth
workshop on innovative use of NLP for building edu-
cational applications, pages 56–65.

Brent Smith and Greg Linden. 2017. Two decades of
recommender systems at amazon. com. Ieee internet
computing, 21(3):12–18.

Megha Srivastava and Noah Goodman. 2021. Question
generation for adaptive education. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pages 692–701, Online.
Association for Computational Linguistics.

Xiaoyuan Su and Taghi M Khoshgoftaar. 2009. A sur-
vey of collaborative filtering techniques. Advances
in artificial intelligence, 2009.

848

https://doi.org/10.48550/ARXIV.1905.03197
https://doi.org/10.48550/ARXIV.1905.03197
https://doi.org/10.48550/ARXIV.1905.03197
https://doi.org/10.1145/3178876.3186158
https://doi.org/10.1145/3178876.3186158
https://doi.org/10.1145/3178876.3186158
https://doi.org/10.18653/v1/2021.acl-short.88
https://doi.org/10.18653/v1/2021.acl-short.88

Yu Su, Qingwen Liu, Qi Liu, Zhenya Huang, Yu Yin,
Enhong Chen, Chris Ding, Si Wei, and Guoping Hu.
2018. Exercise-enhanced sequential modeling for
student performance prediction. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 32.

Robin Van Meteren and Maarten Van Someren. 2000.
Using content-based filtering for recommendation.
In Proceedings of the machine learning in the new
information age: MLnet/ECML2000 workshop, vol-
ume 30, pages 47–56.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Yulin Wang, Zanlin Ni, Shiji Song, Le Yang, and Gao
Huang. 2020. Revisiting locally supervised learning:
an alternative to end-to-end training. In International
Conference on Learning Representations.

Chuhan Wu, Fangzhao Wu, Suyu Ge, Tao Qi, Yongfeng
Huang, and Xing Xie. 2019. Neural news recommen-
dation with multi-head self-attention. In Proceedings
of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 6389–6394.

Chuhan Wu, Fangzhao Wu, Tao Qi, and Yongfeng
Huang. 2021a. Empowering news recommendation
with pre-trained language models. arXiv preprint
arXiv:2104.07413.

Chuhan Wu, Fangzhao Wu, Tao Qi, Yongfeng Huang,
and Xing Xie. 2021b. Fastformer: Additive attention
can be all you need.

Shitao Xiao, Zheng Liu, Yingxia Shao, Tao Di, and Xing
Xie. 2021. Training large-scale news recommenders
with pretrained language models in the loop.

849

https://doi.org/10.48550/ARXIV.2108.09084
https://doi.org/10.48550/ARXIV.2108.09084
http://arxiv.org/abs/2102.09268
http://arxiv.org/abs/2102.09268

A Proposition
Proof.

∂L

∂θf
=

∂L

∂h

∂h

∂θf
=

∂L

∂y

∂y

∂h

∂h

∂θf
(12)

∂L̃

∂θ′f

∣∣∣∣
θ′
f
=θf

= − ∂f

∂θ′f
·
(
f(x; θf)− ∂L

∂y

∂y

∂h
− f(x; θ′f)

)

(13)

=
∂L

∂y

∂y

∂h

∂h

∂θf
(14)

B Hierarchical illustration of GRAM

Figure 3 is the hierarchical illustration of GRAM.
Refer to Section 4.3 for more details.

Figure 3: Gradient on item representations are accumu-
lated on Pseudo-target to mimic E2E training.

C Validation Performance

Figure 4 shows the validation performance per
training time for E2E and GRAM variants. As
the graph includes 10 epochs for early stopping
patience, some overfitting is witness at the end
of the training curve, such as the sudden drop of
GRAM 1S in Spanish dataset after marking best
performance.

D Experiment Detail

All experiments are ran 3 times and averaged re-
sults are reported except TOEIC E2E and MIND
E2E, due to high computational cost mentioned
in the result section. Across all experiments, CE
component uses TinyBERT(Jiao et al., 2020), a

distilled BERT with on-par performance. The ar-
chitecture contains 6 MHSA layers of dimension
768. CF component for KT uses 2-layer LSTM net-
work, following Piech et al. (2015). In NR, we use
a single MHSA layer, following Wu et al. (2019,
2021a).

In both domains, learning rate of 1e-4 was used
for CF module and CE module after learning rate
ablation in the scope of [1e-3, 1e-4, 1e-5]. Adam
with Noam scheduler was used as the optimizer.
Test metrics were measured by the best valida-
tion checkpoint after early stopping of patience
10 epochs. As E2E training consumes different
amount of memory based on item token length,
different batch sizes were used across datasets.
Batch sizes per datasets are the following: 32 for
Duolingo, POJ, and TOEIC, and 256 for MIND.
As Multi-step GRAM requires much less memory
compared with E2E, higher batch size was able
to be used for large datasets such as TOEIC and
MIND. Details are mentioned in Section C.

For NoFinetune experiment, pre-computed item
representations from CE were initialized to CF’s
item embeddings to boost training speed.

Authors of EERNN also proposed EKT(Liu
et al., 2019), which explicitly models the student’s
knowledge state for different knowledge concepts.
As knowledge concept labels are not available in
most datasets, we do not test EKT.

D.1 Knowledge Tracing
Mean-pooling was used to extract question rep-
resentation from contextualized token embedding.
For relatively small KT datasets (Duolingo and
POJ), it was challenging to secure meaningful num-
ber of cold-start items (questions) in the test split.
For these datasets, additional cold-start questions
were randomly picked and interactions on those
questions in the training split were removed to se-
cure meaningful number of cold start interactions.
Items with token length over max seq len (512)
were truncated. For TOEIC dataset, passage, ques-
tion, and choices were concatenated as content to-
ken sequence for CE component.

D.2 News Recommendation
For NR, we follow (Wu et al., 2021a) to use addi-
tive attention based pooling to extract news article
representation. Title, abstract, body were concate-
nated for Setting B, with max len of 24 for title, 50
for abstract, and 400 for body. Items with token
length over max seq len were truncated.

850

Figure 4: . Validation AUC convergence and training time until early-stopped checkpoint, across different GRAM
alternation periods. Color schemes are synchronized across all subplots.

E Result Detail

E.1 E2E vs Single-step GRAM Confidence
Interval

Metrics E2E GRAM (1S)

French Total AUC 0.748 (0.001) 0.750 (0.0006)
Spanish Total AUC 0.751(0.0005) 0.751(0.0006)
POJ Total AUC 0.654 (0.0009) 0.655 (0.0011)

Table 7

As TOEIC and MIND E2E result is from a
single run due to high computational complexity,
Test AUCs on remaining three datasets (Duolingo
French, Spanish, POJ) are reported with 95% CIs
in Table 7

F Dataset Collection Methods

Duolingo: gathered from 2018 Duolingo Shared
Task on Second Language Acqui-sition Modeling.
POJ: publicly available question texts and interac-
tion logs were scraped from their public website.
TOEIC: content materials for corresponding ques-
tion IDs in the dataset were collected privately.
MIND: collected from website
Duolingo (French, Spanish), POJ, MIND datasets
are free to download for research purposes under
respective terms. Interaction data for TOEIC is
avilable as well for research purposes.

851

http://poj.org/
https://msnews.github.io/

