
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 827 - 838

July 10-15, 2022 ©2022 Association for Computational Linguistics

Teaching BERT to Wait: Balancing Accuracy and Latency for
Streaming Disfluency Detection

Angelica Chen∗
New York University
ac5968@nyu.edu

Vicky Zayats
Google Research

vzayats@google.com

Daniel D. Walker
Google Research

danwalkeriv@google.com

Dirk Padfield
Google Research

padfield@google.com

Abstract
In modern interactive speech-based systems,
speech is consumed and transcribed incre-
mentally prior to having disfluencies removed.
This post-processing step is crucial for pro-
ducing clean transcripts and high performance
on downstream tasks (e.g. machine trans-
lation). However, most current state-of-the-
art NLP models such as the Transformer op-
erate non-incrementally, potentially causing
unacceptable delays. We propose a stream-
ing BERT-based sequence tagging model that,
combined with a novel training objective, is
capable of detecting disfluencies in real-time
while balancing accuracy and latency. This is
accomplished by training the model to decide
whether to immediately output a prediction for
the current input or to wait for further context.
Essentially, the model learns to dynamically
size its lookahead window. Our results demon-
strate that our model produces comparably ac-
curate predictions and does so sooner than our
baselines, with lower flicker. Furthermore, the
model attains state-of-the-art latency and sta-
bility scores when compared with recent work
on incremental disfluency detection.

1 Introduction

Many modern Natural Language Understanding
(NLU) applications (e.g. transcribers, digital voice
assistants, and chatbots) use streaming Automatic
Speech Recognition (ASR) systems that incremen-
tally consume speech, offering real-time transcrip-
tion and predictions with minimal delay. How-
ever, these systems are often challenged by the
presence of disfluencies, which are unintentional
speech disruptions such as “um”, “no I meant”, and
“I I I I think,” that occur naturally in spontaneous
speech. Disfluencies not only hurt the readability
of ASR transcripts, but also erode model perfor-
mance on downstream tasks, such as machine trans-
lation (Hassan et al., 2014) and question answering

∗Work completed as part of the Student Researcher pro-
gram at Google.

(Gupta et al., 2021). Indeed, even state-of-the-art
models such as BERT (Devlin et al., 2019) and
T5 (Raffel et al., 2020) exhibit significant drops in
performance (as much as 28 and 20 F1 points, re-
spectively) on the SQuAD-v2 question-answering
benchmark (Rajpurkar et al., 2018) when disfluen-
cies are inserted into the questions (Gupta et al.,
2021). Past work has shown that a prohibitively
large amount of data is needed to train an end-to-
end dialogue model that is robust to the presence of
disfluencies (Shalyminov et al., 2017). As a result,
modern ASR pipelines typically contain a sepa-
rate post-processing step that detects and removes
disfluencies from the transcript, which has been
shown to perform better than end-to-end ASR mod-
els that generate fluent text from disfluent speech
(Jamshid Lou and Johnson, 2020).

Shriberg et al. (1997) introduced the following
disfluency schema components that are widely used
in disfluency detection research: the reparandum
(spoken segment intended to be removed), the in-
terruption point (marked as “+”), the repair (spo-
ken segment that comes as a replacement to the
reparandum, of which the first word is known as
the repair onset), and the interregnum (material
that appears between the reparandum and repair).
An example of this annotation schema is shown
in Figure 1. Usually the disfluency detection task
involves identifying and removing the reparandum
portion of the disfluency. One of the most popu-
lar approaches that targets disfluency detection is
the usage of sequence tagging models such as fine-
tuned BERT (Bach and Huang, 2019; Rohanian
and Hough, 2021) or LSTM (Zayats et al., 2016;
Rohanian and Hough, 2020).

Another challenge in disfluency detection is the
fact that most interactive speech- or text-based ap-
plications consume input incrementally, producing
predictions one word at a time, rather than in en-
tire sentences. However, recent state-of-the-art pre-
trained language models such as BERT have largely

827

A uh flight [to Boston︸ ︷︷ ︸
reparandum

+ {uh I mean︸ ︷︷ ︸
interregnum

} to︸︷︷︸
repair onset

Denver

︸ ︷︷ ︸
repair

] on Friday

Figure 1: An example of disfluency annotation.

been designed for non-incremental processing and
are trained only to output predictions on complete
input utterances. Using a non-incremental model in
an interactive setting produces undesirable delays,
since downstream applications must wait for the
user to finish their entire utterance before making
any decisions.

To address the goal of streaming disfluency
detection, recent work has focused on adapting
non-incremental models for streaming settings.
Madureira and Schlangen (2020) demonstrated that
BERT-based models can adequately process in-
cremental input for a variety of sequence tagging
tasks when trained on partial sequences, although
performance on full sequences suffers. Roha-
nian and Hough (2021) applied both the truncated
training and prophecy generation strategies from
(Madureira and Schlangen, 2020) to a BERTLARGE
model, achieving state-of-the-art performance on
streaming metrics among incremental systems. No-
tably, both these approaches employ the delay strat-
egy of a fixed lookahead window - a short amount
of right context that the model can “peek” at when
making its prediction on the current token (Buß
and Schlangen, 2011). Although a larger looka-
head window can boost accuracy and stability, it
also incurs extra delay (by definition).

In the task of incremental disfluency detection,
a lookahead window is likely most useful for
reparanda, since it is often nearly impossible to
identify a reparandum without knowing whether it
is followed by an interregnum or repair. However,
this extra right context may be much less informa-
tive for fluent tokens. Guided by this insight, we
extend the past research by training a BERT-based
model to dynamically decide how much lookahead
context to use. For each new input token that the
model consumes, the model can choose to either
immediately output a label for that token or to
wait for further input before making its prediction.
We also design a novel training objective that ac-
counts for both the cross-entropy and latency costs
incurred by delaying inference.

In our experiments we explore the trade-offs be-

tween accuracy, latency, and output stability for
both partial and complete results. To our knowl-
edge, this is the first work to adapt the BERT archi-
tecture and training objective to balance accuracy
and latency in a streaming sequence tagging task.

The contributions of our paper are as follows:
first, we propose a new model architecture and
training objective for streaming sequence tagging
tasks. This method involves fine-tuning a pre-
trained BERT model to decide when to immedi-
ately output predictions and when to wait for fur-
ther input– temporarily abstaining from producing
a prediction. Secondly, we show that this model
achieves high accuracy in incremental settings with
state-of-the-art latency and stability, all with a
model architecture that is ∼ 35 times smaller than
BERTBASE (Zhao et al., 2021). We demonstrate
that the model continues to perform competitively
in non-incremental settings when compared to its
non-incremental counterparts. Finally, our analyses
show that our streaming model learns to wait the
most when it encounters an interregnum or reparan-
dum, and the least for fluent or edit terms.

2 Related Work

Although disfluency detection itself is a well-
studied task, only a handful of past work has ex-
plored disfluency detection in an online setting -
that is, consuming the input a single token at a
time and outputting predictions on the partial in-
put as early as possible. Among the neural ap-
proaches, Hough and Schlangen (2015) were the
first to demonstrate competitive performance of
recurrent neural networks (RNNs) on incremental
disfluency detection by applying an Elman RNN
paired with a Markov decoder that jointly opti-
mized the probability of the output tag over the past
inputs and outputs. Hough and Schlangen (2017)
built upon this by jointly training LSTMs on both
utterance segmentation and disfluency detection,
demonstrating that jointly training on the two tasks
yielded higher accuracy and lower latency on both
tasks than training on either task alone. This was
followed by a number of other works that also suc-

828

Figure 2: The architecture of our streaming BERT model. The disfluency classification head outputs predictions
of fluent (f) or disfluent (d) for each token, whereas the wait classification head outputs predictions of predict (p)
or wait (w) for each token. Given a partial input, we find the first token with a wait prediction and output only the
tokens before it with fluent predictions.

cessfully paired incremental disfluency detection
with other tasks, such as language modeling (Sha-
lyminov et al., 2018) and POS tagging Rohanian
and Hough (2020).

More recently, large pre-trained transformer ar-
chitectures have demonstrated incredible success
on sequence labeling tasks (Vaswani et al., 2017).
Although the original transformer architecture was
not designed for streaming input, Chen et al. (2020)
proposed the controllable time-delay transformer
instead, which combines a fast decoding strategy
with a modified self-attention mechanism that at-
tends only to future inputs in a fixed lookahead
window.

The closest work to ours is that of Rohanian and
Hough (2021), in which the authors fine-tuned a
pre-trained BERTLARGE model via add-M train-
ing, which feeds the model successive prefixes of
lengths N +M,N + 2M, · · · for each full-length
training example. Their best-performing model
also made use of a prophecy decoding strategy,
in which a GPT-2 (Radford et al., 2019) model
predicted the missing right context of each par-
tial input. The BERT model then made its pre-
dictions based on the complete extrapolated se-
quence, POS tags, and word timings. Unlike their
work, we aim to train a more lightweight small
vocabulary 12 × 128 BERT model that is more
suitable for on-device settings, does not require
a separate prophecy generation model, and uses
only disfluency-annotated training data. We also
train our model on successive prefixes of the input
(with N = 1,M = 1) but modify both the archi-
tecture and training objective in order to balance
the competing objectives of accuracy and latency.

3 Training a Streaming BERT Model

In this section we describe the architectural
changes, new training objective, and training
scheme that we use to adapt a (non-incremental)
BERT model for streaming sequence tagging tasks.
Specifically, we modify the model to enable it to
either immediately produce a prediction for a given
token or to decide to wait for further input. These
changes include a novel training objective that bal-
ances the cost between accuracy and latency – pre-
venting the model from the extremes of either re-
lying too much on waiting for further input or on
speedily making predictions at the cost of accuracy.
We train this model using a restart-incremental
training procedure described in Section 3.2.

3.1 Model Design
Streaming settings force models to make trade-offs
between accuracy and latency. More accurate pre-
dictions can be obtained by providing longer right
context at the cost of incurring additional latency.
However, since most tokens are not disfluent, a
model may not require the right context in order
to accurately classify fluent tokens. Rather than
using a fixed lookahead window, we train a BERT
model to jointly classify tokens and simultaneously
choose the lookahead window size dynamically at
each token.

Our proposed model architecture consists of a
pre-trained BERT model with two separate token
classification heads added on top, as shown in Fig-
ure 2. Each classification head consists of a linear
layer applied to the hidden layer outputs of the
BERT model. The first classification head, the
disfluency classifier, is trained to classify whether

829

each token is disfluent or not. The second clas-
sification head (the wait classifier) is trained to
classify whether the model should wait for further
input (temporarily abstain from predicting) or im-
mediately output a prediction for the given token.
In effect, the wait classifier decides how large of
a lookahead window the model needs to make its
prediction on the current input. At inference time,
we only output tokens that lie to the left of the first
token for which the model outputs a wait predic-
tion and that are predicted to be fluent. This avoids
potentially producing disjoint output in the case
where the model produces predictions of wait fol-
lowed by predict, making the output more clear for
the user’s display.

We also adapt the training objective such that
it accounts for both the accuracy and latency of
the model’s outputs on each successive prefix. Let
(x, y) be the pair of input sequence and target out-
put sequence with prefixes x1, x2, · · · , x|x| and
y1, y2, · · · , y|x|, respectively where |x| is the length
of the full sentence. We also denote f(x) as the
output logits of the disfluency classifier, g(x) as
the output logits of the wait classifier, σ(·) as the
softmax function, and H(·, ·) as the cross-entropy
loss. Then the traditional cross-entropy loss on the
full input and target sequences is

`FULL(x, y) = H(σ(f(x)), y) (1)

However, for each prefix we wish to only compute
the cross-entropy loss on the tokens to the left of
the first token for which the model outputs a wait
prediction. To accomplish this, we devise a binary
mask that zeros out the loss on the tokens to the
right of and including the first wait prediction:

m(σ(g(xi)) = (m1, · · · ,m|xi|) (2)

where

mj =

{
1 if j < k

0 otherwise
(3)

k = min {j|σ(g(xi)j) > 0.5} (4)

where g(xi)j is the j-th element of vector g(xi).
We then apply this mask to the cross-entropy loss
for each prefix of example x to obtain prefix loss:

`PREFIX(x, y) =

|x|−1∑

i=1

m(σ(g(xi)))◦H(σ(f(xi)), yi)

(5)

where we abuse notation here by denoting
H(σ(f(xi)), yi) as the vector for which the j-
th element corresponds to the cross-entropy of
(σ(f(xi))j , yi,j) and ◦ is element-wise multiplica-
tion. Lastly, we define a latency cost that scales
with both the probability of abstaining from clas-
sifying the j-th token in the i-th prefix (σ(g(xi)j))
and with the expected wait time, as measured by
number of tokens, incurred by abstaining starting
from token j in prefix xi:

`LATENCY(x) =

|x|−1∑

i=1

i∑

j=1

(i− j)σ(g(xi)j) (6)

Putting these together, the total loss for a single
example (x, y) is:

`(x, y) = `FULL(x, y) + γ`PREFIX(x, y)

+ λ`LATENCY(x) (7)

with hyperparameters γ and λ controlling the rel-
ative strengths of the prefix and latency costs, re-
spectively. We also include the cross-entropy loss
on the full sequences (`FULL) in addition to the pre-
fix losses (`PREFIX) because we wish for the model
to maintain its ability to make predictions on full
sequences. Since g(x) does not appear anywhere
in `FULL, the model is effectively forced to make
predictions once it receives the full utterance.

Similarly, the `LATENCY term is essential because
without it, the model could achieve minimal loss by
always waiting (e.g. σ(g(xi)j) = 1 for all prefixes
i and time steps j), and only learning to classify dis-
fluent tokens after receiving the full sequence. This
is equivalent to the non-incremental classification
loss. If we instead set σ(g(xi)j) = 0 for all i, j
(the case where the model never waits), the result-
ing loss is equivalent to the learning objective for
strongly incremental training (see Section 3.2). In
essence, our training objective is a generalization
of the strongly incremental objective.

3.2 Restart-Incremental Training
Although BERT models are typically fine-tuned
using complete pre-segmented sequences, an in-
cremental model must process partial inputs at in-
ference time, resulting in a distributional shift be-
tween the complete utterances typically seen in
training datasets and the partial utterances seen at
inference time. A simple solution is to fine-tune
BERT both on complete and partial inputs, a train-
ing scheme known as restart incrementality (Ka-
hardipraja et al., 2021). By providing successively

830

extended prefixes of a given utterance to the model
and computing the loss on the model outputs for
each prefix, we can mimic the streaming data that
the model would encounter in real time. In all of
our experiments, each successive prefix adds a sin-
gle word to the previous prefix, a setting known
as strongly incremental (Shalyminov et al., 2018).
Although this approach requires re-computation
of the model outputs for each successive prefix,
this also enables the model to correct its previous
predictions, or to switch between waiting and pre-
dicting when it receives helpful right context. In-
corporating prefixes during training in incremental
disfluency detection has been previously explored
by Rohanian and Hough (2021). This serves as a
strong baseline in our experiments.

4 Experimental Setup

We fine-tune all models on the Switchboard dataset
(Godfrey et al., 1992), a transcribed English multi-
speaker conversational corpus that is commonly
used for ASR research. We specifically use the ver-
sion from the Linguistic Data Corpus’s Treebank-3
(Marcus et al., 1999) distribution, which addition-
ally contains disfluency annotations and a stan-
dard train/dev/test split (Charniak and Johnson,
2001). We follow Rocholl et al. (2021), training
our models to classify both the reparanda and in-
terregna as disfluent for future removal in a final
post-processed transcript.

4.1 Baselines

All of our experiments use small distilled BERT
models, specifically a small vocabulary BERT
model (Zhao et al., 2021) (BERTSV) with 12 hid-
den layers of size 128 that is pre-trained on English
Wikipedia and BookCorpus (Zhu et al., 2015). The
details of our hyperparameter tuning can be found
in the Appendix (Section A.2).

We use small models for two reasons: 1) fine-
tuning a model on all given prefixes of each training
example is resource intensive, and 2) many stream-
ing natural language understanding applications
run entirely on mobile devices which precludes
the use of large models. Previous work on small
non-incremental BERT-based models used for dis-
fluency detection (Rocholl et al., 2021) showed
significant improvement in memory and latency
without compromising task performance. The core
BERTSV model is a distilled version of BERTBASE
with smaller vocabulary and reduced hidden layer

dimensions (Zhao et al., 2021). Due to its smaller
vocabulary size (5K versus 30K tokens), the model
has only about 3.1M parameters, as compared to
BERTBASE’s approximately 108.9M parameters,
achieving around 80% latency reduction.

In order to isolate the effects of training with
restart incrementality (Section 3.2) versus the im-
provements derived directly from incorporating
our new training objective, we also evaluate two
other models: 1) a non-incremental BERTSV model
trained in the usual way, on full sequences; and 2)
a BERTSV model trained with restart incremen-
tality - i.e., on all prefixes of every training ex-
ample (which we will refer to as “all prefixes” in
following tables). Setup (1) is equivalent to ablat-
ing both `PREFIX and `LATENCY whereas setup (2) is
equivalent to ablating only `LATENCY. We do not
ablate `PREFIX in isolation since this leaves only the
`FULL and `LATENCY terms, and there does not exist
a meaningful measure of latency when the model
never needs to wait for more input (since it is al-
ways given the full utterance as input). For each
of these baseline models we also follow Rohanian
and Hough (2021) and Kahardipraja et al. (2021)
by evaluating with different fixed lookahead (LA)
window sizes of LA = 0, 1, 2.

4.2 Incremental Evaluation

Accuracy alone is not a sufficient measure of suc-
cess to robustly evaluate a streaming model. Since
a streaming model is meant to operate in real time,
it should return output as soon as possible after it
receives new input. As such, we also need to evalu-
ate it with respect to latency – i.e. the number of
new tokens a model must consume before produc-
ing a prediction for the current token. Furthermore,
streaming models are often designed to be capa-
ble of retroactively changing their predictions on
previous tokens as new input arrives. This intro-
duces the risk of output “jitter” or “flicker,” where
the output changes dramatically as new input is
consumed, necessitating evaluation of stability. To
capture all these important dimensions of streaming
model performance, we evaluate the models using
the following diachronic metrics (with formulas
and further details in the Appendix):

• Streaming F1: An accuracy metric scored in
the same way as the typical F1 score, albeit we
score the predictions for a single token over
the course of multiple time steps separately as
if they were predictions for separate tokens.

831

Model Training Scheme Incremental Final
F1 ↑ P ↑ R ↑ EO ↓ TTD ↓ AWT ↓ F1 ↑

BERTSV Full sequences 0.76 0.74 0.78 0.31 1.46 0.00 0.89
BERTSV All prefixes 0.76 0.73 0.78 0.32 1.37 0.00 0.89
Streaming BERTSV All prefixes 0.83 0.92 0.75 0.09 2.32 0.21 0.88
Models with lookahead ≥ 1

BERTSV (LA = 1) Full sequences 0.83 0.85 0.80 0.10 2.41 1.00 0.89
BERTSV (LA = 2) Full sequences 0.85 0.89 0.82 0.05 3.06 2.00 0.89
BERTSV (LA = 1) All prefixes 0.82 0.85 0.80 0.12 2.33 1.00 0.89
BERTSV (LA = 2) All prefixes 0.85 0.89 0.82 0.06 3.01 2.00 0.89

Table 1: Comparison of incremental performance on the Switchboard validation set of non-incremental small-
vocab BERT models (BERTSV) against that of a streaming small-vocab BERT model (streaming BERTSV). In the
lower half of the table we also list the evaluation results of non-incremental BERTSV models with fixed lookahead
(LA) window sizes of 1 and 2 tokens. Note that for the non-incremental models the lookahead window size is
equivalent to the average waiting time (AWT). The arrows near each metric represent the desirable direction of the
result: ↑ means the higher the performance the better and ↓ is the reverse.

• Edit Overhead (EO) (Buß and Schlangen,
2011): A stability metric that measures the
average number of unnecessary edits, normal-
ized by utterance length.

• Time-to-detection (TTD) (Hough and
Schlangen, 2017): A latency metric that is
only computed on disfluent tokens that are
classified correctly. It is the average amount
of time (in number of tokens consumed) that
the model requires before first detecting a
disfluency. As mentioned earlier, we include
both reparanda and interregna as disfluencies.

• Average waiting time (AWT): The average
amount of time (in number of tokens con-
sumed) that the model waits for further input
before making a prediction on a given token.
For models with a fixed lookahead window,
this is equivalent to the lookahead window
size. For the streaming model, this is equiva-
lent to the average lookahead window size.

• First time to detection (FTD) (Zwarts et al.,
2010; Rohanian and Hough, 2021): Similar
to to the TDD metric described above with
the main difference being that the latency (in
number of words) is calculated starting from
the onset of a gold standard repair.

5 Results

In this section we present a summary of both the
non-incremental and incremental performance of
our streaming model against that the baselines.
We also present an analysis of the types of errors

and average amount of waiting time the streaming
model incurs.

5.1 Incremental Performance

Table 1 shows both the incremental and non-
incremental evaluation metrics. Our proposed
streaming BERTSV model achieved a 9% increase1

in streaming F1 over both of the baselines (with
lookahead = 0), as well as a 71% and 72% decrease
in edit overhead compared to the non-streaming
models trained on full sequences and all prefixes,
respectively. Despite being trained with a differ-
ent architecture and loss objective, the streaming
model does not sacrifice its non-incremental per-
formance, yielding a final output F1 score that is
only one point less than its non-streaming coun-
terparts. Generally speaking, when the streaming
model does output a prediction, it classifies tokens
as disfluent less often than the non-streaming mod-
els with zero LA window, achieving much higher
precision (P) and marginally lower recall (R), re-
sulting in a model that “flickers" less frequently.
However, this does contribute to a slightly higher
time-to-detection score compared to the baselines
with zero lookahead, since the streaming model
is generally less aggressive but more precise with
outputting disfluent predictions. When compared
to the models with fixed lookahead (the lower half
of Table 1), however, the streaming model always
achieves lower TTD while achieving significantly
lower waiting time and comparable accuracy and

1All percentages mentioned in this section are computed as
a percentage of the original number, rather than as a difference
in percentage points.

832

stability.

Type of disfluency Average wait time
Repair 0.74
Fluent 0.15
Interregnum 1.06
Reparandum 0.76
Edit 0.14
Repair onset 0.46

Table 2: The streaming model’s average waiting time
(in number of tokens) for each type of token (as cate-
gorized in Marcus et al. (1999)) encountered in each
prefix fed to the model for the Switchboard validation
set. For a more fine-grained analysis, we separate the
repair onset (the first word in the repair phrase) from
the rest of the words in the repair. The category “Edit”
consists of all edit terms that are not interregna (i.e. not
inside of a repair structure).

Effect of lookahead window size We also
evaluated the performance of the non-streaming
baseline models with fixed lookahead window sizes
of 1 and 2 tokens, as shown in the lower half of
Table 1. In line with what has been reported in
past work (Madureira and Schlangen, 2020; Buß
and Schlangen, 2011), the size of the lookahead
window scales directly with the accuracy and sta-
bility and inversely with the latency of the model.
However, the streaming model has comparable
streaming F1 and edit overhead scores as the non-
streaming models with LA = 1, even though
the streaming model has 79% less average wait
time. This indicates that the streaming model is
able to correctly classify tokens sooner and with
more stability than the baseline models that have
LA = 1. Although the models with LA = 2 im-
prove marginally on accuracy and stability over
the models with LA = 1, the streaming model
continues to have lower TTD and AWT but com-
parable F1 and EO when compared to the models
with LA = 2.

The utility of dynamic lookahead The re-
sults in Table 1 also reveal some insights into which
parts of the model design and training scheme are
more important for streaming performance and effi-
ciency. Merely training a non-streaming model on
prefixes of the training examples appears to have
minimal effect on F1, precision, and recall, but
does somewhat improve the TTD score. We hy-
pothesize that this is largely the result of training
on a data distribution that more closely resembles

the test distribution. Adding the extra wait clas-
sifier head and latency cost term in the training
objective yields the greatest improvements in both
precision and stability, as seen in the differences in
F1, P, and EO values between the BERTSV model
trained on all prefixes and the streaming BERTSV
model.

When to wait Since the streaming model can
abstain from outputting predictions for arbitrarily
long suffixes of the input, it incurs waiting time - an
average of 0.21 tokens more than the non-streaming
models with 0 lookahead. Table 2 shows that the
streaming model abstains the most when encounter-
ing interregna and reparanda, waiting for approx-
imately 1.06 and 0.76 more tokens, respectively.
Given that it is easier to identify a disfluency once
the entire reparandum and interregnum have been
observed, it follows that the model’s predictions
may be more uncertain for reparanda and inter-
regna upon first consumption, thus incurring the
highest average waiting times. An example of the
model’s incremental outputs for a disfluency struc-
ture is shown in Table 4. For correctly classified
disfluent tokens, the streaming model also has a
higher TTD, likely because the non-incremental
models are more aggressive in predicting disfluent
labels (while making more errors) than the stream-
ing model. Still, this TTD is lower than all the
models with fixed lookahead windows.

5.2 Error Analysis

Figure 3: Token-wise misclassification rates for each
type of disfluency annotation (as categorized in Mar-
cus et al. (1999)) across all three evaluated models on
the Switchboard validation set. If the model abstained
from making a prediction on a particular token, we did
not count this as an error.

Figure 3 shows an error analysis on the models’
predictions. We computed the percentage of the

833

Model Training Scheme Incremental metrics
EO↓ FTD↓

BERTLARGE (Rohanian and Hough, 2021) All prefixes 0.60 0.31
BERTSV Full sequences 0.30 0.79
BERTSV All prefixes 0.32 0.84
Streaming BERTSV All prefixes 0.09 0.11

Table 3: A comparison of the EO and FTD metrics of our baselines (BERTSV trained on full sequences and all
prefixes), our streaming BERTSV model, and Rohanian and Hough (2021)’s incrementalized BERTLARGE model
on the Switchboard test set. The arrows near each metric represent the desirable direction of the result – for both
of the metrics, lower numbers are more desirable.

time that the streaming model misclassified a token,
counting each incidence of the token across each
time step separately. All models achieved the low-
est misclassification rates on fluent and edit tokens,
and the highest misclassification rates on reparanda
tokens. For tokens that were fluent, edit terms, or
part of a repair or repair onset, the streaming model
achieved significantly lower misclassification rates
than the baselines. However, all three models per-
formed comparably on interregna and reparanda.
Since we measure misclassification rate on every
token at every time step, the high misclassification
rates on reparanda are expected as it is often not fea-
sible to detect a reparandum until an interregnum
or repair onset has been seen.

Accuracy versus latency In comparison to
the baseline models with 0 lookahead, the stream-
ing model makes the largest tradeoffs in accuracy
versus latency for repair onsets and repairs, as
shown by Figure 3 and Table 2. While the stream-
ing model incurs average additional wait times of
0.74 and 0.46 tokens for repairs and repair on-
sets respectively, its misclassification rates are also
approximately 85% and 82% less than the base-
line models on repairs and repair onsets respec-
tively. In addition, Table 1 demonstrates that the
streaming model still achieves comparable F1 and
greater stability (lower EO) in comparison to the
non-streaming baselines with lookahead 1, despite
having an average wait time that is 79% shorter.

5.3 Comparison with Competitor Baselines

As shown in Table 3, in comparison with the
BERTLARGE-based prophecy decoding model pro-
posed in Rohanian and Hough (2021), our stream-
ing model achieves state-of-the-art stability (85%
decrease in EO) and latency (65% decrease in

FTD)2, despite having far fewer parameters.

6 Conclusion and Future Work

We have introduced a streaming BERT-based Trans-
former model that is capable of balancing accuracy
with latency by simultaneously making token-level
disfluency predictions and dynamically deciding
how large of a lookahead window to use. Our
approach improves both streaming accuracy and
output stability on an incremental disfluency de-
tection task. Furthermore, it incurs very low aver-
age latency in comparison with non-incremental
BERT models of the same size. Lastly, our model
requires minimal lookahead beyond disfluent re-
gions and achieves state-of-the-art edit overhead
and first-time-to-detection scores compared to past
work (Rohanian and Hough, 2021).

While the main focus of this paper has been on
developing a fast, accurate, and stable streaming
model for disfluency detection, our approach is gen-
eral enough to be used in other incremental tagging
models of linguistic phenomena that benefit from
the right context for optimal accuracy. In future
work we are interested in applying this approach to
tasks such as real-time punctuation prediction and
incremental parsing.

Furthermore, the streaming model’s efficiency is
limited by its non-autoregressive nature and train-
ing via restart incrementality. Future work should
also explore how to apply a dynamic lookahead
window without re-computing the predictions on
all the previous inputs and to rely on fewer prefixes
during training.

2In addition to shorter word-level latency metrics presented
in the results, the runtime latency of the BERTSV model is 80%
lower than that of BERTBASE (Rocholl et al., 2021).

834

7 Ethical Considerations

While our work does not introduce a new dataset, it
does depend on a training dataset that was collected
from fluent English-speaking, able-bodied human
subjects. If deployed in a real-world application,
this model would likely perform noticeably worse
for users who speak with non-American accents or
speech impediments. Transcripts for these users
could be disproportionately noisy and the stream-
ing model’s average wait time would likely also be
longer. Care should be taken to assess the sensitiv-
ity and robustness of such a model to non-fluent or
non-American English prior to deployment. This
model should also be used very cautiously in situ-
ations where mistakenly eliding fluent portions of
speech from the captions or transcript could incur
dire consequences, such as in an emergency call
center.

8 Acknowledgments

We thank Johann Rocholl, Colin Cherry, Dan
Liebling, Noah Murad, and members of the Google
Research Speech Intelligence team for valuable
feedback and discussion. We also thank the Google
Student Researcher and research internship pro-
grams for supporting this work. Lastly, we also
thank the anonymous reviewers for their thorough
and helpful comments.

References

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene
Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Jozefow-
icz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dandelion Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar,
Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan,
Fernanda Viégas, Oriol Vinyals, Pete Warden, Mar-
tin Wattenberg, Martin Wicke, Yuan Yu, and Xiao-
qiang Zheng. 2015. TensorFlow: Large-scale ma-
chine learning on heterogeneous systems. Software
available from tensorflow.org.

Nguyen Bach and Fei Huang. 2019. Noisy BiLSTM-
based models for disfluency detection. In Proceed-
ings of Interspeech 2019, pages 4230–4234.

Timo Baumann Okko Buß and David Schlangen. 2011.
Evaluation and optimisation of incremental proces-
sors. Dialogue & Discourse, 2(1):113–141.

Eugene Charniak and Mark Johnson. 2001. Edit detec-
tion and parsing for transcribed speech. In Second
Meeting of the North American Chapter of the Asso-
ciation for Computational Linguistics.

Qian Chen, Mengzhe Chen, Bo Li, and Wen Wang.
2020. Controllable time-delay transformer for real-
time punctuation prediction and disfluency detection.
In ICASSP 2020 - 2020 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 8069–8073.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

J.J. Godfrey, E.C. Holliman, and J. McDaniel. 1992.
Switchboard: telephone speech corpus for research
and development. In [Proceedings] ICASSP-92:
1992 IEEE International Conference on Acoustics,
Speech, and Signal Processing, volume 1, pages
517–520 vol.1.

Daniel Golovin, Benjamin Solnik, Subhodeep Moitra,
Greg Kochanski, John Karro, and D. Sculley. 2017.
Google vizier: A service for black-box optimiza-
tion. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining, KDD ’17, page 1487–1495, New
York, NY, USA. Association for Computing Machin-
ery.

Aditya Gupta, Jiacheng Xu, Shyam Upadhyay, Diyi
Yang, and Manaal Faruqui. 2021. Disfl-QA: A
benchmark dataset for understanding disfluencies in
question answering. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 3309–3319, Online. Association for Computa-
tional Linguistics.

Hany Hassan, Lee Schwartz, Dilek Hakkani-Tür, and
Gokhan Tur. 2014. Segmentation and disfluency
removal for conversational speech translation. In
Fifteenth Annual Conference of the International
Speech Communication Association.

Julian Hough and David Schlangen. 2015. Recurrent
Neural Networks for Incremental Disfluency Detec-
tion. In Interspeech 2015, pages 849–853.

Julian Hough and David Schlangen. 2017. Joint, incre-
mental disfluency detection and utterance segmenta-
tion from speech. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 1, Long Pa-
pers, pages 326–336, Valencia, Spain. Association
for Computational Linguistics.

835

https://www.tensorflow.org/
https://www.tensorflow.org/
https://doi.org/10.21437/Interspeech.2019-1336
https://doi.org/10.21437/Interspeech.2019-1336
https://doi.org/10.5087/dad.2011.106
https://doi.org/10.5087/dad.2011.106
https://aclanthology.org/N01-1016
https://aclanthology.org/N01-1016
https://doi.org/10.1109/ICASSP40776.2020.9053159
https://doi.org/10.1109/ICASSP40776.2020.9053159
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1109/ICASSP.1992.225858
https://doi.org/10.1109/ICASSP.1992.225858
https://doi.org/10.1145/3097983.3098043
https://doi.org/10.1145/3097983.3098043
https://doi.org/10.18653/v1/2021.findings-acl.293
https://doi.org/10.18653/v1/2021.findings-acl.293
https://doi.org/10.18653/v1/2021.findings-acl.293
https://aclanthology.org/E17-1031
https://aclanthology.org/E17-1031
https://aclanthology.org/E17-1031

Paria Jamshid Lou and Mark Johnson. 2020. End-to-
end speech recognition and disfluency removal. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pages 2051–2061, Online.
Association for Computational Linguistics.

Patrick Kahardipraja, Brielen Madureira, and David
Schlangen. 2021. Towards incremental transform-
ers: An empirical analysis of transformer models for
incremental nlu.

Brielen Madureira and David Schlangen. 2020. In-
cremental processing in the age of non-incremental
encoders: An empirical assessment of bidirectional
models for incremental NLU. In Proceedings of
the 2020 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), pages 357–374,
Online. Association for Computational Linguistics.

Mitchell P. Marcus, Beatrice Santorini, Mary Ann
Marcinkiewicz, and Ann Taylor. 1999. Treebank-3.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring
the limits of transfer learning with a unified text-to-
text transformer. Journal of Machine Learning Re-
search, 21(140):1–67.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for SQuAD. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 784–
789, Melbourne, Australia. Association for Compu-
tational Linguistics.

Johann C. Rocholl, Vicky Zayats, Daniel D. Walker,
Noah B. Murad, Aaron Schneider, and Daniel J.
Liebling. 2021. Disfluency Detection with Unla-
beled Data and Small BERT Models. In Proc. In-
terspeech 2021, pages 766–770.

Morteza Rohanian and Julian Hough. 2020. Re-
framing incremental deep language models for di-
alogue processing with multi-task learning. In
Proceedings of the 28th International Confer-
ence on Computational Linguistics, pages 497–507,
Barcelona, Spain (Online). International Committee
on Computational Linguistics.

Morteza Rohanian and Julian Hough. 2021. Best of
both worlds: Making high accuracy non-incremental
transformer-based disfluency detection incremental.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
3693–3703, Online. Association for Computational
Linguistics.

Igor Shalyminov, Arash Eshghi, and Oliver Lemon.
2017. Challenging neural dialogue models with nat-
ural data: Memory networks fail on incremental phe-
nomena. In Proceedings of the 21st Workshop on the
Semantics and Pragmatics of Dialogue - Full Papers,
Saarbrücken, Germany. SEMDIAL.

Igor Shalyminov, Arash Eshghi, and Oliver Lemon.
2018. Multi-task learning for domain-general spo-
ken disfluency detection in dialogue systems. In
Proceedings of the 22nd Workshop on the Semantics
and Pragmatics of Dialogue - Full Papers, Aix-en-
Provence, France. SEMDIAL.

Elizabeth Shriberg, Rebecca Bates, and Andreas Stol-
cke. 1997. A prosody only decision-tree model for
disfluency detection. In Fifth European Conference
on Speech Communication and Technology.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

Vicky Zayats, Mari Ostendorf, and Hannaneh Ha-
jishirzi. 2016. Disfluency detection using a bidirec-
tional LSTM. CoRR, abs/1604.03209.

Sanqiang Zhao, Raghav Gupta, Yang Song, and Denny
Zhou. 2021. Extremely small BERT models from
mixed-vocabulary training. In Proceedings of the
16th Conference of the European Chapter of the
Association for Computational Linguistics: Main
Volume, pages 2753–2759, Online. Association for
Computational Linguistics.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In 2015 IEEE International Con-
ference on Computer Vision (ICCV), pages 19–27.

Simon Zwarts, Mark Johnson, and Robert Dale. 2010.
Detecting speech repairs incrementally using a noisy
channel approach. In Proceedings of the 23rd Inter-
national Conference on Computational Linguistics
(Coling 2010), pages 1371–1378, Beijing, China.
Coling 2010 Organizing Committee.

836

https://doi.org/10.18653/v1/2020.findings-emnlp.186
https://doi.org/10.18653/v1/2020.findings-emnlp.186
http://arxiv.org/abs/2109.07364
http://arxiv.org/abs/2109.07364
http://arxiv.org/abs/2109.07364
https://doi.org/10.18653/v1/2020.emnlp-main.26
https://doi.org/10.18653/v1/2020.emnlp-main.26
https://doi.org/10.18653/v1/2020.emnlp-main.26
https://doi.org/10.18653/v1/2020.emnlp-main.26
https://doi.org/10.35111/GQ1X-J780
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.21437/Interspeech.2021-351
https://doi.org/10.21437/Interspeech.2021-351
https://doi.org/10.18653/v1/2020.coling-main.43
https://doi.org/10.18653/v1/2020.coling-main.43
https://doi.org/10.18653/v1/2020.coling-main.43
https://doi.org/10.18653/v1/2021.acl-long.286
https://doi.org/10.18653/v1/2021.acl-long.286
https://doi.org/10.18653/v1/2021.acl-long.286
http://semdial.org/anthology/Z17-Shalyminov_semdial_0016.pdf
http://semdial.org/anthology/Z17-Shalyminov_semdial_0016.pdf
http://semdial.org/anthology/Z17-Shalyminov_semdial_0016.pdf
http://semdial.org/anthology/Z18-Shalyminov_semdial_0008.pdf
http://semdial.org/anthology/Z18-Shalyminov_semdial_0008.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
http://arxiv.org/abs/1604.03209
http://arxiv.org/abs/1604.03209
https://aclanthology.org/2021.eacl-main.238
https://aclanthology.org/2021.eacl-main.238
https://doi.org/10.1109/ICCV.2015.11
https://doi.org/10.1109/ICCV.2015.11
https://doi.org/10.1109/ICCV.2015.11
https://aclanthology.org/C10-1154
https://aclanthology.org/C10-1154

A Appendix

A.1 Evaluation Metrics

We provide more detailed formulas here for each
of our evaluation metrics. For a given input utter-
ance x, let x[j] be the j-th token of x, y[j] be the
gold label (either 0 for fluent or 1 for disfluent) for
x[j], x[: i] be the i-th prefix of x (i.e. the first i
tokens of x), f(x[: i])[j] be the predicted label for
x[j] after the model has consumed prefix i , D be
the entire dataset that we are evaluating predictive
performance for, and |D| be the size of D.

Accuracy metrics Our definitions of the stream-
ing true positives, true negatives, false positives,
and false negatives are:

TPstreaming = |{(i, j)|y[j] = 1, f(x[: i])[j] = 1}|
TNstreaming = |{(i, j)|y[j] = 0, f(x[: i])[j] = 0}|
FPstreaming = |{(i, j)|y[j] = 0, f(x[: i])[j] = 1}|
FNstreaming = |{(i, j)|y[j] = 1, f(x[: i])[j] = 0}|

Similar to the traditional definitions, streaming pre-
cision, recall, and F1 are computed as:

Pstreaming =
TPstreaming

TPstreaming + FPstreaming

Rstreaming =
TPstreaming

TPstreaming + FNstreaming

F1streaming = 2× Pstreaming ×Rstreaming

Pstreaming +Rstreaming

Stability metrics

• Edit overhead (EO) (Buß and Schlangen,
2011): To calculate edit overhead, we need to
first identify, for each prefix x[: i] of a given
input x, which tokens x[j] have predictions
f(x[: i])[j] that differ from the model’s pre-
diction in the previous prefix f(x[: i− 1])[j].
Denoting the cardinality of this set as E(x)
(for the number of edits the model makes on
x), we have:

E(x) = |{(i, j)|f(x[: i])[j] 6= f(x[: i−1])[j]}|

Then we can compute EO as follows:

EO =
1

|D|
∑

x∈D

E(x)

|x|

where |x| is the number of tokens in x.

Latency metrics

• Time-to-detection (TTD) (Hough and
Schlangen, 2017): Since time-to-detection
(TTD) is measured only on disfluent tokens
that are eventually predicted as such by the
model, we need to first define the set of tokens
in a given example x that are true positives at
some point:

TP (x) = {x[k] | y[k] = 1,

∃i : f(x[: i])[k] = 1}

Then for a given token x[k] ∈ x, the detection
time (DT) can be calculated as:

DT (x[k]) = min
i
{i|f(x[: i])[k] = 1} − k

It follows that the TTD for the entire dataset
D is the average DT for all disfluent tokens
that are eventually detected for all x ∈ D:

TTD =
1

m

∑

x[k]∈TP (x),x∈D
DT (x[k])

where

m = |D|
∑

x∈D
|TP (x)|,

the total number of disfluent tokens in the
dataset that are eventually detected by the
model.

• First time to detection (FTD) (Zwarts et al.,
2010; Rohanian and Hough, 2021): Similar
to TTD, this metric is only measured on dis-
fluent tokens that are eventually detected by
the model. Then given some x[k] ∈ TP (x),
let RI(x[k]) represent the index of the first
token in the repair that follows x[k]. Since we
are measuring detection time from the start of
a gold standard repair instead, the detection
time becomes:

DT (x[k]) = min
i
{i|f(x[: i])[k] = 1}

−RI(x[k])

The rest of the formula for the FTD is similar
to that of the TTD:

FTD =
1

m

∑

x[k]∈TP (x),x∈D
DT (x[k])

837

where

m = |D|
∑

x∈D
|TP (x)|,

the total number of disfluent tokens in the
dataset that are eventually detected by the
model.

• Average waiting time (AWT): Suppose that
given an input token x[k], the model can ab-
stain from making a prediction (which occurs
both with the streaming model and with the
fixed lookahead models). We denote this out-
come as y[k] = ∅. To compute AWT, we first
calculate the first prediction time (FPT) for a
given token x[k],

FPT (x[k]) = argmin
i
{i|f(x[: i])[k] 6= ∅},

i.e. the first time step i in which the model
outputs a prediction for token x[k]. Then the
AWT is

AWT =
1

m

∑

x[k]∈x,x∈D
FPT (x[k])− k,

where
m = |D|

∑

x∈D
|x|,

the total number of tokens in the dataset.

A.2 Model Training and Hyperparameter
Tuning

We implemented our models using TensorFlow
v2.7 (Abadi et al., 2015) and the Hugging Face
transformers library (Wolf et al., 2020). We
also fine-tuned all model hyperparameters us-
ing Vizier (Golovin et al., 2017), a black-box
optimization system, using streaming F1 score
on the Switchboard validation set as our objec-
tive. The searched ranges for each hyperparam-
eter were learning rate ∈ [1 × 10−5, 1 × 10−1],
number of training epochs ∈ [12, 20], λ ∈ [1 ×
10−8, 1×10−6], γ ∈ [1, 10]. For most experiments
we ran 30 trials total, with 10 evaluations in parallel.
Each individual trial (one set of hyper-parameters)
ran on a single NVIDIA P100 GPU. Experimental
run time varied from about 13 to 24 hours, depend-
ing mostly on the number of epochs. For each
model variant we present only the results from the
configuration with the highest streaming F1 score
on the Switchboard validation dataset. Our best
performing streaming model used parameter val-
ues of λ = 1.5 × 10−7, learning rate 1.2 × 10−4,
γ = 1.9, training batch size 8, and 12 epochs.

Time
step

Model outputs

3
Input: “I think [the real,”
Output: “I think the real”

4
Input: “I think [the real, + the”
Output: “I think the <WAIT>”

5
Input: “I think [the real, + the princi-
pal]”
Output: “I think <DIS> <DIS> the
principal”

Table 4: Example of the model’s outputs at each time
step. (For brevity, we excerpt only a segment of the sen-
tence that contains disfluencies.) A <WAIT> symbol
indicates that the model decided to stop making predic-
tions for the rest of the input sequence and to wait for
further input instead. A <DIS> symbol indicates that
the corresponding input token was given a classifica-
tion of disfluent and therefore not included in the final
edited output. For clarity we provide disfluency annota-
tions in the form [Reparandum, + Repair], but
these are not actually provided to the model as input.

838

