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Abstract

The task of abductive natural language infer-
ence (αNLI), to decide which hypothesis is
the more likely explanation for a set of obser-
vations, is a particularly difficult type of NLI.
Instead of just determining a causal relation-
ship, it requires common sense to also eval-
uate how reasonable an explanation is. All
recent competitive systems build on top of con-
textualized representations and make use of
transformer architectures for learning an NLI
model. When somebody is faced with a particu-
lar NLI task, they need to select the best model
that is available. This is a time-consuming and
resource-intense endeavour. To solve this prac-
tical problem, we propose a simple method
for predicting the performance without actually
fine-tuning the model. We do this by testing
how well the pre-trained models perform on
the αNLI task when just comparing sentence
embeddings with cosine similarity to what the
performance that is achieved when training a
classifier on top of these embeddings. We show
that the accuracy of the cosine similarity ap-
proach correlates strongly with the accuracy of
the classification approach with a Pearson cor-
relation coefficient of 0.65. Since the similarity
computation is orders of magnitude faster to
compute on a given dataset (less than a minute
vs. hours), our method can lead to significant
time savings in the process of model selection.

1 Introduction

Abduction is a type of reasoning that infers an ex-
planation for some observations (Peirce, 1931). It
is a particularly challenging type of inference; as
opposed to deduction and induction, which derive
the conclusion from only the information present
in the observations, abduction requires making as-
sumptions about an implicit context beyond just the
given observations. Abductive reasoning is there-
fore at the core of the way humans understand the
world and how world knowledge is involved.

Abductive reasoning in the natural language do-
main has been introduced by Bhagavatula et al.
(2020) who defined the abductive natural language
inference (αNLI) task. In it, we are given four
sentences – two observations o1 and o2 and two
hypotheses h1 and h2, where we know that the se-
quence of events was o1 → (h1|h2) → o2. The
task then is to decide which of the two hypotheses
is the more plausible one.

An example from Bhagavatula et al. (2020) is
the following:

o1 : It was lunchtime and Kat was hungry.
o2 : Kat and her coworkers enjoyed a nice lunch

outside.
h1 : Kat went to get a salad.
h2 : Kat decided to take a nap instead of eating.

While it is not inconceivable that someone would
decide to take a nap on their lunch break (h2), given
o2 the first hypothesis becomes more likely.

Currently, transformer-based architectures
(Vaswani et al., 2017) are state of the art in a wide
variety of natural language processing (NLP) tasks
(Devlin et al., 2019; He et al., 2021; Li et al., 2021),
including αNLI. However, with an ever-changing
landscape of transformer models and pre-training
techniques (with over 100001 different fine-tuned
models available on the HuggingFace hub (Wolf
et al., 2020)), finding the best model for a given
task has become a time-consuming process since,
in order to compare multiple models, they each
need to be separately fine-tuned on the task.

This model selection process might lead to a
prohibitive runtime, which has led to research on
performance prediction, namely to predict the ex-
pected performance out of parameters of the model
configuration, without actually training the model.
This procedure has been evaluated for a set of NLP
tasks, including span prediction (Papay et al., 2020)
and language modelling (Chen, 2009). However,

1https://huggingface.co/models

6031



we are not aware of any previous work that per-
formed performance prediction for αNLI.

In this paper, we introduce a fast performance
prediction method for the αNLI task that allows
a more guided way of choosing which models to
fine-tune. We use various pre-trained transformer
models to embed the observations and hypothe-
ses with the approach introduced in Reimers and
Gurevych (2019), then compare which hypothesis
is closer to the observations with cosine similar-
ity. We find that the performance of the similarity-
based approach is correlated to results obtained
via fine-tuning. Therefore, the similarity-based
approach can serve as a performance prediction
method.

2 Related work

There are three research topics that need to be men-
tioned. Approaches to abductive reasoning, pre-
trained language models, and performance predic-
tion. In this section, we explore them in detail.

Abductive natural language inference. NLI has
been proposed as the task of recognizing textual en-
tailment by MacCartney and Manning (2008) and
now constitutes a major challenge in NLP which
has found application for other downstream tasks,
including question answering or zero-shot classifi-
cation (Yin et al., 2019; Mishra et al., 2020). Based
on the initial goal of establishing inference relations
between two short texts, a myriad of variants have
been proposed (Yin et al., 2021; Williams et al.,
2018; Bowman et al., 2015). One such variant is
abductive NLI (αNLI, Bhagavatula et al., 2020).

Transformer-based architectures dominate the
αNLI leaderboard,2 including RoBERTa-based
models (Liu et al., 2020; Mitra et al., 2020) which
explore how additional knowledge can improve per-
formance on reasoning tasks, and Zhu et al. (2020)
who approach αNLI as a ranking task. The task
authors improved upon their result in Lourie et al.
(2021) by using a T5 model (Raffel et al., 2020) and
experimenting with multi-task training and fine-
tuning over multiple reasoning tasks. Both the
multi-task criteria and the Text-to-Text framework
of T5 help the model generalize and understand the
context better.

The second-best model on the leaderboard is a
DeBERTa model (He et al., 2021). The model re-
places the masked language modelling task with a

2https://leaderboard.allenai.org/anli/
submissions/public

replaced-token detection task. It also uses a disen-
tangled attention mechanism to encode the position
and content information.

The current state of the art shows an accuracy
of 91.18% using a new unified-modal pre-training
method to leverage multi-modal data for single-
modal tasks (Li et al., 2021). This result approaches
the human baseline of 92.9%.

Pre-trained language models. The αNLI task
requires the model to successfully “understand” the
context of both the observations and use that un-
derstanding to identify the more likely hypothe-
sis entailing it. Most semantic representations in
practical applications rely on distributional seman-
tics. Such methods include the word-level embed-
ding methods Word2Vec (Mikolov et al., 2013)
and GloVe (Pennington et al., 2014) and language
model-based word representation like ELMo (Pe-
ters et al., 2018), ULMFit (Howard and Ruder,
2018), and GPT (Radford et al., 2018).

The current state of the art are pre-trained trans-
former architectures (Vaswani et al., 2017) like
BERT (Devlin et al., 2019), which use a masked
language modelling and next sentence prediction
objective. This not only helps the model under-
stand the context within a sentence but also in-
between consecutive sentences. There is however a
trade-off in terms of the time it takes to train trans-
former models. For example, a from-scratch train-
ing of BERT takes 6.4 days on an 8 GPU Nvidia
V100 server3. Devlin et al. (2019) recommend fine-
tuning the language model between 2-4 epochs for
a given task. However, in practice, multiple trials
are required to find the optimal hyperparameters.
These long training times and multiple fine-tuning
runs make model selection a time-intensive process
(Liu and Wang, 2021).

Performance prediction. The task of perfor-
mance prediction is to estimate the performance of
a specific system without explicitly running it. It
helps in setting hyperparameters, finding feature
sets, or identifying candidate language models for
a downstream NLP task. Chen (2009) develop,
for instance, a generalized method for predicting
the performance of exponential language models.
They analyze the backoff features in an exponen-
tial n-gram model. Papay et al. (2020) leverage

3https://aws.amazon.com/blogs/machine-
learning/amazon-web-services-achieves-fastest-training-
times-for-bert-and-mask-r-cnn/
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meta-learning to identify candidate model perfor-
mance on the task of span identification. They train
a linear regressor as a meta-model to predict span
ID performance based on model features and task
metrics for an unseen task. Ye et al. (2021) pro-
pose performance prediction methods particularly
suited for fine-grained evaluation metrics. They
also develop methods for estimating the reliabil-
ity of these performance predictions. Contrary to
the previously mentioned papers, Xia et al. (2020)
build regression models to predict the performance
across a variety of NLP tasks, however, they do not
consider NLI as one of them.

In contrast to our work, all these previous meth-
ods build on top of the idea to train a surrogate
model for performance prediction and depend on
the information about past runs of these models.
Our approach focuses solely on the embeddings
provided by the language model and leverages
those as a predictor of performance. This particular
setup is also motivated by the αNLI task itself, in
which a sentence needs to be chosen for a given set
of other sentences.

3 Methods

Our paper investigates how well a fine-tuned trans-
former model’s performance on the αNLI task
(Bhagavatula et al., 2020) is approximated by the
cosine similarity of embeddings of the input sen-
tences which we obtain from the pre-trained models
before fine-tuning them.

Intuitively, if a model embeds the correct hypoth-
esis close to the observations in some latent space
(not necessarily a semantic similarity space), then a
classification model built on top of that latent space
should have an easier time discerning which is the
correct hypothesis, because apparently that latent
space captured some features that were salient for
the αNLI task.

3.1 Sentence Embedding

For both the similarity baseline and the fine-tuned
classification model, the starting point is the pre-
trained transformer model itself. We add a mean
pooling layer to convert the token-by-token out-
put of the model into a single sentence embed-
ding (Reimers and Gurevych, 2019). Given some
tokenized input x = [x1, x2, . . . , xn] and a pre-
trained transformer model E which encodes each
token E(xi), we calculate the sentence embedding
emb(x) = 1

n

∑n
i=1E(xi).

Al alternative to mean pooling would have been
to use the embedding of the CLS token. We opted
against that for three reasons. Firstly, Reimers and
Gurevych (2019) show that mean pooling slightly
outperforms using the CLS token in their seman-
tic similarity models. Secondly, for some mod-
els, the CLS token does not have any particular
significance before fine-tuning on the downstream
task due to the training objective they use (such as
RoBERTa (Liu et al., 2020), which uses masked
language modelling). Thirdly, pooling is a general
approach that can be adopted for any model, even
if it does not output a CLS token. Since our goal
was to avoid any model-specific enhancements, a
universal blanket approach like this was preferable.

3.2 Similarity-based αNLI
To perform αNLI on a validation instance, we ob-
tain three sentence embeddings – one for the com-
bined observations o1 + o2 and one for each of the
hypotheses h1, h2. To predict the more plausible
hypothesis, we calculate which of them is closer to
the observations with cosine similarity:

ĥ = argmax
h′∈{h1,h2}

cos(emb(o1 + o2), emb(h′))

3.3 Classification-based αNLI
For the classification model, we add a classification
head on top of the pre-trained model, which con-
sists of a mean pooling layer to get sentence embed-
dings, then a fully-connected layer and a softmax
output layer. For each instance of (o1, o2, h1, h2),
the model takes two different inputs which consist
of both observations with each of the hypotheses,
namely emb(o1+o2+h1) and emb(o1+o2+h2).

Both of these input representations are then used
in a fully connected layer f with a softmax output
layer to get the probability score for each input.
The hypothesis that is assigned the largest proba-
bility constitutes the prediction:

ĥ′ = argmax
h∈{h1,h2}

softmax(f(emb(o1 + o2 + h)))

In our experiments, we fine-tune the classifica-
tion head on the αNLI training set without updating
weights in the underlying language model. This is
mostly due to time and resource constraints, how-
ever, we believe that while fine-tuning would im-
prove classification performance across the board,
it would not affect the ranking as such. Since we
are comparing models amongst themselves, the
ranking is more important.
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Accuracy Run time

Model Citation Sim. Class. Sim. Class.

albert-base-v2 Lan (2020) 50.78% 65.34% 5.68 0:55:58
albert-large-v2 Lan (2020) 50.13% 69.71% 7.93 2:51:01
bert-base-uncased Devlin (2019) 51.69% 65.99% 2.69 1:13:28
bert-large-uncased Devlin (2019) 52.67% 67.04% 7.22 3:13:54
distilbert-base-uncased Sanh (2019) 51.63% 62.60% 1.63 0:26:36
squeezebert/squeezebert-uncased Iandola (2020) 50.52% 61.95% 2.23 0:37:00
google/mobilebert-uncased Sun (2020) 48.75% 61.68% 4.29 0:36:20
google/canine-s Clark (2021) 49.21% 58.09% 3.82 1:30:40
google/electra-small-discriminator Clark (2020) 51.17% 63.51% 1.69 0:12:27
google/electra-base-discriminator Clark (2020) 52.28% 78.07% 2.77 0:51:51
google/electra-large-discriminator Clark (2020) 52.74% 88.51% 7.23 3:09:35
microsoft/mpnet-base Song (2020) 51.50% 74.87% 2.77 0:52:36
roberta-base Liu (2020) 51.50% 74.15% 2.70 0:52:28
roberta-large Liu (2020) 51.63% 84.14% 6.87 3:32:47
google/bigbird-roberta-base Zaheer (2020) 51.50% 71.02% 5.74 1:02:08
kssteven/ibert-roberta-base Kim (2021) 51.50% 73.63% 2.78 1:00:39
distilroberta-base Sanh (2019) 51.43% 65.99% 1.67 0:29:08

Table 1: Accuracy on the αNLI validation set using similarity and a classification model. The similarity runtime
(how long it takes to evaluate the model since no training is required) is shown in seconds, the classification runtime
(how long it takes to fine-tune and evaluate the model) in hours, minutes, and seconds. Note that the given training
time is for a single set of hyperparameters. Identifying the best hyperparameters involved training each model
multiple times.

4 Experiments

We compare the similarity-prediction-based αNLI
approach and the classification-based αNLI ap-
proach to evaluate if the first can act as an ap-
proximation for the performance expected by the
second. We use the pre-trained transformer mod-
els which are available on the HuggingFace (Wolf
et al., 2020) hub. The full list of models we use is
listed in Table 1. The code for the experiments is
available online.4.

4.1 Dataset

All of our experiments were run on the train and
validation split in the ART dataset provided for
the αNLI challenge (Bhagavatula et al., 2020). It
consists of 169,654 training and 1,532 validation
samples, each consisting of two observations and
two hypotheses obtained from a narrative short
story corpus and augmented with wrong hypothe-
ses written by crowd-sourced workers.

The training data contains repetitions of the same
(o1, o2) pairs with different sets of hypotheses,
ranging from one plausible and one implausible
hypothesis to two plausible hypotheses where one
of them is more plausible. The validation set was
constructed using adversarial filtering, which se-
lects one plausible and one implausible hypothesis

4https://github.com/Vaibhavs10/anli-performance-
prediction

for each set of observations that are hard to dis-
tinguish. This increases the probability that the
instances are free of annotation artifacts, which the
authors defined as “unintentional patterns in the
data that leak information about the target label”
(Bhagavatula et al., 2020).

4.2 Experimental Setup
All of our classification and similarity experiments
were run on an Nvidia RTX 2080 GPU. For training
the classifier we used the maximum batch size that
fit on the GPU (which is different for different sized
models, ranging between 12 and 128). For similar-
ity experiments, we only infer the embeddings from
pre-trained models. For hyperparameter selection,
to keep the comparison fair, we tuned the batch size
and learning rate and considered the same set of
possible combinations across all the models. The
specific values used for each model are available
in Table 2 in the appendix. We train for 3 epochs
with learning rates ranging [10−5; 9 · 10−5] and a
weight decay of 0.01. For each pre-trained model,
we pick the one that achieved the highest accuracy
on the validation set.

4.3 Evaluation and Results
Table 1 shows the results as accuracy scores, ob-
tained with each pre-trained model when using
cosine similarity and when using a classifier built
on top of it. We also show the training runtimes.
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Figure 1: Relation between similarity and classification
accuracy scores. Note that the similarities are closer to
each other than the classification values, therefore we
chose a different scale.

The primary observation is that the accuracy
scores of classification and similarity are corre-
lated. This can be seen in Figure 1. The Pearson
correlation coefficient is r = .65 (p = 0.005).
The Spearman’s correlation coefficient is ρ = .67
(p = 0.003), indicating that the ranking obtained
with the similarity-based prediction is a reliable
indicator that is helpful for model selection. Ad-
ditionally, model fine-tuning takes on average 620
times longer than the similarity-based estimate.
Tuning the hyperparameters involved training each
model multiple times.

5 Conclusions & Future Work

In this paper, we have shown that similarity mea-
sures based on the distributional semantic represen-
tation in pre-trained transformer models serve as
an effective proxy for fine-tuned transformer-based
classification in αNLI. Since fine-tuning a trans-
former model takes notably more time than per-
forming similarity comparisons, our approach sup-
ports efficient model selection procedures. Future
work should investigate the suitability of similarity-
based performance prediction for other similar
tasks, like next sentence prediction, question an-
swering, summarization.
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A Model Hyperparameters

All models were trained for 3 epochs with a weight
decay of 0.01. The batch size and learning rate
used for each model can be seen in Table 2

Model Learning rate Batch size

albert-base-v2 10−5 60
albert-large-v2 10−5 20
bert-base-uncased 5 · 10−5 32
bert-large-uncased 10−5 16
distilbert-base-unc. 9 · 10−5 128
squeezebert/squeezebert-unc. 7 · 10−5 64
google/mobilebert-unc. 7 · 10−5 100
google/canine-s 10−5 24
google/electra-small-discr. 7 · 10−5 128
google/electra-base-discr. 3 · 10−5 64
google/electra-large-discr. 10−5 16
microsoft/mpnet-base 3 · 10−5 64
roberta-base 3 · 10−5 60
roberta-large 10−5 12
google/bigbird-roberta-base 10−5 40
kssteven/ibert-roberta-base 3 · 10−5 64
distilroberta-base 5 · 10−5 80

Table 2: The learning rate and batch size that resulted
in the best classification accuracy for each model.
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