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Abstract

Although Transformers with fully connected
self-attentions are powerful to model long-term
dependencies, they are struggling to scale to
long texts with thousands of words in language
modeling. One of the solutions is to equip the
model with a recurrence memory. However, ex-
isting approaches directly reuse hidden states
from the previous segment that encodes con-
texts in a uni-directional way. As a result, this
prohibits the memory to dynamically interact
with the current context that provides up-to-
date information for token prediction. To rem-
edy this issue, we propose Look-Ahead Memory
(LaMemo)1 that enhances the recurrence mem-
ory by incrementally attending to the right-side
tokens, and interpolating with the old mem-
ory states to maintain long-term information in
the history. LaMemo embraces bi-directional
attention and segment recurrence with an addi-
tional computation overhead only linearly pro-
portional to the memory length. Experiments
on widely used language modeling benchmarks
demonstrate its superiority over the baselines
equipped with different types of memory.2

1 Introduction

Language modeling is an important task that tests
the ability of modeling long-term dependencies by
predicting the current token based on the previous
context (Mikolov and Zweig, 2012; Merity et al.,
2017). Recently, Transformer-based language mod-
els achieved remarkable performance by enabling
direct interaction between long-distance word pairs.
However, as the computation overhead grows with
the length of the input sequence, Transformers can
only process a fixed length segment at a time. To
allow long-term information flow across individual
segments, existing approaches augment the model

∗ Corresponding author
1We are also inspired by the French word “La Mémoire”,

meaning “the memory”.
2Source code available at https://github.com/

thu-coai/LaMemo.
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Figure 1: Attention weights on the context (in log-scale)
in the final layer of Transformer-XL and LaMemo av-
eraged on 15K tokens. Transformer-XL quickly loses
attention to older contexts, while LaMemo maintains
awareness to the history with the grow of the context
length.

with a recurrence memory that stores hidden states
computed in previous time steps (Dai et al., 2019)
and their compressions (Rae et al., 2020; Martins
et al., 2021) for the target tokens to attend to.

One limitation of this approach is that the recur-
rence memory is only aware of older contexts since
they are previously computed to predict the next
word from left to right. As a result, distant memory
states become outdated and less activated by the
current context, as illustrated in Figure 1. When
humans read or write a document, they maintain a
memory that records important information from
the past and often refresh them under the current
context to keep it up-to-date.

In this paper, we propose Look-Ahead Memory
(LaMemo) where memory states “look ahead” to
future time steps by attending to the token represen-
tations on their right side to provide up-to-date con-
textualization.3 To maintain information from the
long-term history, we propose memory interpola-
tion to take both past and future tokens into consid-
eration, which mimics the bi-directional attention.
Note that, directly applying bi-directional attention
to update the memory representations brings an
additional complexity of O(M2) (M is the mem-

3Note that the look-ahead attention does not exceed the
current step of the autoregressive model to prevent information
leakage.
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ory length). This is expensive when the memory is
very long. LaMemo incrementally attends to the
right and accumulate the weighted attention sum
from previous segments to simulate the full atten-
tion in only O(M ×N) complexity (N is the tar-
get sequence length), which does not increase the
attention complexity of Transformer-XL, namely
O(N2 + M × N). We provide an illustration of
this mechanism in Figure 3.

Another technique proved to be effective in lan-
guage modeling is the relative positional encod-
ing (Shaw et al., 2018; Huang et al., 2018; Dai
et al., 2019), which biases the pair-wise attention
score purely based on the relative distance of the
two tokens. However its ability to generalize to
the attention of the future tokens remains unknown,
since both the distance and the direction need to
be taken into consideration. In preliminary experi-
ments, we observed the unstability of directly ap-
plying the relative positional encoding of Dai et al.
(2019) to this setting. We propose a simple yet ef-
fective modification based on Dai et al. (2019) that
disentangles the bias of the relative distance and the
attention direction which facilitates the training of
LaMemo. We give both theoretical and empirical
analysis to the unstability issue and demonstrate the
effectiveness of the proposed disentangled relative
positional encoding method.

To sum up, our contributions are as follows:

(1) We propose LaMemo, a memory mechanism
that incrementally attends to the right-side tokens,
and interpolates with the old memory, which en-
ables bi-directional interaction with a complexity
linear in memory length.

(2) We propose disentangled relative positional
encoding, a simple yet effective solution that dis-
entangles the relative distance and the attention
direction that can better generalize to the attention
of the future tokens.

(3) We conduct experiments on standard lan-
guage modeling benchmarks and demonstrate
LaMemo’s superiority over various baselines equp-
pied with different types of memory mechanisms,
despite some having an access to longer contexts.
Comprehensive comparisons show the benefits of
learning memory representations contextualized
with up-to-date information.

2 Background

2.1 Transformer for Language Modeling

A Transformer (Vaswani et al., 2017) is composed
of multiple layers of identical blocks, including a
multi-head self-attention (Bahdanau et al., 2015)
that calculates pair-wise token interaction and a
feed-foward layer for position-wise projection with
a non-linear activation. Both two modules are fol-
lowed by residual connections (He et al., 2016) and
layer normalization (Ba et al., 2016) to facilitate
optimization.

Given the input sequence representations of the
current τ -th segment Xτ = [xτ+1, · · · ,xτ+N ] ∈
RN×d where N is the target sequence length and d
is the hidden state size, they are first mapped into
queries Q, keys K and values V by learned weight
matrix to compute self-attention:

Qτ = XτW q,Kτ = XτW k,V τ = XτW v,
(1)

where W q,W k,W v ∈ Rd×d are learnable projec-
tion matrices. To perform multi-head self-attention,
Q,K, V are further split into H heads. For sim-
plicity, we only consider the case of a single head.
In language modeling, the attention map is always
added by a causal mask to avoid information leak-
age from the future when predicting the next token:

C→τ = Causal-Attn(Qτ ,Kτ ,V τ )

= softmax
(QτK

⊤
τ√

d

)
V τ , (2)

where softmax (·) masks position j > i for the
i-th row of the input matrix with −∞ before taking
the softmax. The resulted context representations
are concatenated and then projected to the final
outputs Oτ ∈ RN×d with a learnable projection
matrix W o ∈ Rd×d. Finally, the self-attention
outputs Oτ are added by the input representations
Xτ and fed to the following point-wise non-linear
transformation, denoted as f(·):

f(x) = LN
(

FFN
(
LN(x)

)
+ LN(x)

)
, (3)

where LN(·) is the layer normalization and FFN(·)
is the feed-forward layer, both of which are applied
to each row vector individually. The final output of
this Transformer layer is f(Oτ +Xτ ).

Outputs of the final layer are projected to the
vocabulary to predict Pr(wt|w1, · · · , wt−1). The
joint probability of predicting the whole segment
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Figure 2: The architecture of Transformer-XL augment-
ing with a recurrence memory.

is the product of these conditional factors. The
final objective is to maximize the following log-
likelihood:

log Pr(w) =
N∏

t=1

log Pr(wt|w1, · · · , wt−1). (4)

2.2 Recurrence Memory Mechanism
To enable the Transformer to consider more con-
textual information from previous segments, Dai
et al. (2019) proposed to augment the Transformer
with a recurrence memory which stores the hidden
states of previous time steps as extended keys and
values, as shown in Figure 2. Concretely, let us
consider a memory length of M and memory repre-
sentations Xτ−1 = [xτ−M+1, · · · ,xτ ] ∈ RM×d.
The extended key and value matrices are obtained
by prepend Xτ−1 to Xτ before projection:

X̃
sg
τ = [sg(Xτ−1) ◦Xτ ] ∈ R(M+N)×d, (5)

where sg(·) stands for stop-gradient which disables
gradient propagation to previous segments, and
[· ◦ ·] indicates concatenation of hidden states along
the length dimension. Extended by the recurrence
memory, each query vector can consider contexts
even beyond the total context length of the atten-
tion M + N . As illustrated by Dai et al. (2019),
the effective context length grows linearly to the
number of layers and the attention context length
due to layer-wise reusing.

Another technique necessary to the recurrence
memory is the relative positional encodings. By
considering only the relative distance between
two tokens when computing the attention score,
it avoids temporal confusion caused by indexing
the same position across segments and injects use-
ful relative bias. Transformer-XL uses the fixed
sinusoidal encoding matrix (Vaswani et al., 2017)
to provide relative distance bias and learns global

Current segment
(N = 1)

Memory
(M = 2)

Figure 3: Illustration of LaMemo with a memory length
M = 2 and a target sequence length N = 1 for clarity.
Solid lines stand for the attention connections computed
at this iteration while dashed lines represent the previ-
ously computed attention.

bias terms shared across different layers, which can
extrapolate to longer contexts with a great reduc-
tion of parameters compared to Shaw et al. (2018):

Axl
i,j = X⊤i W

⊤
q W

E
k Xj +X⊤i W

⊤
q W

R
k Ri−j

+ u⊤WE
k Xj + v⊤WR

k Ri−j , (6)

where R is the sinusoid encoding matrix, u,v are
learnable weight vectors governing the global con-
tent and position bias, and WE

k ,W
R
k are separate

key projection matrices for the content and position
respectively.

3 Method

In this section, we describe our method in detail
with our motivation to learn better representations
for the memory.

3.1 Look-Ahead Attention

Human language is sequential with one word
following another, but humans process informa-
tion usually in a non-sequential way and re-
contextualize certain contents for several times. For
example, when countering complicated contents
during reading, humans usually first store them
temporarily in the memory and continue to scan for
relevant information if any, and revisit those old
contents to refresh their meaning quite often. This
dynamic memory refreshing mechanism enables us
to thoroughly understand the passage under current
contexts.

Existing recurrence memory however, lacks this
dynamic contextualization ability. As the represen-
tations in the recurrence memory are previously
computed conditioned on their past, they are not
aware of the current contexts which provide more

5749



relevant information for the current token predic-
tion.

To address this limitation, we propose a look-
ahead attention that allow the memory to attend to
the contexts on their right. Formally, we reuse the
notation Xτ = [xτ+1, · · · ,xτ+N ] ∈ RN×d for
the representations of the current target sequence
and Xτ−1 = [xτ−M+1, · · · ,xτ ] ∈ RM×d for the
representations of the memory.

Let us consider the i-th position of the memory
Xτ−1, xi can attend to position xj on its right
(j > i) without causing information leakage as
long as j ≤ τ+1. Though appealing, this naïve ap-
proach requires to calculate an M by M attention
map, which would become inefficient and redun-
dant when M is significantly greater than N . Ac-
tually, since the target segment moves forward N
positions at each iteration, we devise an incremen-
tal manner of look-ahead attention computation
that only requires the newest N positions on the
right as key-value pairs.

X̃τ−1 = [xτ−N+2, · · · ,xτ+1] ∈ RN×d. (7)

Then the look-ahead attention results computed
previously can be effectively reused and interpo-
lated with the current ones (§3.2). Concretely, we
formalize the look-ahead attention as follows:

K̃τ−1 = X̃τ−1W k, Ṽ τ−1 = X̃τ−1W v, (8)

C←τ−1 = LookAhead-Attn(Qτ−1, K̃τ−1, Ṽ τ−1)

= softmax
(Qτ−1K̃

⊤
τ−1√

d

)
Ṽ τ−1, (9)

where softmax (·) masks position j ≤ i for the i-
th row of the input matrix with −∞ before softmax.
Qτ−1 is obtained by Eq. (1), and the projection
matrices of query, key and value are all shared with
the causal attention. We illustrate this in Figure
3 where the look-ahead attention (yello paths) in-
creases the attention window of each memory state
to M tokens on its right.

3.2 Memory Interpolation
To save computations for looking-ahead and effec-
tively reuse the attention results of the past, we
propose memory interpolation that smoothly inter-
polates attention results from both the future and
the past to provide bi-directional contextualization.

Recall that in the previous iteration, we have
calculated the causal context representations C→τ−1
of Xτ−1 using Eq. 2, where each row is a linear
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Figure 4: The architecture of LaMemo with look-ahead
attention and memory interpolation that refresh the
memory dynamically with both the current contexts
and the long-term history.

combination of the weighted token representations
of the previous tokens. In Sec. 3.1, we describe
the look-ahead attention which enables Xτ−1 to
attend to the contexts on their right and computes
C←τ−1 using Eq. 9. Here, we formulate the memory
interpolation as the interpolation between the old
representations C→τ−1 and the new ones C←τ−1 with
a coefficient vector ατ−1 ∈ RM controlling the
memorization of the past activations:

C↔τ−1 = Mem-Interp(C→τ−1,C
←
τ−1,ατ−1)

= ατ−1sg(C→τ−1) + (1−ατ−1)C←τ−1.
(10)

The resulted C↔τ−1 which attend to contexts from
both directions, are further fed to the non-linear
transformation defined in Eq. 3 to update represen-
tations in higher layers.

For ατ−1, we define it to be the sum of the nor-
malized attention weights on the previous tokens
when calculating C→τ−1 (Eq. 2):

ατ−1 =
sg(s→τ−1)

sg(s→τ−1) + s←τ−1 + ε
, (11)

where s→τ−1 is the sum of the unnormalized atten-
tion score of C→τ−1, which is the denominator of
the softmax in Eq. 2. Similarly, s←τ−1 is the denom-
inator of the softmax in Eq. 9. ε is a small value
to prevent zero division error in practice. Then Eq.
10 can be derived into a form that resembles the
bi-directional attention with the queries attending
to positions on both sides4 (Appendix A). Figure 4
shows the architecture of LaMemo.

4Note that the query vectors for the past and the future
are under different contextualization in higher layers of the
model.
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Note that the difference between the hidden state
reuse in the recurrence memory and our memory
interpolation is that they simply reuse the static
representations to extend the contexts for attention
while we update the memory representations by
aggregating weighted attention sum of the history
without the need to recompute them.

3.3 Disentangled Relative Positional
Encodings

As the look-ahead attention allows the memory
to attend to future tokens on its right, we need a
relative positional encoding scheme that can gen-
eralize to this setting. We start by considering the
relative positional encoding in Transformer-XL,
as described by Eq. 6. When the i-th query vec-
tor attending to a position j = i + ∆ > i, we
have Ri−j = R−∆. As defined by Vaswani et al.
(2017), R∆ ∈ RD is composed of sine and cosine
functions with different frequencies. Since the sine
function is odd, sin(−ω∆) = − sin(ω∆), we have
R−∆ ̸= R∆ so that it can represent attention in
different directions (± sign of ∆) with the same
relative distance (absolute value of ∆).

However, this approach solely relies on the fixed
sinusoid encodings to represent the relative dis-
tance and the attention direction. We argue that
disentangling them is more effective in capturing
these two types of temporal biases and also miti-
gates the numerical unstability issue. Specifically,
we propose to learn two direction-aware global po-
sition biases to parameterize the sign and query R
with the absolute value of the relative distance:

Adis
i,j = X⊤i W

⊤
q W

E
k Xj +X⊤i W

⊤
q W

R
k R|i−j|

+ u⊤WE
k Xj + v⊤i−jW

R
k R|i−j|, (12)

where vi−j = v+ if i ≥ j else v−. The global
positional bias now explicitly separates the contri-
butions of sgn(i− j) and |i− j|, which can better
generalize to long distance in both forward and
backward directions.

To illustrate the numerical unstability caused by
adapting Eq. 6 to j > i, we derive the variance
of the dot product xTRi−j where x is a random
vector. We show that the variance undergoes an
oscillation and cannot be properly bounded every-
where when i shifts from i ≥ j to i < j. Detailed
analysis are presented in Appendix B.

4 Experiments

We evaluate LaMemo on both word-level and
character-level language modeling tasks and com-
pare with existing Transformer baselines aug-
mented with different types of memory.

4.1 Datasets and Metrics

For word-level language modeling task, we con-
sider Wikitext-103 (Merity et al., 2017), which is
the most widely used word-level language model-
ing benchmark. It contains 103 million tokens for
training from 28 thousand wikipedia articles, with
an average length of 3.6 thousand tokens per arti-
cle and a vocabulary size around 260K. We report
perplexity (ppl) on the dev and test set.

We also evaluate on two character-level language
modeling benchmarks enwik8 and text8 (Ma-
honey, 2011). Both datasets contain 100 million
Wikipedia characters. While enwik8 is unpro-
cessed, text8 is preprocessed by case lowering and
filtering to include only 26 letters from a to z and
space. On both datasets, we report bit per character
(bpc) on the dev and test set.

4.2 Baselines

To directly compare with different types of memory,
we consider Transformer-XL and its variations with
the same model architecture but different memory
mechanism.

Transformer+RPE is the vanilla Trans-
former (Vaswani et al., 2017) that uses relative
positional encodings from Dai et al. (2019) but
does not extend the context with additional
memory.

Transformer-XL (Dai et al., 2019) is a Trans-
former model equipped with relative positional en-
codings and a recurrence memory comprised of
hidden states computed in previous time steps to
extend the context length of the attention.

Compressive Transformer (Rae et al., 2020)
extends Transformer-XL with an external compres-
sive memory that stores compressed hidden states
at the temporal level using convolutional networks.
∞-former (Martins et al., 2021) uses continuous

space attention to attend over the external memory
which consists of continuous signals. They also
updated the external memory with recent hidden
states to enable unbounded memory capacity.
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Model #Params Mem size Ext mem size #FLOPS dev ppl test ppl

Transformer+RPE 151M 0 0 148M 28.11 29.14
Transformer-XL (Dai et al., 2019) 151M 150 0 157M 23.42 24.56
Compressive Transformer (Rae et al., 2020) 161M 150 150 169M - 24.41
∞-former (Martins et al., 2021) 160M 150 150 235M - 24.22
LaMemo 151M 150 0 191M 22.98 23.77

Table 1: Word-level language modeling results on Wikitext-103. We report ppl (perplexity) on dev and test set. We
also report the number of parameters, memory size, external memory size, and the number of FLOPS (floating-point
operations) for computing one step prediction on average.

4.3 Implementation Details

We follow the standard architecture of the
Transformer-XL (Dai et al., 2019) that has differ-
ent configurations for different tasks. Specifically,
on Wikitext-103, we use a 16-layer Transformer
with 10 attention heads and head dimension 41
equipped with adaptive embeddings (Baevski and
Auli, 2019). We control the target sequence length
to be 150 and the memory length 150 for all mod-
els following the setting of Dai et al. (2019). For
the Compressive Transformer and ∞-former, we
additionally use an external memory of size 150 fol-
lowing the setting of Martins et al. (2021).5 On the
text8 and enwik8 datasets, we use a 12-layer Trans-
former with 8 heads and head dimension 64. The
length of the target sequence and the recurrence
memory are both set to 512. In the main results
we use the identical evaluation setting to the train-
ing phase on all datasets and do not use a longer
memory. We use the Pytorch framework (Paszke
et al., 2019) and Apex for mixed-precision training.
In practice, we found that calculating the expo-
nentials (§3.2) may lead to numerical overflow in
mixed-precision mode, so we compute the loga-
rithm of the exponential sum using logsumexp
and logaddexp operator. Further details of the
dataset and the hyperparameter settings are de-
scribed in the Appendix C.

4.4 Main Results

We show the results of word-level language mod-
eling benchmark Wikitext-103 in Table 1. We first
observe that all the models extended with memo-
ries significantly outperforms Transformer+RPE.
Under the same memory length, LaMemo outper-
forms Transformer-XL with a clear margin, which
demonstrates the effectiveness of learning dynamic
memory representations over static ones. When

5The external memory consists of 150 compressed vectors
for Compressive Transformer, and 150 radial basis functions
for ∞-former respectively.

Model dev bpc test bpc

Dataset: text8

Transformer+RPE 1.232 1.303
Transformer-XL (Dai et al., 2019) 1.172 1.239
LaMemo 1.128 1.196

Dataset: enwik8

Transformer+RPE 1.253 1.240
Transformer-XL (Dai et al., 2019) 1.150 1.128
LaMemo 1.129 1.107

Table 2: Character-level language modeling results on
text8 and enwik8. We report bpc (bits-per-character)
on the dev and test set.

compared to the compressive memory and the un-
bounded memory that take longer contexts into
account, LaMemo still achieves lower perplexity.
This indicates that the look-ahead memory allows
the language model to exploit the recent contexts
to gain performance, while simply increasing the
context length yields marginal improvement. This
is in accordance with previous findings of how lan-
guage models utilize contexts (Khandelwal et al.,
2018; Sun et al., 2021). In terms of the parameters,
LaMemo has the same number of parameters as
the Transformer-XL while other baselines use ad-
ditional parameters in CNN to compress or smooth
the hidden states. Lastly, we show the number of
FLOPS necessary for computing one step predic-
tion. ∞-former has the highest number of FLOPS
for resampling enough points from the continu-
ous signal to update the memory using smoothing
techniques. LaMemo also incurs additional com-
putations to re-contextualize the memory under the
current context. Note that although the Compres-
sive Transformer has lower number of FLOPS than
LaMemo, it has an external memory that consumes
more GPU memory.

We also present the results of character-level lan-
guage modeling on text8 and enwik8 datasets in
Table 2. We observe similar trends as the results on
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Configuration Encoding dev ppl test ppl

Full Ours 22.98 23.77
w/o mem interp Ours 23.67 24.90
w/o look-ahead Ours 23.42 24.56
Full Dai et al. (2019) FAIL FAIL

Table 3: Ablation study on Wikitext-103. We investigate
three model configurations and two encoding schemes.

the word-level benchmark, where LaMemo outper-
forms Transformer-XL by 0.04 on text8 and 0.02
on enwik8 with the same context length. Addition-
ally, we observe that all models exhibit overfitting
on text8, which might be caused by the extremely
small vocabulary size of the dataset.

4.5 Ablation Study

We conduct ablation studies on Wikitext-103 to
examine the effects of the proposed techniques, i.e.,
look-ahead attention, memory interpolation, and
disentangled relative positional encodings.

We use the same model achitecture and the same
target and memory length as the main results. We
first study three configurations, including (1) using
the Full model setting, (2) ablating the memory
interpolation module (w/o mem interp), i.e., set
the memorizing coeffecient ατ−1 = 0, and (3)
ablating the look-ahead attention (w/o look-ahead),
i.e., only use the causal context representations
C→τ−1 in each layer. As shown in the First three
rows in Table 3, both the memory interpolation
and the look-ahead attention are indispensible for
achieving the best performance. Additionaly, we
found that cancelling out memory interpolation
leads to a worse performance, which indicates that
the distant past still provides additional information
beyond the current context.

The second study targets at studying different en-
coding schemes. We substitute our encodings with
the RPE of Transformer-XL Dai et al. (2019) and
run multiple experiments with 3 different random
seeds, but all the models fail to converge. We plot
the training curves using two encodings in Figure
8 in Appendix B, where we observe that our dis-
entangled RPE is more stable during training and
achieves lower perplexity.

5 Extrapolating to Longer Contexts

In this section, we extrapolate the models to longer
contexts during inference to study the effect of
dynamic contextualization to the distant past.
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Figure 5: Test perplexity of LaMemo and Transformer-
XL when extrapolating to longer contexts during infer-
ence, where m is the ratio of the memory length to the
target length.
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Figure 6: The memorizing coefficient α of different lay-
ers in a 16-layer model with a same memory and target
length of 150. Smaller index means older memory.

We fix the length of the target sequence to
64 and extrapolate the trained models to longer
memory length 64 × m during inference, where
m = 1, · · · , 10. We compare the perplexity of
LaMemo and Transformer-XL trained on Wikitext-
103 when augmented by a memory with different
length. As shown in Figure 5, LaMemo consis-
tently achieves lower perplexity than Transformer-
XL when extraploating to longer contexts, while
the performance of both models saturate when m
is over 7. Additionally, we observe that the gap
of perplexity between the two models increases
when taking longer contexts into account. This
demonstrates the effectiveness of dynamically re-
freshing the distant memory representations under
the current context.
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6 Attention Analysis

In this section, we analyze the attention distribution
of LaMemo to validate the effectiveness of utilizing
bi-directional contexts with look-ahead attention.

We first visualize the memorizing coefficient α
which stands for the portion of the past activations
in the current memory representations. As show
in Figure 6, we plot α in different layers as a func-
tion of the memory index averaged on 100 text
segments.6 We observe that in lower layers the
memory mainly attends to the past (α ≈ 1.0). We
conjecture that long-term bi-directionality is not
necessary for low-level representations such as lex-
ical features. In higher layers, the memory sub-
stantially utilizes the future contents to refresh the
high-level representations, especially for the old
memory state with a small memory index.

Next, we visualize the attention weight distribu-
tion on the context tokens when predicting each
target token in Figure 1. For every token, we take
the maximal attention weight in each interval of
5 tokens on its left and scale to a context length
of 100. The result indicates that LaMemo learns
better memory represetations by attending to the
right-side tokens, which increases the memory uti-
lization when predicting the target token.

7 Case Study

We present the generated texts of LaMemo and
Transformer-XL trained on Wikitext-103 in Ap-
pendix D. Both models maintain a memory size
of 512, and we seed them with the same context
randomly sampled from the test set and generate
256 tokens using top-p sampling (Holtzman et al.,
2020) with p = 0.95.

8 Related Work

The Transformer (Vaswani et al., 2017), with its
pair-wise modeling ability of the input, becomes
prevailing for sequence modeling, especially long
sequence processing tasks, such as long text gener-
ation (Tan et al., 2021; Ji and Huang, 2021), long
document QA (Beltagy et al., 2020; Ainslie et al.,
2020), language modeling (Dai et al., 2019; Rae
et al., 2020), video processing (Wu et al., 2019),
and etc. Specifically, language modeling (Merity
et al., 2017) which requires processing documents
with thousands of tokens has become a natural

6Due to the space limit, we only sample 8 layers from all
the 16 layers.

testbed for benchmarking this long-term process-
ing ability. However, due to the quadratic time and
space complexity of self-attention, scaling to in-
puts with thousands of tokens is computationally
prohibitive.

One line of work investigated the linear-time
attention mechanism to mitigate the scability is-
sue of Transformer. Linformer (Wang et al., 2020)
projects the inputs to lower dimension in length
and approximates the full attention with a low-rank
factorization. Linear Transformer (Katharopoulos
et al., 2020) regards the self-attention as a kernel
function and uses a linear dot-product as a substi-
tute. Choromanski et al. (2021) and Peng et al.
(2021) proposed to approximate the softmax more
precisely with the expectation of the dot-product
of random features. Although achieving substan-
tial improvements on benchmarks designated for
long inputs (Tay et al., 2021). These methods, how-
ever, focus on approximating the full attention with
low-rank factorizations or kernel functions, which
compromise the expressiveness and robustness of
the original softmax attention, are reported to be
inferior to the simple local attentions on real world
language processing tasks (Xiong et al., 2021).

Our work falls in another line, which aug-
ments the Transformer with a parametrized mem-
ory to store critical history information. Memory-
augmented networks (Graves et al., 2014; Weston
et al., 2015; Sukhbaatar et al., 2015) have been stud-
ied in the context of recurrent neural networks for
a long time, but are mostly restricted to small and
synthetic datasets. With the rapid development of
Transformer, various works start to adapt memories
to this architecture.

Dai et al. (2019) first extended Transformer with
a recurrence memory that caches hidden states com-
puted in previous steps for the target tokens to at-
tend to. Rae et al. (2020) further extended the
context with an external memory that stores com-
pressed hidden states at the temporal level. Martins
et al. (2021) used continuous space attention to
attend over the old history and updated the mem-
ory with recent hidden states to enable unbounded
memory capacity. Wu et al. (2021) proposed to
use the encoder-decoder architecture to encode the
memory states with previous text segments and
pass this memory to future time steps. Instead of
using a fixed-size attention span for different layers,
Sukhbaatar et al. (2019) and Correia et al. (2019)
proposed to learn dynamic attention spans for dif-
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ferent attention heads, which greatly reduced the
computations. These works focused on enabling
the Transformer to access contents in long distance,
but did not consider to learn better memory repre-
sentations by refreshing the old memory under the
current context. Our work is orthogonal to learning
adaptive attention spans and can be combined with
this technique to reduce the complexity.

9 Conclusion

We present LaMemo, a memory mechanism that
allows the memory states to incrementally attend
to the right-side tokens and interpolates with the
old memory states on the left side, which enables
the memory to interact with bi-directional contexts
with a complexity linear in memory length. Experi-
ments on three language modeling datasets demon-
strate the superiority of LaMemo over baselines
with various types of memory mechanisms. We
also found that LaMemo increases the utilization of
older memory states when predicting the target to-
kens, and yields a higher performance boost when
extrapolating to longer memory length, which in-
dicates the effectiveness of recontextualizing the
memory under the current context.
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A Derivation of Memory Interpolation

We derive Eq. 10 into the form of standard self-
attention in the following:

C↔τ−1 = ατ−1sg(C→τ−1) + (1−ατ−1)C←τ−1.

We consider the i-th row of C↔τ−1, denoted as c↔i .
We omit the stop-grad operation sg(·) and substi-
tute α with the result from Eq. 11:

c↔i = αic
→
i + (1− αi)c

←
i

=
s→i

s→i + s←i
c→i +

s←i
s→i + s←i

c←i ,

where s→i , s←i is the denominator of the softmax
when computing c→i , c←i respectively:

s→i =
∑

j≤i
exp

(q′⊤i k′
j√

d

)
=

∑

j≤i
sim(q′i,k

′
j),

s←i =
∑

j>i

exp
(q⊤i kj√

d

)
=

∑

j>i

sim(qi,kj),

where (q′i,k
′
j) and (qi,kj) are two sets of query-

key vectors computed in the previous and this text
segment respectively for the same position pair
(i, j) . Then we have:

c↔i =

∑
j≤i sim(q′i,k′

j)∑
j≤i sim(q′i,k′

j) +
∑

j>i sim(qi,kj)
c→i

+

∑
j>i sim(qi,kj)∑

j≤i sim(q′i,k′
j) +

∑
j>i sim(qi,kj)

c←i

=

∑
j≤i sim(q′i,k′

j)v
′
j +

∑
j>i sim(qi,kj)vj∑

j≤i sim(q′i,k′
j) +

∑
j>i sim(qi,kj)

=
∑

j

βj ṽj ,

where
∑

j βj = 1. Finally, we derive c↔i as the
weighted sum of the value vectors ṽj from both the
past (j ≤ i) and the future (j > i) of the position i.

B Unstability Analysis of the RPE in
Transformer-XL

We conjecture that the unstability of Eq. 6 stems
from the terms involving the dot-product of Ri−j
and another vector. So we start by considering the
variance of x⊤Ri−j where x ∈ Rd is a random
vector. Without loss of generality, we assume that
x has zero mean and a variance of σ:

E(xk) = 0, ∀k ∈ [1, · · · , d]
Var(xk) = σk,k, ∀k ∈ [1, · · · , d]

Cov(xk, xl) = σk,l, ∀l ̸= k ∈ [1, · · · , d]

Let i− j = ∆. According to Vaswani et al. (2017),
R∆ takes the following form:

R∆ =[sin(ω1∆), cos(ω1∆),

· · · , sin(ωd/2∆), cos(ωd/2∆)],

where wk = 10000−2k/d. Then the dot-product
x⊤R∆ can be derived into the linear combination
of sine and cosine functions:

x⊤R∆ =

d/2∑

k=1

x2k−1 sin(ωk∆) + x2k cos(ωk∆),

where we can easily derive that E(x⊤R∆) = 0.
According to the variance-expectation formula:
Var(x) = E[x2]− E[x]2, we can simplify the vari-
ance Var(x⊤R∆) in the following:

Var(x⊤R∆)

= E
[( d/2∑

k=1

x2k−1 sin(ωk∆) + x2k cos(ωk∆)
)2]

=

d/2∑

k=1

E[x22k−1] sin
2(ωk∆) + E[x22k] cos

2(ωk∆)

+ 2

d/2∑

k=1

d/2∑

l=1,l ̸=k

E[x2k−1x2l] sin(ωk∆) cos(ωl∆).

We further simplify the above equation by assum-
ing that all the elements have the same variance
σs, and all pairs of distinct elements have the same
covariance σc:

Var(x⊤R∆) =

d/2∑

k=1

σs[sin
2(ωk∆) + cos2(ωk∆)]

+ 2

d/2∑

k=1

d/2∑

l=1,l ̸=k

σc sin(ωk∆) cos(ωl∆)

=
d

2
σs + 2σcg(∆),

where g(x) =
∑d/2

k=1

∑d/2
l=1,l ̸=k sin(ωkx) cos(ωlx)

is an odd function.

We consider the value of g(x) when x ≈ 0.
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Figure 7: The plot of g(x) when d = 64. We see that
g(x) is symmetric with respect to the origin. The value
of g(x) when x approaches zero from the left and right
diverge greatly.

Since sin(ωkx) ≈ ωkx, cos(ωkx) ≈ 1, we have:

g(x) ≈
d/2∑

k=1

d/2∑

l=1

ωkx

=
d

2

d/2∑

k=1

wkx

=
xd

2

d/2∑

k=1

( 1

100002/d

)k

≈ d

2((108)1/d − 1)
· x = γd · x.

Since ax ≈ 1 + x ln a when x ≈ 0, we derive that
γd ≈ d2

2 ln 108
with the grow of d. This causes g(x)

to have a very steep slope near 0. Since g(x) is an
odd function, the value of g(∆) and g(−∆) will
have a huge gap (∆ is a small positive value). To
validate this, we plot the function of g(x) when
d = 64 in Figure 7.

Overall, the variance of x⊤R∆ is composed of
two terms, the first being σs multiplied by a con-
stant factor d/2, and the second being σc multiplied
by g(∆). Note that σs is strictly positive, while σc
does not have this restriction. Due the asymptotic
behavior of g(∆) near 0, i.e., O(d2∆), we cannot
find a proper σc that makes Var(x⊤R∆) bounded
by O(dσs) for every ∆ that takes its value from
both the positive and negative integers.

Finally, we plot the training curves of the two
models using the RPE in Transformer-XL (xl-rpe)
and our disentangled RPE (dis-rpe) in Figure 8
where we observed that the xl-rpe suffers from
numerical unstability during training.
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Figure 8: Comparison of the training dynamics using
different encoding schemes: the disentangled RPE (dis-
rpe) and the RPE of Transformer-XL (xl-rpe).

Dataset train / dev / test

Wikitext-103 103,227,021 / 217,646 / 245,569
enwik8 88,982,818 / 4,945,742 / 4,943,417
text8 89,999,999 / 4,999,999 / 5,000,000

Table 4: Statistics of the datasets used in the experi-
ments. For Wikitext-103, we use the official split from
Merity et al. (2017) and present the number of tokens in
each split. For enwik8 and text8, we use the split from
Dai et al. (2019) and report the number of characters for
each split.

C Experimental Details

C.1 Dataset Details

Wikitext-103 dataset is extracted from the set of
verified Good and Featured articles on English
Wikipedia. The dataset retains the original case,
punctuation and numbers, and covers a broad range
of domains, e.g., science, culture, bibliography,
and etc. The dataset is available under the Creative
Commons Attribution-ShareAlike (CC BY-SA) Li-
cense.

enwik8 dataset is the test set data of the Large
Text Compression Benchmark which contains the
first 100 million bytes of English Wikipedia dump
on Mar. 3, 2006. All characters are encoded in
UTF-8. This dataset is licensed under the CC BY-
SA License.

text8 dataset contains the first 100 million bytes
of the clean text of Wikipedia that retains only
regular articles and image captions. All the letters
are converted into lower case, and only letters in
the 27 character alphabet, namely letters a-z and
nonconsecutive spaces, are preserved. This dataset
is licensed under the CC BY-SA License.

The statistics of the three datasets is shown in
Table 4.
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C.2 Model Configurations

We follow the base model configuration of Dai
et al. (2019). On Wikitext-103, we use the Trans-
former model with 16 layers, 10 attention heads
with a head dimension of 41. The inner dimension
size of the feedforward layer is 2100. We use a
dropout rate of 0.1 and no attention dropout. To
cope with the large vocabulary, we use the adap-
tive embeddings (Baevski and Auli, 2019). We set
the memory length to 150 and the target sequence
length to 150 as well. On text8 and enwik8 datasets,
we use the Transformer model with 12 layers, 8
attention heads with a head dimension of 64. The
inner dimension size of the feedforward layer is
2048. We use a dropout rate of 0.1 and no attention
dropout. We set the memory length to 512 and
the target length to 512. Specifically, our LaMemo
uses the disentangled relative positional encodings
described in Sec. 3.3. The look-ahead attention
shares the query, key and value projection matrices
with those in the causal attention.

C.3 Training Settings

We trained the models using Adam (Kingma and
Ba, 2015) optimizer, with no warmup. We used
a learning rate of 2.5 × 10−4 which decayed to
0 at the end of training with a cosine schedule.
On Wikitext-103, we trained the model with 250K
steps using a batch size of 64. On enwik8 and
text8, we trained the model with 100K7 steps using
a batch size of 40. We conducted our experiments
on 2 Tesla V100.

C.4 Hyperparameters

We present the hyperparameter search space in Ta-
ble 5. The number of hyperparameter search trials
was 10. We adopted a manual search to select the
hyperparameters, and the selection criterion was
ppl/bpc on the dev set. We did not use early stop-
ping during training.

D Generated Examples

In this section, we present the examples gener-
ated by LaMemo and Transformer-XL trained on
the Wikitext-103 dataset. Both models maintain
a memory with a length of 512. We randomly se-
lect a piece of text from the test set as the context

7We used a smaller number of training steps compared to
Dai et al. (2019), since it would take too long to train one
model.

Hyper-parameter Search Space

Learning Rate choice[1e-4, 2.5e-4, 5e-4]
Learning Rate Schedule choise[linear, cosine]

Warmup Steps choice[0, 1000, 2000]
Maximum Gradient Norm choice[0.25, 0.5, 1.0]

Epsilon (Sec. 3.2) choice[1e-6, 1e-5, 1e-4]
Optimizer Adam

Epsilon (for Adam) 1e-8
Momentum (for Adam) β1 = 0.9, β2 = 0.999

Table 5: Hyperparameter search space. choice indicates
that the listed numbers will be chosen with the same
probability. Best-found hyperparameters are in bold-
face.

and allow both models to generate 256 tokens fol-
lowing the context. We use top-p sampling with
p = 0.95 and detokenize the context and the gen-
erated texts to facilitate reading. We present the
exmples in Table 6 and 7. We present our major
findings below:

• Both models are able to hallucinate imaginary
contents fairly relevant to the limited contexts
given as prompts.

• Transformer-XL sometimes generates topic-
irrelevant contents without further elaboration
(marked by underline), while LaMemo stays
on topic more closely during the course of
generation.

• Transformer-XL suffers more sever repetition
issues (marked in boldface) than LaMemo
both lexically and semantically.
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Context:
= Shackleton ( crater ) =

Shackleton is an impact crater that lies at the south pole of the Moon. The peaks along the crater’s rim are exposed to
almost continual sunlight, while the interior is perpetually in shadow (a Crater of eternal darkness). The low-temperature
interior of this crater functions as a cold trap that may capture and freeze volatiles shed during comet impacts on the
Moon. Measurements by the Lunar Prospector spacecraft showed higher than normal amounts of hydrogen within the
crater, which may indicate the presence of water ice. The crater is named after Antarctic explorer Ernest Shackleton.
= = Description = =
The rotational axis of the Moon lies within Shackleton, only a few kilometers from its center. The crater is 21 km in

diameter and 4.2 km deep. From the Earth, it is viewed edge-on in a region of rough, cratered terrain. It is located within
the South Pole-Aitken basin on a massif. The rim is slightly raised about the surrounding surface and it has an outer
rampart that has been only lightly impacted. No significant craters intersect the rim, and it is sloped about 1.5 ° toward
the direction 50 – 90 ° from the Earth. The age of the crater is about 3.6 billion years and it has been in the proximity of
the south lunar pole for at least the last two billion years.
Because the orbit of the Moon is tilted only 5 ° from the ecliptic, the interior of this crater lies in perpetual darkness.

Estimates of the area in permanent shadow were obtained from Earth-based radar studies. Peaks along the rim of the
crater are almost continually illuminated by sunlight , spending about 80 – 90 % of each lunar orbit exposed to the Sun.
Continuously illuminated mountains have been termed peaks of eternal light and have been predicted to exist since the
1900s.

The shadowed portion of the crater was imaged with the Terrain Camera of the Japanese SELENE spacecraft using the
illumination of sunlight reflected off the rim. The interior of the crater consists of a symmetrical 30 ° slope that leads
down to a 6.6 km diameter floor. The handful of craters along the interior span no more than a few

LaMemo Generation:
kilometres of plains.
A slight rotation is observed in the crater that now bears significant elements like snow, ice, and water ice. In other

areas of the crater there are indications that the nature of the alpine ice layer provides some protection to the craters by
increasing their brightness. The craters seem to be cut by an ice thickness of 10 cm (4 in). Images show their prominence,
varying from a visible plateau to a multi-ring topography, indicating that they are present (a major component) in the
craters. Their interior has a considerable surface area of dry ice.

As seen from Earth, the initial craters are marked by slow-moving metal-bearing mudstone-covered rock that has a
surface of substantial amounts of coal, calcium, lead and sodium alloy, carbon monoxide, nitrogen oxides, and silicon
dioxide. All are developed by processes such as heat transfer by the advancing radiation pressure. The least dense feature
along the surface of the Moon is the large resurfacing event. There is no view that these rocks remain melting to about
90 °C (150 °F), but that their surface shine is dark and their outer layers are light, reflecting vertical oil. This late flank
and early 1970s discovery was announced in 1982, as a substantial amount of ice.

A parallel lava

Transformer-XL Generation:
kilometres.
During the hundreds of years after its formation, the crater now has significant seismic activity in the vicinity. Most

craters are dome-shaped and are usually constructed of sedimentary materials that have been deposited during alpine
ice times. The upper surface of the crater is covered with higher layers of rock that are cut by an extensive thickness
of debris. The debris reaches the top of a mountain and comes in contact with visible ground planes. People are often
observed wearing headgear of degrading materials such as clothing and boots, their shoes or hats, or even working on
the surface. Below the crater. As the crater faces the crater it has thick, thin pipes or scarps. A total of more than 200
caves have been excavated, down to some 40 m by 20 m. This exceeding the margin of the crater where it actually passes
through is considered to be very high. Other geologic features by the advancing magnetic field have been reported from
the crater. However, in 1992, scientists announced they would study this area again.

The crater was once a common feature of the Post Lunar System. Its medieval boundaries were not fixed in the orbital
plane of Mercury. An individual crater had been called “ Discovery crater ” and one referred to as “ Bear crater ”,
although it is likely that an additional crater was called

Table 6: Example 1 generated by LaMemo and Transformer-XL given a context prompt from the test set of
Wikitext-103. Original Wikipedia page: https://en.wikipedia.org/wiki/Shackleton_(crater).
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Context:
Nero was not expected to become Emperor because his maternal uncle, Caligula, had begun his reign at the age of

24 with enough time to produce his own heir. Nero ’s mother, Agrippina, lost favour with Caligula and was exiled in
39 after her husband ’s death. Caligula seized Nero ’s inheritance and sent him to be brought up by his less wealthy
aunt, Domitia <unk>, who was the mother of Valeria <unk>, Claudius ’s third wife. Caligula, his wife <unk> and their
infant daughter Julia Drusilla were murdered on 24 January 41. These events led Claudius, Caligula ’s uncle, to become
emperor. Claudius allowed Agrippina to return from exile.

Claudius had married twice before marrying Valeria <unk>. His previous marriages produced three children including
a son, Drusus, who died at a young age. He had two children with <unk> – Claudia Octavia (born 40) and Britannicus
(born 41). <unk> was executed by Claudius in the year 48.

In 49 AD , Claudius married a fourth time, to Nero ’s mother Agrippina, despite her being his niece. To aid Claudius
politically, young Nero was adopted in 50 and took the name Nero Claudius Caesar Drusus Germanicus (see adoption
in Rome). Nero was older than his stepbrother Britannicus, and thus became heir to the throne. Nero was proclaimed
an adult in 51 at the age of 14. He was appointed proconsul, entered and first addressed the Senate, made joint public
appearances with Claudius, and was featured in coinage. In 53, he married his stepsister Claudia Octavia.
= = Emperor (54 – 68 AD) = =
= = = Early rule = = =

Claudius died in 54 and Nero, taking the name Nero Claudius Caesar Augustus Germanicus, was established as
Emperor. Though accounts vary, many ancient historians state Agrippina poisoned Claudius. According to Pliny the
Elder, she used poison mushrooms. It is not known how much Nero knew or if he was even involved in the death of
Claudius.
Suetonius wrote “ ... for even if he was not the instigator of the emperor ’s death , he was at least privy to it, as he openly

admitted; for he used afterwards to laud mushrooms, the vehicle in which the poison was administered to Claudius, as
‘ the food of the gods , ’ as the Greek proverb has it. At any rate, after Claudius’ death he vented on him every kind
of insult, in act and word, charging him now with folly and now with cruelty; for it was a favourite joke of his to say
that Claudius had ceased ‘ to play the fool ’ among mortals, lengthening the first syllable of the word <unk>, and he
disregarded many of his decrees and acts as the work of a madman and a <unk>. Finally, he neglected to enclose the
place where his body was burned except with a low and mean wall. ”
According to Suetonius; Nero became Emperor at the age of 17 when the news of Claudius’ death was made known ,

making him the youngest emperor at that time Although, what Suetonius may have meant is that he was

LaMemo Generation:
killed as a result of the subsequent anti-Caligula propaganda.
At some time after 47 AD, Nero retired to his villa at Baiae. The combination of a curse that led to the death of Agrippa,

and a duel between Claudius and his own son Drusus, may have encouraged the young Emperor to fire his own stela.
= = = = = Germanicus = = = = =

After becoming emperor, Nero received letters from Suetonius, which finally followed him on 28 May 44 AD with
a letter to Claudius, completing the Emperor ’s plot. The letters were printed in Latin. Claudius’ plot was offered to
Caligula by Agrippina the Elder, a woman from Kent, but she declined. Further letters from Gaius and Nero are known
from the reigns of Tiberius and Caligul , though none of them mention Caligula.
Germanicus’ conspiracy had developed into a protracted affair. His wife Antonia, his sister Agrippina ’s sister and

grandmother, had refused to accept him because she believed they were connected for communication, but the Via Flavia
was left to her husband and Agrippina the Elder, whom she had defeated in her husband ’s palace. Both had been sent
through Gibraltar to compete for power. Gaius and Nero were outraged that Agrippina was supposed to be ready to
support Caligula; Suetonius says that Nero insisted on making

Transformer-XL Generation:
killed as a result of poison and was deemed a good comedian. At now and then he had adopted Nero as his heir.
Although Nero ’s rule was as close as he was to his father to his daughter Agrippina, he was not to physically exhibit

any ill degree of higher kingship but to deny it. The Augustan History describes him as having been strongly willed,
possessing an excellent hand and often claiming the title “ Augustus Caesar ”, and often referred to him as Caesar ’s “
paternal heir ”. The Augustan History, however, asserts that he was no longer in China, and therefore he was raised as a
Roman Hercules rather than a Roman citizen. Claudius Claudius was added as a junior emperor in 53 AD; he was
crowned emperor in 61 AD.
= = = = As Augustus I = = = =

Claudius had developed a keen interest in Claudius in divination, a practice which later developed into his incarnation
as a youth figure in Julius Caesar. Claudius ’ grandfather, Leo I, ascended the throne in 23 AD and spent time in Rome,
as did Claudius, who defeated Claudius in 42 AD. Claudius departed Rome after the death of Agrippa III in 65 AD.
During the following years, Claudius was temporarily imprisoned in Rome, although possibly simply regulating the use
of the captive dogs

Table 7: Example 2 generated by LaMemo and Transformer-XL given a context prompt from the test set of
Wikitext-103. Original Wikipedia page: https://en.wikipedia.org/wiki/Nero.
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