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Abstract

Causal inference methods that control for text-
based confounders are becoming increasingly
important in the social sciences and other dis-
ciplines where text is readily available. How-
ever, these methods rely on a critical assump-
tion that there is no treatment leakage: that
is, the text only contains information about
the confounder and no information about treat-
ment assignment. When this assumption does
not hold, methods that control for text to ad-
just for confounders face the problem of post-
treatment (collider) bias. However, the as-
sumption that there is no treatment leakage
may be unrealistic in real-world situations in-
volving text, as human language is rich and
flexible. Language appearing in a public pol-
icy document or health records may refer to
the future and the past simultaneously, and
thereby reveal information about the treatment
assignment.

In this article, we define the treatment-leakage
problem, and discuss the identification as well
as the estimation challenges it raises. Sec-
ond, we delineate the conditions under which
leakage can be addressed by removing the
treatment-related signal from the text in a pre-
processing step we define as text distillation.
Lastly, using simulation, we show how treat-
ment leakage introduces a bias in estimates of
the average treatment effect (ATE) and how
text distillation can mitigate this bias.

1 Introduction

In observational settings, scholars need to collect
information about potential confounders in order
to estimate the causal effect (τ ) of a treatment on
an outcome (Daoud and Dubhashi, 2020). If we
observed the set of confounders directly, we could
condition on those quantities to recover unbiased
causal effects. Yet, because some confounders U
are difficult to measure directly, scholars are turn-
ing to alternative data sources, such as medical
records, policy documents, or social media posts,

to indirectly measure (proxy) confounders (Kino
et al., 2021). Recent methodological frameworks
supply ways of integrating high-dimensional text
data into causal estimation (Mozer et al., 2020;
Roberts et al., 2020; Feder et al., 2021).

However, prior literature has primarily assumed
that documents only contain information about
the confounder, but not about the treatment—
something we term the no-treatment-leakage as-
sumption. Here, “contain information” means that
the text is caused by the treatment (or the con-
founder) directly or indirectly. When treatment
leakage occurs after treatment assignment, its bias
is equivalent to a post-treatment bias (Pearl, 2015).

Treatment leakage leads to an identification chal-
lenge. The challenge is that W is both necessary
for adjusting (as it is a proxy) yet it is also a post-
treatment variable. Without treatment leakage, W
would not be a post-treatment variable, as it does
not harbour information about the treatment as-
signment. But because of leakage, scholars would
have to accept bias arising from either adjusting
on a post-treatment variable (arising from the part
of W influenced by the treatment) or bias arising
from not adjusting for unobserved confounding.
Although several methodological studies develop
and adapt causal-inference methods for text data
(Keith et al., 2020), almost no studies examine the
biasing influence of treatment leakage and how to
counter this bias.

Our work investigates the treatment-leakage
challenge. It shows that if W is the only available
text representing U and there exists a distillation
method, f , that has the ability to transform (e.g.
partition) W into its post-treatment WT and proxy
textual-components WU , then adjusting on WU is
the best one can do in identifying τ . As WU is
not post-treatment, we can adjust for it to reduce
the bias when estimating τ . These f functions can
represent a human annotator, identifying and re-
moving parts of text (e.g., words, sentences) that
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belong to WT and curating WU ; or, under addi-
tional assumptions, f can be based on supervised or
unsupervised machine learning models that trans-
form the text or its representation (Åkerström et al.,
2019; Feder et al., 2021).

In this paper, we define key assumptions and
demonstrate the mechanics of text distillation in a
simulated experiment. Using a language model, we
generate synthetic documents W so that they con-
tain information about the treatment assignment,
T , and the unobserved confounding, U , imprinted
paragraph by paragraph. Because we control which
paragraph is affected by T (injecting post-treatment
bias) or by U (infusing knowledge about the con-
founder), we have an oracle distillation function, f ,
that mimics human coding. This oracle method per-
fectly distills W , and supplies WU . Then, when
using WU in our causal model, we reduce bias
of τ̂ markedly. Although our oracle is idealized,
it deepens intuition, and in future work, we will
investigate the conditions under which automated
methods can be applied to obtain f .

By conceptualizing the problem of treatment
leakage in text data and investigating its impact,
scholars developing causal methods can be better
positioned to tailor their frameworks to reduce bias;
domain scholars can better calibrate their data col-
lection procedure to account for this leakage.

2 Treatment Leakage in Text Data

While the literature on dealing with confounding in
observational studies is established (Rubin, 1974),
recent advances have been made in the analysis
of text-based causal inference. Indeed, text W is
widely available in the health and social sciences
(Gentzkow et al., 2019; Kino et al., 2021), and can
be used to proxy for some confounders, U , that
would otherwise remain unobserved (Keith et al.,
2020). If the text only contains information about
U and no other factors, then W is a faithful repre-
sentation of U and we denote it as WU . However,
text, by its nature as a medium of creativity, rarely
has fixed boundaries, and can contain information
not only about confounders, but also leak informa-
tion about the treatment assignment and its effects.

The future- and backward-looking nature of text
can exacerbate treatment leakage. Documents that
often contain backward looking temporally (e.g.
in much of journalism) or has an unknown pro-
duction date, will like contain information about
the treatment and its effects. Using these docu-

ments directly for causal inference would inject
post-treatment bias. Conversely, documents that
reference the future (e.g., many public-policy docu-
ments in the economy and polity) may also lead to
unfavorable RMSE if they predict the future well
(see §2.1.2). As a result, a substantial amount of
real-world text containing rich information about
confounding factors might be affected by that lan-
guage can reference the future, post-treatment state.

2.1 Characterizing Treatment Leakage
We define treatment leakage as when the text, W ,
is affected by treatment status, T : that is, W is
conditionally dependent on T given U .

Treatment leakage: W 6⊥ T |U

The treatment leakage can take different forms. In
the most straightforward case, we can assume that a
portion WT is affected by T while another portion
WU is affected by U . However, in the general case
it may be difficult to partition the document into
treatment- and confounder-related passages, and
we should see T and U as latent factors controlling
the data-generating process. For instance, T may
affect the overall tone or sentiment of a document.

We can quantify the degree of treatment leakage
in different ways. If the text can be partitioned
into treatment- and confounder-related passages
WT and WU as described above, we can consider
the fraction |WT |

|W | to be a measure of the degree
of treatment leakage; this also assumes that each
partition carries strength equal to the number of its
elements (e.g., words) and each element has the
same strengths. In the general case, we may turn to
information-theoretical quantities, for instance the
conditional mutual information between W and T
given U .

In the following, we discuss a number of situa-
tions in which treatment leakage can occur.

2.1.1 Case 1: Text is Post-treatment
In one form of this phenomenon, there is a causal
relationship between the treatment status T and the
text. Figure 1, panel a., shows a directed acyclic
graph (DAG) representing this scenario where the
text affected by the treatment status. This sort
of treatment leakage induces post-treatment bias:
when the text is affected by the treatment, condi-
tioning on the text (which is a collider) opens the
path from T to Y through W and U , will in gen-
eral yield biased estimates (in the notation of Pearl
(2015), (Y 6⊥ T |W )GT

).
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Identification assumptions may also be hard to
maintain, with the treated/control units having dis-
tinct text features (e.g. if all treated units have as-
sociated texts referring to the treatment). This lack
of overlap would violate the identification assump-
tions of causal estimators such as Inverse Propen-
sity Score Weighting (IPW) (Heinrich et al., 2010),
and could lead to extreme estimated probabilities,
something we see empirically in Figure 3.

a.

X

U

T Y R

W b.

X

U

T Y R

WU

Figure 1: A causal model consisting of observed vari-
ables (shaded): confounders (X), treatment (T ), out-
come (Y ), document (W ), and unobserved variables
(unshaded): confounder (U ) and residual factors (R).
The red-colored edge in a. represents the treatment
leakage. In b., A distillation function f has removed
the treatment information in the text, leaving only infor-
mation from the confounder. A perfect intervention of
f is equivalent with deleting the red arrow; a less than
perfect intervention reduces at least its dependence.

2.1.2 Other Cases
Figure 1 shows a case when text is post-treatment,
but in other cases the precise DAG structure may
not be known. For example, text may represent a
mediator if the document includes post-treatment
information and also affected the outcome (if, for
example, the text is congressional speech and the
outcome is a roll call vote). If the proxy text is pre-
treatment and directly affects the treatment, condi-
tioning on the treatment-related portion of the text
could increase the variance of estimation, leading
to unfavorable RMSE (Myers et al., 2011).

3 Text Distillation as Preprocessing

Text distillation is a form of text preprocessing.
It has to target any text (e.g., tone, words, sen-
tences) that belongs to WT , and remove it from
W . Thus, distillation ensures that the treatment
signal is negated. As Figure 1, panel b. shows,
if distillation is perfectly successful, it results in
cutting the red arrow (from T to W ). The arrow is
cut, because the distillation function has removed
WT from W , supplying WU for causal analysis.

3.1 Assumptions for Valid Distillation
Depending on how the treatment leakage is mani-
fested in W , we need to introduce assumptions

to make distillation feasible. As already dis-
cussed in §2.1, in some cases we may assume that
W contains treatment-related passages WT and
confounder-related passages WU . We may further
assume that the text is separable: that is, WT and
WU do not overlap.

Separability Assumption: WU ∩WT = ∅

Assuming separability, a perfect distillator will
produce W ∗ = f(W ) that is equivalent to the
confounder-related portion of the text, WU . Perfect
distillation means that the distillator f identified
text that contains the same information about U as
WU has. Thus, if WU is a valid adjustment set,
then W ∗ is that as well. The separability assump-
tion is appealing because it implies that researchers
only need to find a valid partition of the text (and
do not need to consider all possible text transfor-
mations).

This separability assumption is particularly plau-
sible for text data, which by its nature consists of
a sequence of linguistic signifiers which can be
decomposed into smaller units (e.g. paragraphs).

While plausible for many circumstances, in
some cases separability may not hold, as when
the entire tone of the text is affected by the treat-
ment. In this more complicated setting, we need
a more general assumption, that the transformed
text, W ∗, is conditionally independent of T given
U . That is, the conditional mutual information
between W ∗ and T given U is zero, while infor-
mation about U in W ∗ is maintained. Despite
the benefits of this more general framing, because
U is unobserved, it may be difficult for investiga-
tors to assess whether the assumption is satisfied or
whether ethically problematic information has been
included in the f function (e.g., race; Menon and
Williamson (2018)). Unlike numerical data, as text
data is readable, scholars can examine and validate
whether W ∗ still contains information about T .

4 Experimental Setup

We use simulation to illustrate the dynamics of text
distillation and build on the framework for evaluat-
ing text-based causal inference methods introduced
by Wood-Doughty et al. (2021). We generate nu-
merical covariates from the model in Figure 1; the
general procedure is described in §A, with imple-
mentation details in §B. Parameters are selected
so that ATE estimates τ̂ are biased if the estimator
does not account for the unobserved confounder U .
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Following Wood-Doughty et al. (2021), we gen-
erate documents, W , by sampling from an English-
language GPT-2 model (Radford et al., 2019). In
contrast to their approach, text generation is condi-
tioned not only on U but also on T . As described
in detail in §A, we define paragraph-level topics,
where some topics are associated with U , some
with T , and some with a residual topic related only
to other background variables (R in Figure 1). For
a given paragraph topic, we define a number of
prompts and a distribution shift that increases the
probability of generating topic-related keywords.

As we simulate and record which paragraphs are
affected by T and by U , our distillator f has oracle
properties. We can then use f to investigate three
idealized distillation scenarios. The first is when a
distillator was not applied or the distillator failed
to do any distillation f(W ) = W . It outputs the
same corpus. The second is when it perfectly dis-
tills W , excluding all paragraphs affected by T .
That is, apply f(W ) = W ∗ such that W ∗ = WU .
The third scenario is when f was overly aggressive
and accidentally removed not only paragraphs re-
lated to T but also those related to U , resulting in
W ∗∗. This corpus violates the proxy-faithfulness
assumption that W ∗∗ fully measures U . Then, we
use the three corpora, one at a time, for causal in-
ference. We use an Inverse Propensity Weighting
(IPW) estimator, fully described in Appendix C.

5 Experiments and Results

Based on the setting described in §4, our analysis
produces six estimates, three based on distillation
and three based on facts about the data-generating
process. Figure 2 shows all estimates.

Adjusting with the true 

treatment propensity τ6 

Adjusting for confounder 

with distilled text τ5 

Adjusting for confounder 

with over−distilled text τ4 

Adjusting for confounder 

with non−distilled text τ3 

Unadjusting for true 

confounder τ2 

Adjusting for true 

confounder τ1 

−10 −5 0 5
Estimated treatment effect

Figure 2: Estimates under different distillation regimes.

The first estimate, τ̂1 = 5.5, is the baseline
where all information is known to the outcome
model, including U . Because this linear model
adjusting for U and X is equivalent to the data-

generating model, and the estimated effect would
be equal to the true value of 5 without sampling
noise. The bootstrapped 95% confidence interval
(CI) is 3.4 to 7.6. The second estimate, τ̂2 = -2.3,
is obtained when U is omitted from the model to
induce omitted variable bias (CI: -4.2, -0.1).

The third estimate, τ̂3, uses IPW to estimate the
ATE (see §C). Here, we use the non-disitilled doc-
uments, W , to estimate propensities. As Figure
2 shows, in the absence of distillation, the bias
increases compared to conditioning on X alone,
producing τ̂3 = −7.0 (CI: -9.4, -4.6). The fourth
estimate, τ̂4, applies overly aggressive distillation.
This approach gives a result similar to the unad-
justed estimate: τ̂4 = −2.9 (CI: -5.1, -0.6).

The fifth estimate, τ̂5, applies oracle distillation
by removing the paragraphs we know were affected
by T . Using W ∗, the bias is reduced substantially,
yielding an estimate τ̂5 = 3.5 (CI: 1.2, 5.8). As the
CI of this τ̂ includes the true τ = 5, we conclude
that distillation successfully recovers τ . However,
we note that this recovery is not perfect and will be
affected by sampling and modeling parameters.

The sixth estimate, τ̂6, demonstrates the impact
of model selection for the propensity estimator. Us-
ing the true (simulated) propensity, the IPW esti-
mate is τ̂6 = 4.9 (CI: 2.2, 7.6). This result shows
that further gains could be made by careful model
selection (Chernozhukov et al., 2018).

Figure 3 shows distributions of propensity values
for τ̂3, τ̂5, and τ̂6. Without distillation (red), the
estimated propensities cluster near 0 and 1. T is
predicted almost perfectly, as mentioned in §2.1.1,
causing the IPW estimate to to be similar to the
unweighted one. Conversely, with distillation, the
predicted probabilities are now similar to the data-
generating propensities, and thereby, the resulting
causal estimate is improved.
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Figure 3: Estimated and true assignment probabilities.

6 Discussion

This paper shows the critical role of the no-
treatment-leakage assumption when using text for
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causal inference. While text is becoming an estab-
lished data source, it may harbour valuable infor-
mation about a confounder but also contaminating
information about post-treatment effects. This is-
sue has seen little discussion in text-based causal
inference literature (Mozer et al., 2020; Roberts
et al., 2020; Feder et al., 2021; Daoud and Dub-
hashi, 2020), but has the potential to severely bias
causal estimates, potentially leading to false discov-
eries or invalid policy recommendations in social
and health settings (Kino et al., 2021; Daoud et al.,
2017; Balgi et al., 2022).

Before discussing the implication of treatment
leakage, three limitations should be considered.
First, more work is required to show how the no-
treatment-leakage assumption operates under dif-
ferent covariance structures (i.e., different data-
generating processes). Second, a larger simulation
framework is needed to decompose estimator bias
and variance. Third, all results are based on simu-
lated data, and more research is needed to general-
ize our insights to real data. Although simulate data
are idealized, they provide a benefit by allowing
us to analyze the mechanics of treatment leakage
and text distillation in a controlled environment.
Based on our simulated data, our analysis shows
that when the no-treatment-leakage assumption is
violated, effect estimates will be severely biased.
In the presence of treatment leakage, scholars may
be better off abstaining from using a non-distilled
text to adjust for confounding. Although, in theory,
the best solution is to use a text distillation that
removes all treatment leakage, in practice, using
distillation can be difficult to achieve.

Therefore, one critical extension of our work
is to develop methods that estimates the amount
of treatment leakage in text. This estimate will
enable applied researchers to make an informed
decision about whether to adjusting for text-based
confounding or abstain from it when leakage is
high, and when text distillation is not an option.

A second extensions is to develop a generalized
framework that accounts for when the adjusted text
represents multiple nodes in a DAG (in combina-
tion with the confounding and the treatment or with-
out them). While our article focuses on treatment
leakage, there are other types of leakage when a
single document is a function of combinations of
DAG nodes such as the outcome, confounder, treat-
ment, mediator, or instrument. Thus, a generaliza-
tion of the no-treatment-leakage assumption is the

no-node-leakage assumption. Such methods will
benefit from insights established in the literature
on causal inference with proxies (Peña, 2020; Van-
derWeele, 2019; Miao et al., 2018; Rissanen and
Marttinen, 2021). A third extension is to develop
a variety of text distillation methods, suitable for
different application settings. Researchers need al-
ternative frameworks when human partitioning of
text is not possible to achieve manually, because of
corpus size or language complexities. Automatic
distillation could be attempted with additional as-
sumptions, perhaps building from the literature on
removing sensitive information in text representa-
tions (Bolukbasi et al., 2016; Ravfogel et al., 2020).
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treatment Ti. For each paragraph j in the docu-
ment, we draw a paragraph topic Zij , depending
on the values of Ui and Ti, and then a prompt W 0

ij

depending on the value of Zij . Finally, we sample
from the GPT-2 language model1 to generate the
paragraph text Wij , starting from the prompt W 0

ij

and with a vocabulary distribution shift defined by
Zij . Algorithm 1 shows the pseudocode.

Algorithm 1 Generation of synthetic data.

for i ∈ 1, . . . , N
Xi ∼ fX
Ui ∼ fU
Ti ∼ Bernoulli(sigmoid(fT (Xi, Ui)))
Yi ∼ fY (Xi, Ui, Ti)
for j ∈ 1, . . . ,K

Zij ∼ Categorical(fZ(Ui, Ti))
W 0

ij ∼ Categorical(fW 0(Zij))

Wij ∼ LM(W 0
ij , Zij)

In the pseudocode above, the functions fX , fU ,
fT , and fY define the distributions of the observed
confounders, unobserved confounder, treatment
and outcome, respectively. On the paragraph level,
the function fZ defines a categorical distribution
over paragraph topics, and fW 0 a categorical distri-
bution over prompts.

Similarly to Wood-Doughty et al. (2021), we use
two mechanisms to condition the generation of a
paragraph on a topic Z: a prompt and a vocabulary
distribution shift. The distribution shift is designed
to promote a set of keywords related to the topic
and we implement it by multiplying the language
model probabilities by a topic-specific vector θZ
of scale factors:

P ′(w|context, Z) ∝ PLM(w|context) · θZ(w)

B Parameterization Used in §5

In §5, we generated N = 10,000 instances, each
consisting of numerical values and a document.
We used the following distributions to generate the
document-level variables: fX was a 3-dimensional
isotropic Gaussian; fU was an even coin toss; fT
was linear in Xi and Ui; fY was Gaussian with a
mean defined by a linear function of Xi, Ui, and
Ti and a fixed standard deviation.

Each document consisted of K = 20 paragraphs.
For the paragraph generation, we defined five dif-

1We used the implementation from the HuggingFace repos-
itory, https://huggingface.co/gpt2.

ferent topics: two corresponding to positive and
negative treatment values; two corresponding to
positive and negative values of the unobserved con-
founder; one general background topic that was
unrelated to U or T (but conceptually thought of
as controlled by other “residual” variables R). For
a document with given values of U and T , we set
the topic distribution fZ to select the U topic with
a probability of 0.2, the T topic with a probability
of 0.2, and the general topic with a probability of
0.6.

The generated texts were designed to simulate a
hypothetical use case where the researchers want
to investigate the effect of IMF programs on some
country-level indicator (cf. Daoud et al., 2019). The
treatment variable T represents the presence or
absence of an IMF program; the unseen confounder
U represents the political situation of the country
with respect to the IMF. For each topic except the
general topic, we define four different prompts:
for instance, for a positive treatment value, one
of the prompts was The International Monetary
Fund mandates the deregulation of [COUNTRY]’s
labor market. In the analysis, “[COUNTRY]” is
substituted by randomly sampled country names.

All topics except the general topic defined a
distribution shift used when generating from the
language model. We used 8 topic keywords for
each of these topics. For these keywords, the cor-
responding entries in the vocabulary distribution
shift vector log θZ were set to a value that defines
the strength of the effect of T on W ; for all other
words except these keywords, log θZ was 0. Since
our focus in this paper is on a clear-cut use case
where the effects are strong, we set the strength
parameter to a value of 4, which gives a noticeable
effect on the generated texts.

The text generation model was run on a single
GPU (NVIDIA GeForce GTX TITAN X). Gener-
ating the 10,000 documents took around 10 hours.
The generation of random text is within the in-
tended use of the GPT-2 model.

The implementation of the algorithm to generate
the synthetic data is available in our repository.2

C IPW Details

C.1 Background
The ATE is defined as τ = E[Yi(1)−Yi(0)], where
Yi(t) is the potential outcome for unit i under

2https://github.com/adeldaoud/
AIforTextandCausalInference

5644

https://huggingface.co/gpt2
https://github.com/adeldaoud/AIforTextandCausalInference
https://github.com/adeldaoud/AIforTextandCausalInference


treatment t. It can be identified in randomized
experiments (Rubin, 1974). However, the situa-
tion is more complicated in the observational set-
ting, where the treatment is not randomized to units
but could be correlated with confounders, Xi, that
are associated with the treatment and the outcome.
In that setting, we can, with additional assump-
tions, still recover the ATE using Inverse Propensity
Weighting (IPW) or related robust methods (Funk
et al., 2011), where observations are weighted by
the inverse of their estimated treatment probabil-
ities π̂(Xi) = P̂r(Ti = 1|Xi) (Rosenbaum and
Rubin, 1983): τ̂ = 1

n

∑n
i=1

{
TiYi
π̂(Xi)

− (1−Ti)Yi

1−π̂(Xi)

}
.

C.2 Estimation
ATE estimates based on Inverse Propensity Weight-
ing (see §C.1) require the estimation of the propen-
sity scores, P̂r(T |X,W ). To estimate these
scores, we applied a L1-regularized logistic re-
gression model using the glmnet package in R.
The regularization strength (λ) was set automati-
cally via 10-fold cross-validation. When estimating
propensities, we represented the (non-distilled or
distilled) document as an L2-normalized TF-IDF
vector using the 256 most frequent terms in the
vocabulary, while the numerical covariates X were
standardized.
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