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Abstract
Seq2seq language generation models that are
trained offline with multiple domains in a se-
quential fashion often suffer from catastrophic
forgetting. Lifelong learning has been pro-
posed to handle this problem. However, exist-
ing work such as experience replay or elas-
tic weighted consolidation requires incremen-
tal memory space. In this work, we propose an
innovative framework, RMR_DSE that lever-
ages a recall optimization mechanism to selec-
tively memorize important parameters of pre-
vious tasks via regularization, and uses a do-
main drift estimation algorithm to compensate
for the drift between different domains in the
embedding space. These designs enable the
model to be trained on the current task while
keeping the memory of previous tasks, and
avoid much additional data storage. Further-
more, RMR_DSE can be combined with ex-
isting lifelong learning approaches. Our exper-
iments on two seq2seq language generation
tasks, paraphrase and dialog response genera-
tion, show that RMR_DSE outperforms state-
of-the-art models by a considerable margin
and greatly reduces forgetting.

1 Introduction

Seq2seq language generation is the essential frame-
work for many tasks such as machine translation,
summarization, paraphrase, question answering, di-
alog response generation. In these applications,
models are typically trained offline using anno-
tated data from a fixed set of domains. However,
in real-world applications, it is desirable for the
system to expand its knowledge to new domains
and functionalities, that is, it has the capability of
human-like lifelong learning (LLL) (Ring et al.,
1994; Chaudhry et al., 2019) of acquiring new utter-
ance patterns without forgetting what it has already
learned. Neural networks struggle to learn continu-
ously and experience catastrophic forgetting (CF)
when optimized on a sequence of learning prob-
lems (McCloskey and Cohen, 1989; French, 1999).

Some past work in LLL has demonstrated that dis-
criminative models can be incrementally learnt for
a sequence of tasks (Kirkpatrick et al., 2017; Chen
et al., 2020; Wang et al., 2019). In contrast, under
generative settings there has been limited research.
Recent work in this area includes (Mi et al., 2020;
Madotto et al., 2020; He et al., 2021; Shin et al.,
2017).

Existing work in LLL adopts the replay based
methods (Pellegrini et al., 2019), such as Latent
Replay, or regularization based methods (Huszár,
2018; Li and Hoiem, 2018), such as Elastic Weight
Consolidation (EWC) (Kirkpatrick et al., 2017),
Synaptic Intelligence (Zenke et al., 2017). Al-
though they can reduce CF, they have some limi-
tations. The replay-based methods require storing
samples from previous tasks, and regularization
methods often view all the model parameters as
equally important and regularize them to the same
extent. In addition, those approaches do not explic-
itly address the data distribution shift that causes
the CF problem. The semantic gap between the
embedding spaces of two domains is a leading rea-
son of CF (Wang et al., 2021b). As illustrated in
Figure 1, each data point and their cluster centers
trained in Task 1 are shifted after training for Task
2. Yu et al. (2020) proposed to compensate this
gap without using any exemplars via domain shift.
However, that study focused on classification tasks.

In this work, we propose a novel method, regu-
larized memory recall mechanism with additional
domain shift estimation (RMR_DSE), to allevi-
ate CF in continuous seq2seq language gener-
ation. The first RMR component improves the
regularization-based method through adaptive reg-
ularization. We convert fisher information matrix
deployed in EWC to a tunable hyperparameter con-
strained by a vocabulary-related hyperparameter.
Further, we add a regularizer derived from the gra-
dients of the generative function to tune model
parameters. The second DSE component compen-
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Figure 1: Illustration of Domain Shift: (a) Data with three
relevant topic/cluster in the embedding space after model
trained on task 1. (b) Data with previous topics in the
embedding space after the model trained on task 2, the arrow
indicates the domain shift between two tasks, which is what
our DSE aims to estimate.

sates the representation difference from the two
domains by estimating the semantic gap between
them. We obtain embeddings for the current task’s
data using the previous and current models, and
group embeddings from previous models into clus-
ters. Semantic shifts are computed for each cluster,
and then used during inference time on previous
test data to adjust its semantic representation to
match the current model.

Our main contributions are:

• We design a new regularized algorithm to con-
sider parameters for the previous tasks while
training for the current task for LLL seq2seq
generation.

• We propose to estimate domain shifts in the
embedding space of consecutive models via
prototypical representations, thus alleviating
the need for data storage.

• Our experiments on seq2seq generation bench-
mark datasets show that our model achieves
state-of-the-art results in current task learn-
ing and reduces forgetting rates for previous
tasks.

2 Related Work

2.1 Life Long Learning (LLL)
Life long learning has been studied from a few
perspectives, including data buffering, regulariza-
tion and prototype keeping. Replay based methods
can be used in data buffering or prototype keeping.
They usually keep a small amount of real sam-
ples from old tasks or distill the knowledge from
old data and recreate pseduo-data of old tasks for
later training. Using these sampled data or pseudo
data can prevent weights from deviating from pre-
vious status (Rolnick et al., 2019; Wang et al.,

2020; Lopez-Paz and Ranzato, 2017). The main
idea of this approach is to assign a dedicated ca-
pacity inside a model for each task. After a task
is completed, the weights are frozen as one proto-
type (Wang et al., 2021b; d’Autume et al., 2019;
Wang et al., 2021a). Both data buffering and pro-
totype keeping need storage of either data sam-
ples or model weights, i.e., they require extra mem-
ory to memorize important information of previous
tasks. Another LLL method is regularization based,
which adds a regularization term to weights when
learning them for a new task in order to minimize
deviation from previously trained weights. Most
regularization based methods estimate the impor-
tance of each parameter and add them as a con-
straint to the loss function. Different algorithms
have been designed to achieve this. For example,
elastic weight consolidation (EWC) calculates a
Fisher information matrix to estimate the sensitivity
of parameters (Kirkpatrick et al., 2017); memory
aware synapses (MAS) (Aljundi et al., 2018) uses
the gradients of the model outputs; and episodic
memory or gradient episodic memory (GEM) (Li
et al., 2017; Lopez-Paz and Ranzato, 2017) allows
positive backward transfer and prevents the loss
on past tasks from increasing. These methods all
attempt to slow down the learning of parameters
that are important for previous tasks.

2.2 LLL in Seq2seq Language Generation

In Seq2seq language generation, not much work
has been done in LLL. The most relevant work
is from (Mi et al., 2020) where a framework of
sequential learning is designed for task-oriented
dialogs. Specifically, they replay prioritized ex-
emplars together with an adaptive regularization
technique based on EWC. They store representa-
tive utterances from previous data (exemplars), and
replay them to the Seq2seq language generation
model each time it needs to be trained on new data.
They achieved good results on the MultiWOZ-2.0
dataset. However, their work needs to store data
from previous tasks, and thus may not be scalable
to large data environments. In addition, their sys-
tem is specifically designed for the MultiWOZ task
and lacks generalization to other tasks. In contrast,
our proposed RMR_DSE method aims to fit dif-
ferent seq2seq language generation applications,
therefore it is easy to be integrated to tasks such
as summarization, translation, paraphrases, dialog
response generation.
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Figure 2: Overview of RMR_DSE for LLL Seq2seq Language Generation. Figure best viewed in color.

3 Proposed Method

In this section, we introduce our proposed frame-
work RMR_DSE, as illustrated in Figure 2. In the
LLL scenario, models are trained for a sequence of
domains (or tasks). For the first task, the model can
be trained from scratch or using pretrained models.
Starting from the second model, parameters are ini-
tialized with the previous model. Our RMR_DSE
method is a combination of regularization and do-
main shift estimation (DSE). For the first part, we
incorporate the mechanism of EWC to obtain a
regularized memory recall mechanism (RMR) to
optimize model training. For the second DSE part,
we design an algorithm to integrate both K-means
and mean shift. A shift of embedding representa-
tions is estimated using the previous and current
models, and it is compensated to reduce forgetting
when we evaluate the current model on test data
from the previous domain. Although RMR_DSE is
a generic mechanism, we evaluate on two seq2seq
language generation tasks in this work. The under-
lying models in seq2seq language generation can
be any models, including transformers, LSTM or
variational auto-encoders. The following describes
the RMR and DSE components in details.

3.1 Adaptive Regularization of Memory
Recall

Although elastic weights consolidation (EWC) is
generic enough to fit all tasks, it regularizes all the
parameters to the same extent. In order to differenti-
ate parameter importance, we propose an improved
EWC, the regularized memory recall (RMR) mech-

anism, where the training objective is:

Losst = λ(τ)Lt(θ) + (1− λ(τ))γF
∑

ij

Πij(θij − θ∗ij)2

(1)

where Lt(θ) is the loss for the current task. In our
generation task, we use standard label smooth cross
entropy.

In the regularization part, θ∗ represents the pa-
rameters from earlier models, e.g., that learned
from task t− 1:

θ∗ = arg min
θ
{− log p(θ|Dt−1)} (2)

θ is for the current model, and indexes i and j are
used to represent connections between pairs of neu-
rons ni and nj in two consecutive layers. Adding
the regularization term using the differences be-
tween the two models is expected to memorize
important old parameters while updating values of
current parameters.

In EWC, F is the diagonal element of the Fisher
Information Matrix. It measures the importance of
θ after being updated with the set of data points in
the current task to previous tasks. However, in our
work, we suppose that we do not have access to data
of previous tasks. Therefore, we cannot compute
fine-grained values based on data, and thus convert
F to a tunable hyperparameter without dependency
on data from the previous task. It is used to penalize
the quadratic function (θij − θ∗ij)

2.
In order to make the parameters in a reasonable

range, we add a hyperparameter γ to help tune F .
For simplicity, the value of γ is determined by the
ratio of the vocabulary size of the current corpus
and the previous ones.

γ = γbase
√
V1:t−1/Vt (3)
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Furthermore, to control the learning between the
loss for the current task and the regularization term,
we add λ(τ), a sigmoid annealing function:

λ(τ) =
1

1 + exp(−k) ∗ (τ − τ0)
(4)

where k and τ0 are hyperparameters controlling the
annealing rate and timesteps, and τ refers to the
update timesteps during fine-tuning.

Finally similar to MAS (Aljundi et al., 2018),
to model the varying importance of individual pa-
rameters and the changes of model parameters, we
integrate Π for fine-grained regularization:

Πij =
1

N

N∑

n=1

||gij(xn)||2 (5)

where gij(xn) = ∂(G(xn;θ))
∂θij

is the gradient of the
learned generative function (such as transformers,
LSTM or VAE) with respect to parameter θij evalu-
ated at the data point xn of the current task. Parame-
ters with small importance weights can be changed
to minimize the loss for subsequent tasks while
parameters with large weights are kept unchanged.

3.2 Deploying Domain Shift Estimation to
Make Up Semantic Drift

It has been shown in previous studies (Yu et al.,
2020; Wang et al., 2021b) that catastrophic forget-
ting is mainly due to the domain shift in the em-
bedding space after the model is updated on new
domains. When testing on previous domains, the
embeddings derived from the model trained using
new domains are suboptimal and lead to perfor-
mance degradation. Hence, in addition to regular-
izing the model during training as described in the
section above (RMR regularization), we propose
to deploy domain shift estimation (DSE) to com-
pensate the embedding drift to further reduce the
forgetting.

Note that in our life long learning scenario, we
do not rely on the data previously used for model
training in new domains, but do have access to
the trained model from the previous task. We thus
approximate DSE with gaps between embedding
representations of the current data based on both
modelt−1 and modelt, using the following steps.

First, for a data point i in the current training
task t, its representation shift is:

δt−1−>t
i = zti − zt−1

i (6)

where zti and zt−1
i refer to the embedding of point

i based on modelt and modelt−1 respectively. In

the seq2seq language tasks, these are the encoder
outputs.

Second, we deploy unsupervised clustering
methods to identify some centers and mean shift
(Anand et al., 2013) for the embeddings using
modelt−1. Specifically, with K-means, we find K
embedding centers, each of them represented as
µt−1
k . Then, around each center, we find some num-

ber of samples to compute mean shift (we use 3k
in our experiments).

The mean shift Mh(x) for each data point of
each cluster is defined as:

Mh(x) =

∑n
i G(xi−x

hi
)w(xi)(xi − x)

∑n
i G(xi−x

hi
)w(xi)

(7)

where G = e
||xi−x||

2h2 is the Gaussian kernel, h is the
bandwidth, xi is the data belonging to the cluster
containing x, and n is the number of data points in
each cluster.

Finally for each cluster, we compute a domain
shift vector as: ∆t−1−>t

dsek
.

∆t−1−>t
dsek

=

∑
i Mh(xi))δ

t−1−>t
i∑

i Mh(xi)
(8)

where the summarization is performed over all the
data points belonging to cluster k.

We use K such vectors as a domain shift esti-
mate between the models trained for two different
domains. When evaluating on a previous domain
using the model trained for a new domain, for a test
data point we first calculate the similarity between
its embedding (etdt−1

) encoded by modelt and the
stored cluster centers, and then the corresponding
domain shift vector for that cluster is subtracted
from etdt−1

before the generation decoding step. If
we have multiple tasks (m for example), we can
perform a series of subtractions, i.e.,

etdt−m = etdt−m − ∆t−m−>t−m+1
dsek

− ∆t−m+1−>t−m+2
dsek

− ...− ∆t−1−>t
dsek

Algorithm 1 describes the domain shift esti-
mation of RMR_DSE. We have input of embed-
dings encoded by modelt−1 and modelt. Firstly,
KMeans is employed to obtain K embedding cen-
ters for the training data (we obtained best results
when K = 3 in our experiments). Also, since
KMeans is sensitive to the initialization of cen-
ter points, we have to run multiple rounds (about
5 rounds in our experiments) before we can ob-
tain the best ones. FAISS, the fast KNN-based em-
bedding search tool is utilized to search relevant
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Algorithm 1: Domain Shift Estimation
Input: embeddings of training data of task t encoded

by modelt−1 and modelt, given function
shift_point, Euclidean_dist, σ

Output: Estimated domain shift ∆dse

1 Deploy KMeans to find out K embedding centers
among embeddings of training data of task t
encodeded by modelt−1

2 Deploy FAISS search to find M samples, neighbor
close to each embedding center

3 δt−1−>t = neighboremb_new − neighboremb_old
4 max_min_dist = 1
5 mean_shift_points=[]
6 while max_min_dist < MIN_DISTANCE do
7 max_min_dist→ 0
8 // compute mean shift vector
9 for i = 1→ m do

10 if not need_shift[i] then
11 continue

12 p_new = mean_shift_points[i]
13 p_new_start = p_new
14 p_new = shift_point(p_new,

neighboremb_old, σ)
15 dist = euclidean_dist(p_new, p_new_start)
16 if dist > MAX_MIN_DIST then
17 MAX_MIN_DIST = dist

18 if dist < MIN_DIST then
19 need_shift = True

20 mean_shift_points[i] = p_new

21 ∆t−1−>t
dse =

∑
(mean_shift_points×δt−1−>t)∑

(mean_shift_points)

22 return ∆t−1−>t
dse

Table 1: Dataset stats for paraphrase generation task (number
of sentence paraphrase pairs).

Quora Twitter Wiki_Data total
train 111,947 85,970 78,392 276,309
valid 8,000 1,000 8,154 17,154
test 37,316 3,000 9,324 49,640

samples for each embedding center. In the while
loop, we implement mean shift method to estimate
whether each sample needs a mean shift against
their closest embedding center. We finally obtain a
list of mean shift points and their values. Those val-
ues are used as weights to be multiplied to the dif-
ference between embeddings from modelt−1 and
modelt. In the inference stage, we select ∆t−1−>t

dse

based on the closeness of input test sentences to
the embeddings.

4 Experiments on Paraphrase
Generation

To test RMR_DSE’s generalization, we apply it
to two datasets that both follow the seq2seq gen-
eration setup but are quite different tasks. In this
section, we focus on the paraphrase generation task.

Figure 3: Results of Meteor scores of QTW setting when
evaluating on the current task.

4.1 Experimental Setups

For paraphrase generation, we use three existing
paraphrase datasets, Quora, Twitter and Wiki_data,
in a sequential fashion, that is, the model is first
trained on the Quora data, then Twitter, then
Wiki_data. We name this experimental setting as
QTW. Statistics of the data are provided in Table 1.

We use a current SOTA generation model, BART,
as the seq2seq backbone in our LLL framework
and the other compared methods. We compare our
approach with the following baselines.

• Finetune: for each task, each model is initial-
ized with the model obtained until the last
task, and then fine-tuned with the data of the
current task.

• Full: we train a model with all the three data
sets together.

• EWC: the model is trained with the base EWC
model on the data from the current task with
the initialization of the previous model.

For our proposed RMR_DSE, we also evaluate
different configurations including MR, RMR, and
DSE only for an ablation study. The details of pa-
rameters implementations are given in Appendix.

For evaluation metrics, we use BLEU-4,
ROUGE-L and METEOR for the generation task.
Because of space limit, we only report bar figures
with METEOR scores and leave tables with full
scores in the Appendix. To measure the forgetting
rates of different methods, we apply models trained
using new data to past data.
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Figure 4: Results of Meteor scores of QTW setting while
evaluating on previous datasets.

4.2 Results

Evaluating on the Current Task
For QTW setting, Figure 3 shows results when

models are evaluated on the data corresponding
to the current task. Note that since DSE is only
applicable when models are evaluated on the past
data, we do not use DSE in this experiment. From
left to right are domains for Quora, Twitter and
Wik_data respectively.

Each of the domains has 8 results. The first three
bars are results from independent models, that is,
the BART models are trained on only one of the
datasets in QTW. As expected, models trained on
the matched domain achieve higher performance
than otherwise. And there is a large performance
drop when using models trained from mismatched
domains. This is mostly because of the different
writing styles of the three datasets. Wik_data is the
most formal one, and Twitter is the most informal
one.

In the fourth bar, the BART model is trained in
finetune mode, i.e., in QTW order, the model is
initialized with that trained in the previous domain
and fine tuned using the subsequent domain. We
can see that results on both Twitter and Wik_data
test data are slightly lower than those when models
are trained directly on the corresponding training
data. Again, this suggests pretraining the model
with mismatched data is not beneficial. The results
from the EWC baseline are not consistently bet-
ter than the finetune method, showing the limited
effectiveness of EWC regularization. In contrast,
our proposed approaches obtain better results than
Finetune. Even for the first task, Quora, we observe
around 1% better results. This demonstrates that

even for pretrained models, regularization shows
positive effects. For the later tasks, there is about 3-
4% performance increase on Twitter data and 7-9%
for Wik_data. This shows the effectiveness of both
MR and RMR. In addition, six out of nine results
from RMR win about 1% over MR. This shows
that further regularization with quadratic penalty
has positive impact on selection of important pa-
rameters. The last bar is the results of Full. Since
the model has seen all the data, it is not surprising
that results for both Twitter and Wik_data are better
than our models, and it may be partly because of
some similarity in Quora and Wik_data.

Evaluating on Previous Tasks
Figure 4 shows the results when models trained

on new domains are evaluated on data from past do-
mains. Since we only report results of QTW setting
in the main page, they are presented for evaluating
on Quora and Twitter data. For the Quora test set,
we show results after training with Twitter data, and
then subsequently Wik_data. The first bar of each
domain is the result of the BART model trained on
only the corresponding data. The second bar uses
the baseline fine tuning fashion. We show results
using our proposed method, RMR_DSE, and its
individual components, MR, RMR, and DSE. Each
of them yields much better results than the fine-
tune or EWC baselines, with much less drop rates.
On all the datasets, we can see the incremental im-
provement from MR to RMR and to RMR_DSE.
This shows each module can reduce forget rates. In
addition, after the model is trained on Wik_data,
forgetting rates for Quora Test (the first dataset)
are even lower than the model trained on Twitter.
This again indicates Wik_data and Quora are more
similar in style than Twitter.

4.3 Case Studies

In Table 2, we show some generated samples from
QTW setting using the baseline BART model and
our RMR_DSE model. All examples are results
generated by modelt on datat−1. Among the five
examples, the first one is from Quora, the last one
from Wiki data and the other three from Twitter.
The reason that we select more samples from Twit-
ter is that we find Twitter is the most informal in
style with quite many fragments. Hence, it is the
hardest for the generation task and has lowest gen-
eration performance and forgetting reduction rates.
In the four samples, the italicised parts are the key
words. From the table, we can observe that com-
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pared to BART, RMR_DSE has better performances
on all of the three datasets. The BART model misses
all of them except drilling. In contrast RMR_DSE
succeeds in all cases without forgetting the previ-
ously learned patterns.

5 Experiments on Dialog Response
Generation

5.1 Task Definition

In task oriented dialogs, recent neural generation
methods use seq2seq setup for response genera-
tion given the dialog act of the target response. A
dialog act is defined as the combination of intent
I and a set of slot-value pairs S(d) = (si, vi)

p
i=1,

where p is the number of slot-value pairs. Intent
I refers to the utterance functionality, while slot-
value pairs contain messages to express. For exam-
ple, given input “Recommend (Addr=regent stree,
Fee=free, Name=Downing College)", the system
is expected to generate the response, “[Downing
College] is my favorite. It is located on [regent
street] and it’s [Free] to get in" and the slot type
“[Slot-Hotel-Area]". Slot values are composed of
domain and relevant attributes (details are in (Eric
et al., 2019)).

5.2 Experimental Settings

We evaluate our model on response generation
using the MultiWoZ-2.0 dataset (Budzianowski
et al., 2018). It contains six domains (Attraction,
Hotel, Restaurant, Booking, Taxi and Train) and
seven DA intents (“Inform, Request, Select, Rec-
ommend, Book, Offer-Booked, No-Offer"). Fol-
lowing the setting in (Mi et al., 2020), the original
train/validation/test splits of MultiWoZ are used.
The detailed stats of the datasets are in Table 3.

We used the implementation in (Mi et al., 2020)
and compare RMR_DSE to their proposed ARPER,
an exemplar-replay based method. Since RMR is a
generic regularized algorithm, it can be integrated
to any framework by replacing either the optimizer
or revising the loss function. Our comparisons to
ARPER are made from two aspects: with and with-
out exemplars.

For evaluation metrics, slot error rate (SER) and
Bleu4 are used. Again, we only report bar figures
with SER scores in the main pages while leaving
full scores in the Appendix.

We also report metrics for two settings in LLL

following (Mi et al., 2020):

Ωall =
1

T

T∑

i=1

Ωall,i Ωfirst =
1

T

T∑

i=1

Ωfirst,i

where T is the total number of LLL tasks; Ωall,i

is the average test performance on all the previous
tasks after the ith task has been learned; Ωfirst,i

is performance on the first task after the ith task
has been learned. The former measures the test
accuracy of all of the test data for tasks seen to
the ith point while the latter is about the model’s
retention of the first task.

5.3 Baseline Methods
Following (Mi et al., 2020), two Seq2seq lan-
guage generation models, conditional variational
encoder (CVAE) and semantic conditioned LSTM
(SCLSTM) are used as the generation models. We
evaluate the following LLL settings:

• Finetune: This is finetuning the model trained
from the previous domain using data for the
current domain.

• Full: This is using the data from all the do-
mains.

• ARPER: We run ARPER following the setting
of the original paper (Mi et al., 2020).

• EWC: ARPER without exemplars is EWC.

5.4 Experimental Results
We make two comparisons with (Mi et al., 2020)
based on exemplar numbers. The first one is when
RMR_DSE and ARPER do not use exemplars. The
reason for this comparison is that one of advantages
of RMR_DSE is that it does not need extra storage
to recover previous tasks. In addition, ARPER is
equivalent to using EWC when no exemplars are
used.

Figure 5 and Figure 6 show the results using dif-
ferent methods, where the red (CVAE) and blue
(SCLSTM) bars are results of RMR_DSE, and the
yellow (CVAE) and green (SCLSTM) bars are
those of ARPER. We can see RMR_DSE obtains
lower SER (higher Bleu4 as well, see appendix)
results than ARPER in most cases. Table 4 shows
that without exemplars, ARPER obtain even poorer
results than Finetune while RMR_DSE achieves
significantly better results than ARPER and Fine-
tune in both Ωall and Ωfirst. Regarding the two
seq2seq models, SCLSTM and CVAE, there are
some different patterns when using RMR_DSE.
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Table 2: Examples of the generated paraphrases by BART and RMR_DSE on QTW data setting.

SOURCE BART RMR_DSE TARGET

Why is German Shepherd/Great
Pyrenees mix coveted
among breeders?

Why is German Shepherd/Great
Pyrenees mix coveted
from browns?

Why is German Shepherd/Great
Pyrenees mix coveted
among breeders?

Why is German Shepherd/Great
Pyrenees mix coveted
among breeders?

eyeing trump, Obama
takes new action to
ban arctic drilling

president Obama takes new action
to ban drilling

Obama takes new action
to ban arctic drilling

please save the earth mr. president .
Obama takes new action to ban
arctic drilling

death toll in 6.5 -
magnitude earthquake in
indonesia’s aceh province
increase to at least 52

a 6.5 earthquake in kills
at least 26 people @cnn

death toll in 6.5 -
magnitude earthquake
in aceh province increase to at least 52

powerfull quake kills dozens
at least 25 people were
killed in an earthquake
that struck indonesia’s aceh province

pipeline 150 miles from
dakota access protests
leaks gallons of oil

the new york times pipeline
150 miles from dakota
access pipeline .

pipeline 150 miles from dakota
access leaks gallons of oil

of oil, or gallons, have
leaked from the pipeline

described by many critics
as more about " exploring
the meaning of human life " or "
the hollow existence of the American
western suburbs " , the feature film
itself has explicitly defied
categorization by even
the anonymous filmakers

Described by many critics
as more about the meaning
of human life " or " the existence of
the American suburbs " , the
film has explicitly defied
categorization by
the anonymous filmmakers .

described by many critics as more
about " exploring the meaning of
human life " or " the hollow existence
of the American suburbs " , the
film itself has explicitly defied
categorization by even the
anonymous filmmakers .

Described by many as about "
the meaning of life " or " the
hollow existence
the American suburbs " , the film
has defied categorization
by even the filmmakers .

Table 3: Stats for full MultiWoZ-2.0 Dataset.

Domain Stats of MultiWoZ-2.0 data

domain Attraction Hotel Restaurant Booking Taxi Train
total 8,823 10,918 10,997 8,154 3,535 13,326

Intent Stats of MultiWoZ-2.0 data

Intents total Involved Domains
Inform 28,700 Attraction, Hotel, Restaurant, Taxi, Booking
Request 7,621 Attraction, Hotel, Restaurant, Taxi, Booking
Select 865 Attraction, Hotel, Restaurant, Taxi
Recommend 3,678 Attraction, Hotel, Restaurant, Taxi
Book 4,525 Booking, Taxi
Offer-Booked 2,099 Train
No-Offer 1,703 Attraction, Hotel, Restaurant, Taxi

Table 4: Average performance of continually learning
6 domains on MultiWoZ-2.0 with zero exemplars.

Ωall Ωfirst

Methods SER bleu4 SER bleu4
Finetune 64.46 36.1 107.27 25.3

ARPER on CVAE 63.54 36.00 102.87 19.22
ARPER on SCLSTM 66.87 35.64 100.56 21.09
RMR_DSE on CVAE 51.92 39.49 68.56 25.67

RMR_DSE on SCLSTM 48.79 39.86 57.18 30.32

The second comparison is made by using 250 ex-
emplars, the same setting for ARPER as described
in (Mi et al., 2020). In this setting, we also incre-
mentally deploy MR_DSE and RMR_DSE in both
CVAE and SCLSTM. In (Mi et al., 2020), using
250 exemplars for computing Fisher information
matrix boosted the performances to a large degree.
For equal comparison, Fisher information matrix
is also utilized in MR_DSE and RMR_DSE in the

Figure 5: Slot error rate (SER) results for Ωall when zero
exemplar is used for all the methods. CVAE RMR_DSE and
SCLSTM RMR_DSE obtained lower SER than CVAE
ARPER and SCLSTM ARPER respectively.

computation of the loss function. Yet, we do not
use it when updating the parameter importance.
As shown in Table 5, MR_DSE and RMR_DSE
achieve better results than ARPER in all metrics
for both CVAE and SCLSTM models when we use
250 exemplars. We can also see that consistent with
the results in the QTW setting, RMR_DSE always
outperforms MR_DSE. These results illustrate the
advantage of RMR_DSE over ARPER through the
entire continual learning process.

Two additional observations can be summarized
here. The first is that the results with exemplars ob-
tain better Ωfirst than Ωall. This is consistent with
the original paper and may indicate diverse tasks
increase the difficulty of handling all the tasks. The
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Figure 6: Slot error rate (SER) results for Ωfirst when zero
exemplar is used for all the methods. CVAE RMR_DSE and
SCLSTM RMR_DSE obtained lower SER than CVAE
ARPER and SCLSTM ARPER respectively.

Table 5: Average performance of continually learning 6
domains on MultiWoZ-2.0 with 250 exemplars. Best
performance excluding “Full" are in bold in each column.

Ωall Ωfirst

Methods SER bleu4 SER bleu4
ARPER on CVAE 5.24 58.3 2.97 62.1

ARPER on SCLSTM 5.97 56.7 3.59 61.3
MR_DSE on CVAE 4.68 59.8 2.81 62.7

MR_DSE on SCLSTM 4.95 59.9 2.60 63.2
RMR_DSE on CVAE 4.52 59.8 2.02 63.5

RMR_DSE on SCLSTM 4.38 60.3 2.12 63.6
Full 4.26 59.9 3.60 61.6

second is that if we compare both Table 4 and Ta-
ble 5, we can find that AEPER severely relies on
exemplars while RMR_DSE does not. This suffi-
ciently showcases RMR_DSE functions with less
need of data storage.

6 Discussions

In this section, we provide some additional analy-
ses and observations of this work. First, we take a
closer look at the domain shift estimation (DSE)
and why and how it works. Also, we will see
what problems the current DSE framework has and
whether we can make improvements on it. In Fig-
ure 7 we present three groups of embedding drifts
to illustrate the intuitions behind the model. The
ones on the left part are the TSNEs (the first two
dimensions) of 10,000 embeddings generated with
Quora model on Twitter data (upper) and with Twit-
ter model on Twitter data (lower). In the middle are
those of 10,000 embeddings generated with Twitter
models on Wiki data (upper) and with Wiki model
on Wiki data (lower). The right part are still the

Figure 7: upper left: Embedding generated with Quora
Model on Twitter data of 10000 samples. Lower left:
Embedding generated with Twitter Model initialized with
Quora model on Twitter data of 10000 samples. Upper
middle: Embedding with Twitter Model on Wiki data. Lower
middle: Embedding with Wiki Model initialized with Twitter
model on Wiki data. Upper right: Embedding with Twitter
Model on Wiki data. Lower right: Embedding with Wiki
Model initialized with Twitter model on Wiki data.

Wiki data, but the number is only 3,000. We can
see clear density differences between embeddings
generated by older models (upper) and newer mod-
els (lower) although their value ranges are quite
similar. Hence, our meanshift algorithm can make
up such differences. However, the value range sim-
ilarity also partly explains why DSE does not play
a big role in the performance improvements.

This may give us some hints that the embedding
learning may need improvements. Right now, we
only deploy label smooth cross entropy loss in our
whole framework. This loss function focuses more
on the label differences (vocabulary distribution
in natural language generation work). A natural
extension is the addition of deep contrastive learn-
ing loss. Further, current DSE cares more about
the sentence embeddings. However, the decoder
in our framework uses beam search on token lev-
els. Hence, algorithms considering both sentence
and token level’s distribution should help the shift
estimation.

7 Conclusion

In this work, we introduce RMR_DSE, a generic
LLL framework for addressing forgetting in
seq2seq language generation learning. Our exper-
imental results have shown that it outperformed
state-of-the-art method by a large margin in two
neural seq2seq language generation tasks, para-
phrase generation and dialog response generation.
Future work includes applying RMR_DSE to di-
verse generation tasks and generation network
structures.
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A Appendix

A.1 Domain Order Permutation
Due to page limit, we put tables with detailed eval-
uations (both on current data, see Table 6 and on
previous datasets, see Table 7), including bleu4,
rougeL, meteors on QTW settings in appendix. In
the main page, we only show figures of meteor
metrics. From Table 6, we can see that RMR_DSE
takes the lead in almost all metrics in three tasks.
Similarly, from Table 7, we can see that RMR_DSE
has less forgetting rates than all other models as
well.

Besides QTW setting, we also had run other two
combinations including TQW and QWT setting.
The results are basically consistent with QTW set-
ting and can reach similar conclusion. The detail
results are in Table 8 and Table 9.

A.2 Metrics Details
Throughout the paper, we use those evaluation met-
rics that have been widely used in the previous
work to measure the quality of the paraphrases.
In general, BLEU measures how much the words
(and/or n-grams) in the machine generated sum-
maries appeared in the human reference summaries.
Rouge measures how much the words (and/or n-
grams) in the human reference summaries appeared
in the machine generated summaries. Specifically,
we use the library1 from HuggingFace to compute
BLEU scores and py-rouge2 to compute ROUGE
scores. As BLEU and ROUGE could not measure
the diversity between the generated and the original
sentences, we follow unsupervised paraphrasing
methods and adopt meteor to measure the diversity
of expression in the generated paraphrases by pe-
nalizing copying words from input sentences. The
introduction of Slot error rate, Ωall and Ωfirst can
be seen in the data setting of MultiWoz2.

A.3 Bleu4 scores for MultiWoZ-2.0 dataset
Due to page limit, we put figures of Bleu4 for
MultiWoZ-2.0 with zero exemplars in appendix
as well. From all experiments, we can see that
RMR_DSE achieves consistently better results than
ARPER. Without doubt, ARPER is a strong base-
line. Its adaptive EWC enables ARPER to update
parameters discriminatively. However, RMR_DSE
can update parameters more differentially with its
memory aware penalty mechanisms.

1https://huggingface.co/metrics/sacrebleu
2https://pypi.org/project/py-rouge/

Figure 8: Results for Bleu4 of Ωall when zero exemplar is
used for all different methods. CVAE RMR_DSE and
SCLSTM RMR_DSE obtained higher Bleu4 than CVAE
ARPER and SCLSTM ARPER respectively.

Figure 9: Results for Bleu4 of Ωfirst when zero exemplar is
used for all different methods. CVAE RMR_DSE and
SCLSTM RMR_DSE obtained higher Bleu4 than CVAE
ARPER and SCLSTM ARPER respectively.

A.4 Packages Used for Implementation

The relevant packages that we use in the im-
plementation and their corresponding versions
are as following: python==3.6.6, fairseq==1.0,
torch==1.4.0, cuda==10.2, tensorboard==1.10.0,
numpy==1.14.5, scipy==1.1.0, NLTK==3.4.5 and
scikit-learn==0.21.3.

A.5 Parameter Update Analysis of
RMR_DSE on Different Network
Structures

In our experiments, we apply RMR_DSE to dif-
ferent network structures, involving BART, CVAE
and SCLSTM. Therefore, we need to set up quite
different values for their hyperparameters as shown
in Table 10. Specifically, four hyperparameters, in-
cluding update frequency (updatefreq,how often
to update Π), regularization coefficient regλ (the
proportion of Π), anneal weights ( annealw,how
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Table 6: Results of model evaluations on QTW setting

Quora Test Twitter Test Wiki Test
Models BLEU-4 ROUGE-L METEOR BLEU-4 ROUGE-L METEOR BLEU-4 ROUGE-L METEOR
Quora-trained 36.98 58.19 60.76 2.12 6.13 5.49 4.51 11.21 12.13
Twitter-trained 3.18 11.46 9.01 36.47 47.49 45.57 4.60 9.76 7.50
Wiki_data-trained 22.38 43.44 46.23 9.32 17.93 21.03 48.03 69.70 67.43
Finetune 36.98 58.19 60.76 35.79 46.46 45.93 46.87 68.98 67.02
EWC 36.89 58.16 59.98 35.52 47.14 46.16 48.15 69.53 68.59
MR 37.98 59.19 61.11 36.98 49.39 48.02 53.93 74.49 74.53
RMR 38.46 59.48 61.14 38.94 51.23 47.12 54.12 74.98 75.13
Full 37.99 59.33 61.04 39.53 51.33 47.64 55.93 76.56 76.41

Table 7: Results of all the methods when testing new models on previous domains.

Quora test with Model trained with Twitter
Models BLEU-4 ROUGE-L METEOR
Quora-trained 36.98 58.19 60.76
Finetune 20.77 30.80 41.75
EWC 21.63 31.53 42.03
DSE 21.58 31.95 42.98
MR 25.47 35.88 45.27
RMR 26.97 36.39 47.26
RMR_DSE 27.74 36.98 48.38

Quora test with Model trained with Wiki_data
Models BLEU-4 ROUGE-L METEOR
Quora-trained 36.98 58.19 60.76
Finetune 22.83 42.16 42.03
EWC 24.63 44.35 43.02
DSE 23.79 43.49 43.35
MR 28.44 47.37 55.43
RMR 29.72 49.15 57.15
RMR_DSE 30.71 49.43 57.99

Twitter test with Model trained with Wiki_data
Models BLEU-4 ROUGE-L METEOR
Twitter-based 36.47 47.49 45.57
Finetune 19.99 37.20 41.57
EWC 18.84 38.65 43.33
DSE 20.78 40.0 42.75
MR 21.92 38.69 44.36
RMR 24.15 42.11 45.59
RMR_DSE 26.73 43.85 46.23

Table 8: Results of model evaluations with TQW setting

Twitter Test Quora Test Wiki Test
Models bleu4 rougeL meteor bleu4 rougeL meteor bleu4 rougeL meteor
Finetune 36.47 47.49 45.57 34.32 55.63 58.93 44.94 67.87 66.15
EWC 36.55 48.32 46.73 34.37 54.32 59.31 48.72 68.21 69.14
MR_DSE 36.95 48.87 47.24 36.83 57.45 60.78 53.24 72.64 72.93
RMR_DSE 37.26 49.33 48.58 36.90 58.86 61.33 54.53 73.25 73.50
Full 39.53 51.33 47.64 36.81 58.39 60.70 55.93 76.56 76.41

Table 9: Results of model evaluations with QWT setting

Quora Test Wiki Test Twitter Test
Models bleu4 rougeL meteor bleu4 rougeL meteor bleu4 rougeL meteor
Finetune 35.93 56.32 59.23 45.12 53.23 67.78 36.82 47.99 46.45
EWC 35.85 55.64 59.95 49.14 67.99 69.85 36.96 47.45 46.94
MR_DSE 35.53 58.47 60.59 54.32 73.92 72.37 37.08 48.43 47.91
RMR_DSE 35.61 59.38 61.58 53.87 74.63 73.13 37.58 50.36 47.52
Full 36.81 58.39 60.70 55.93 76.56 76.41 39.53 51.33 47.64
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Table 10: setting for prime hyperparameters

hyperparameter BART CVAE SCLSTM
updatefreq 2 2 2

regλ 0.9 0.1 0.01
annealw 0.1 0.01 0.05

pretraincof 5000 500 50

much we take parameter differences into consid-
eration) and pretrain coefficient (pretraincof , the
quadratic penalty derived from fisher information
matrix, namely Π), are the most important ones.

For all of them, it looks the update frequency
for Π can be once every two epochs. However, the
other three are remarkably different. It seems to
show that more complex network structures need
higher penalty coefficients. Further, the value of Π
seems quite related to the complexity of network
structure. The three models need 5000, 500 and 50
respectively since BART has more complex net-
work structure than CVAE and CVAE more com-
plex than SCLSTM.
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