
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 4523 - 4540

July 10-15, 2022 ©2022 Association for Computational Linguistics

Disentangling Categorization in Multi-agent Emergent Communication
Washington Garcia
University of Florida
Gainesville, FL, USA
w.garcia@ufl.edu

Hamilton Scott Clouse
ACT3, Air Force Research Laboratory

Wright-Patterson AFB, OH, USA
hamilton.clouse.1@afrl.af.mil

Kevin R.B. Butler
University of Florida
Gainesville, FL, USA
butler@ufl.edu

Abstract

The emergence of language between artificial
agents is a recent focus of computational lin-
guistics, as it offers a synthetic substrate for rea-
soning about human language evolution. From
the perspective of cognitive science, sophis-
ticated categorization in humans is thought
to enable reasoning about novel observations,
and thus compose old information to describe
new phenomena. Unfortunately, the literature
to date has not managed to isolate the effect
of categorization power in artificial agents on
their inter-communication ability, particularly
on novel, unseen objects. In this work, we pro-
pose the use of disentangled representations
from representation learning to quantify the
categorization power of agents, enabling a dif-
ferential analysis between combinations of het-
erogeneous systems, e.g., pairs of agents which
learn to communicate despite mismatched con-
cept realization. Through this approach, we
observe that agent heterogeneity can cut signal-
ing accuracy by up to 40%, despite encouraging
compositionality in the artificial language. We
conclude that the reasoning process of agents
plays a key role in their communication, with
unexpected benefits arising from their mixing,
such as better language compositionality.

1 Introduction

A recent interest in the design of multi-agent sys-
tems is the unsupervised emergence of complex
behaviors (Havrylov and Titov, 2017). Rather than
completely supervising agents to perform a map-
ping betweem inputs and outputs, it is observed
that with enough capacity and bandwidth, agents
eventually learn to produce emergent properties
for their own benefit, e.g., the creation of artificial
language to solve a task more efficiently (Resnick
et al., 2020; Lee et al., 2018; Chaabouni et al.,
2019). With carefully designed constraints, the
agents may eventually produce a proto-language
that mimics the complex properties of human lan-
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Figure 1: Approximating categorization ability in agents
through disentangled representations (denoted z′), gen-
erated by either (a) prototypical parts network (ProtoP-
Net) (Chen et al., 2019), where each dimension is the
input’s activation of a prototypical part previously seen
by the agent, or (b) concept whitening (CW) (Chen
et al., 2020), where each dimension corresponds to a
previously-observed data category.

guages, such as compositionality and basic inter-
pretability (Kottur et al., 2017).

Despite recent progress, previous works have not
investigated inter-agent communication in the con-
text of abstract categorization, an ability that allows
humans to represent new observations by recalling
previous experiential knowledge of abstract con-
cepts or classes (Hofstadter, 2007; Gentner, 2010).
Abstract categorization in the human brain can be
attributed to a combination of recognition and re-
call of episodic memory, although identifying the
exact mechanism remains an open problem (Tul-
ving, 2002). Due to the power and flexibility of
categorization, theories of human intelligence often
place categorical reasoning at the center of human
cognition, e.g., the notion of analogical symbolic
categorization by Gentner (2010), or categorization
through situated templates, i.e., frames (and corre-
sponding frame-systems) by Minsky (1988). In the
study of artificial multi-agent systems, we propose
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to operationalize the notion of categorization, and
subsequent ability to reason over new observations,
through the use of disentangled neural networks as
alternate image encoders in agents. Disentangled
neural networks are a suitable choice since they
can leverage a fixed number (k) of pre-defined or
self-learned concepts to build representations of
the observable environment. As illustrated in Fig-
ure 1, disentangled agents extract meaning from
an observation by leveraging their past experiential
knowledge, which is analogous to categorical rea-
soning in theories of human intelligence (Minsky,
1988; Gentner, 2010).

Due to the subjectivity of experiential knowl-
edge, a natural consequence of the categorical rea-
soning theory is that two human minds may be
heterogeneous, i.e., they do not share the same
internal categorization of a situation or object. Nat-
ural language serves to mediate these cognitive
differences, thus enabling the communication of
ideas (Chandler, 2007). Under our synthetic ana-
logue of communicating multi-agent systems, how
well can heterogeneous agents mediate their dif-
ferences in categorization ability through the use
of emergent language? In this paper, we offer a
differential analysis of agents leveraging heteroge-
neous techniques for abstract categorization, taking
full advantage of disentangled representations as a
computational analogue for categorical reasoning.
Contrary to the scenario of different internal rep-
resentations (Chaabouni et al., 2020), our agents
can possess either different or identical means of
categorical abstraction, which influences the course
of their language evolution, e.g., improving com-
positionality or signaling success of the final proto-
language. Our analysis offers a substrate to an-
swer four main research questions about hetero-
geneous multi-agent communication, revealing sub-
sequent findings as a result:

Q1. What is gained or lost with agent heterogene-
ity? A1: We find that heterogeneity is at odds
with signaling performance. Despite this, het-
erogeneous systems exhibit better potential
survival through higher compositionality.

Q2. Does categorization power and heterogene-
ity affect signaling ability on novel objects?
A2: Simpler disentangled agents with poor
performance in supervised tasks can outper-
form all other agents on novel objects by up
to 9% on signaling accuracy. In some cases,

mismatched agents manage to improve com-
positionality score.

Q3. Can disentangled representations directly in-
form agent utterances? A3: Through our
proposed Latent Self-attention (LSA) mod-
ule, incorporating the disentangled representa-
tion into agent utterances can encourage input-
message alignment and improve signaling ac-
curacy by up to 27%.

Q4. Does increased categorization ability imply
better communication? A4: Agents with com-
plex concept realization are potentially poor
receivers, despite a successful upstream clas-
sification task. Signaling can be performed up
to 33% better with “simpler”, i.e., smaller k,
agents.

To encourage reproducibility, we share the code
for our experiments online.1

2 Background

2.1 Multi-agent Referential Games
We model the commonly-used Lewis signaling
game from cognitive science (Lewis, 1969; Skyrms
and Press, 2010). A sender agent S is shown a
target object, and must describe that object to a
receiver agent R using a combination of discrete
tokens from a fixed vocabulary V . R then sig-
nals the object out of a set of candidate objects
(called the candidate set). Our setup is based
on that of Lazaridou et al. (2018), who investi-
gated emergent language with the same game. The
sender S and receiver R each use their own en-
coder (e.g., image CNNs) fS and fR to encode
any pre-linguistic object o into an initial dense rep-
resentation z0. The encoder is parameterized by
agent-specific weights θ·f , e.g., fS (o, θSf ) = z0,
where S denotes the sender. Since the receiver pro-
cesses the candidate set, which consists of multiple
pre-linguistic objects, the receiver’s dense repre-
sentations form a matrix denoted Z. Given V and
z0, the message is obtained by sampling tokens at
each time step t from a recurrent policy defined as
gS (zt−1, θ

S
g ) = mt. The decoding process ends

as soon as an end-of-sequence token or maximum
length L is reached. In practice, the recurrent de-
coder is implemented as a recurrent neural network
(RNN). The receiver’s only input from the sender

1https://github.com/FICS/
disentangling_categorization
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Figure 2: Whole-system perspective of our approach. (Top - Original) Traditional Sender-Receiver architecture
for playing the Lewis Signaling game, with entangled deep networks as encoders fS and fR. (Bottom - Ours)
Proposed approach which leverages disentangled networks to instantiate fS or fR (denoted by latent dimension
colors matching candidate set colors), and our new Latent Self-Attention (LSA) module for senders, which enforces
alignment between utterances (yellow rectangles) and the disentangled structure over time steps.

is message m, which is encoded using encoder hR

at each time step as hR(mt, θ
R
h ) = ht. Similar to

Lazaridou et al. (2018), the receiver predicts the po-
sition of the described object within the candidate
set as argmax(Zht). The agents are successful dur-
ing a round of the signaling game if the receiver
correctly predicts the index of the target object at
the final time-step. The typical whole-system per-
spective of this game is shown in the top method
(Original) of Figure 2.

2.2 Learning

We must jointly optimize sender and receiver policy
weights Θ := {θSg , θRh }, such that they minimize
a game cost function L, i.e., minΘ L. However,
no weights are shared between sender and receiver
during the game, since each agent has a uniquely
instantiated encoder, and the sender can only trans-
mit discrete signals to the receiver during the game.
As a result the gradient of the game cost function
is not defined, so it is common to rely on gradient
estimation algorithms such as REINFORCE (Schul-
man et al., 2015) or continuous relaxations of the
discrete channel, such as the Gumbel-Softmax es-
timator (Havrylov and Titov, 2017). We use the
straight-through Gumbel-Softmax estimator due to
its functional flexibility and performance improve-
ment compared to REINFORCE at test time.

2.3 Disentangled Representations

A common technique is to employ intermediate
feature representations of CNNs as the encoder
function f ·. The purpose of the encoder function is
to approximate a mapping function from raw image
space to a dense representation z ∈ Rd. In general,
this representation is a point in lower-dimensional
latent space that adequately describes useful con-
ceptual priors of the data. From the perspective
of model interpretability, it is expected that points
closer together in latent space correspond to im-
age samples which are conceptually similar, and
likewise, dimensions in the latent space correspond
to human understandable concepts (Rudin et al.,
2022). However, it was shown that traditional CNN
architectures learn latent representations which
may not achieve concept separation (Chen et al.,
2020), and in fact can activate dimensions for con-
cepts that are completely unrelated (Zhou et al.,
2015, 2018). Thus several methods have been
proposed in order to disentangle the latent repre-
sentation of deep networks into k categories or
concepts. In this work, we propose to leverage
two such methods, shown in Figure 1, in order
to analyze the effect of categorization power in
multi-agent communication: (a) Prototypical Parts
Network (ProtoPNet) by Chen et al. (2019), which
recalls prototypical parts of previously-observed
images to describe the current one, and (b) Con-
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cept Whitening (CW) by Chen et al. (2020), which
allocates an observed data class to each of the k
dimensions in z′.

3 Methodology

In order to answer the research questions in Sec-
tion 1, we implement agents which can play a
Lewis Signaling game (described in Section 2.1) us-
ing disentangled neural networks, e.g., Prototypical
Parts Network (ProtoPNet) by Chen et al. (2019)
and Concept Whitening (CW) by Chen et al. (2020).
ProtoPNet is trained through unsupervised disen-
tanglement, where given a pre-defined number of
concepts per class (totaling k over all classes), it ex-
tracts prototypical image patches representing each
concept. Concept Whitening instead aligns orthog-
onal directions in the encoded input’s latent space
with k pre-defined (supervised) concepts through
training. In practice, CW can only align a subset of
the pre-existing latent space dimensions, leaving
the rest of the dimensions to handle residual infor-
mation. To avoid ambiguity, we denote a sample
from this aligned subspace as z′ ∈ Rk. Since Pro-
toPNet learns a new latent space, it can be said to
align the entire latent space to extracted concepts,
thus z′ = z. In either case, we use the latent vector
z as the initial input to the sender agent’s decoder,
gS . The whole-system perspective of this approach
is shown in Figure 2, where the bottom case (Ours)
corresponds to the use of disentangled networks,
compared to a traditional approach above (Origi-
nal). We can manipulate which agents are paired
(e.g., ProtoPNet talking to CW) in order to simulate
scenarios where two agents have different categori-
cal reasoning. Likewise, we can model categoriza-
tion power by increasing or decreasing the number
of realized concepts k in disentangled agents. This
enables the study of incongruous agents to answer
Q1, Q2, and Q4.

3.1 Latent Self-attention (LSA)

Unfortunately, in order to synthesize the discrete
message and eventually communicate with the re-
ceiver, the sender’s disentangled representation
must recurrently pass through the decoder gS ,
which defines a different (entangled) latent space.
This could mean the grounding to the original dis-
entangled space is lost, since traditional RNN de-
coding is not aware of the encoder’s concepts, thus
we propose a module named Latent Self-Attention
(LSA), inspired by the design of multi-head atten-

tion in transformer networks (Vaswani et al., 2017).
We treat the aligned latent dimensions from z′ as
units that align one-to-one with the vocabulary log-
its of each time step, which can be weighted by
a combination of aligned concepts. This mech-
anism is illustrated in the bottom method (Ours)
of Figure 2, distinguished by the dashed rectan-
gle. In order to satisfy the one-to-one alignment,
we assume that (1) for the aligned representation
z′ ∈ Rk, |V| = k, and (2) agents communicate
with fixed message length L (due to discarding
end-of-sequence token).

More formally, consider the recurrent output
zt ∈ Rd from the sender decoder at time t. At
each time step, the recurrent output is projected
to dimension |V| = k using a fully-connected net-
work, of which the output is treated as logits over
vocabulary space (yellow rectangles), and is simply
denoted vt. During the training process, the sender
agent learns an L-head matrix M ∈ Rk×(L·k) (pur-
ple rectangle). which is softmaxed row-wise to ob-
tain a weighting function over k concepts for each
time step. The weighting of concepts is applied as
z′ TM and reshaped to form matrix M ′ ∈ RL×k.
During decoding, the t-th row of M ′ is element-
wise multiplied with vt. Through this mechanism,
we can experimentally validate Q3 from Section 1.
In our experiments, the receiver is implemented the
same as previous works (shown as Original in Fig-
ure 2) (Lazaridou et al., 2017). To experimentally
isolate the effect of the LSA module, we leave the
receiver as-is, treating the disentangled networks
as a drop-in selection for fR. Incorporating the
aligned vector z′ into the pointing module is left
for future work.

3.2 Metrics

We adopt standard metrics from the literature to
quantify our study of Q1-Q4, and propose one new
variant named disentangled similarity.

Receiver Accuracy (Recv. Acc.). A standard
metric in the study of referential games is the com-
munication success rate, i.e., the receiver’s effec-
tive signaling accuracy on objects from a held-out
test set (Skyrms and Press, 2010; Lazaridou et al.,
2017). The metric is defined as Recv. Acc. =

#correct target objects
#total target objects shown .

Compositionality (Top.Sim.) A common con-
cern in the study of language emergence is com-
positionality of the proto-language, which can be
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described informally as the tendency to re-use vo-
cabulary to describe similar objects (Brighton and
Kirby, 2006; Chaabouni et al., 2020). Brighton and
Kirby (2006) operationalized the measure of lan-
guage compositionality with topographic similar-
ity (Top.Sim.), the Spearman correlation between
pairwise input distances and their corresponding
pairwise message distances. We compute pairwise
cosine distances between latent vectors z (inputs),
and use edit distance to compute pairwise distance
between messages. The reported Top.Sim. value is
the Spearman correlation of distances (and where
available, the associated p-value is reported).

Disentangled Similarity (Dis.Sim.) Since CW
only aligns a subset of the latent space dimensions,
it is possible that Top.Sim. will describe correlation
to unaligned dimensions. Thus we complement the
calculation of Top.Sim. with a new metric, disen-
tangled similarity (Dis.Sim.), which only uses the
aligned dimensions to calculate the pairwise input
distances. In practice, this is implemented by calcu-
lating pairwise cosine distances over z′ instead of
z. Consequently, the reported values for ProtoPNet
will be equal to Top.Sim., since in that case z = z′.

4 Experiments

Preliminaries. To address Q1-Q4, we investigate
mixed/same-encoder variants of multi-agent sys-
tems. Pairs of agents play the Lewis signaling
game over five random seeds. Each agent in a
two-player game is instantiated with distinct image
encoder checkpoints, thus requiring ten image en-
coder checkpoints total for each variant (with each
checkpoint using a different seed). In all reported
results of the main text, we compare against fine-
tuned ResNet-50 encoders (denoted ConvNet) as
baselines (He et al., 2016), and subsequently use
them as the base models for training ProtoPNet
and CW variants. We offer supplemental results
for VGG-16 (Simonyan and Zisserman, 2015) and
DenseNet-161 (Huang et al., 2017) variants in Ap-
pendix A.4.1. With ResNet-50 as the base archi-
tecture, each disentangled variant has a similar pa-
rameter count on the order of 24M (reported in Ap-
pendix Table 12), thus any performance difference
due to parameter count is negligible. We source pre-
linguistic objects from two benchmark image data
sources: 10-class subsets of Caltech-UCSD CUB-
200 (Wah et al., 2011) (denoted CUB10) and the en-
tire few-shot mini-ImageNet dataset (Vinyals et al.,
2016). For mini-ImageNet experiments, we train

agents using the 64-class meta-training split, and
report communication success rate (Recv. Acc.)
on the meta-test set. For CUB10, we uniform ran-
domly sample ten classes for each random seed,
ensuring sender and receiver encoders are trained
using the same subset. Our communicating agents
are derived from those implemented in the publicly-
available EGG framework (Kharitonov et al., 2019).
We only employ our proposed LSA module for Q3
results, as it is not salient to Q1, Q2, and Q4. De-
tails of training and hyper-parameters are given in
Appendices A.1 and A.2, respectively.

Heterogeneous multi-agent systems (Q1): To
examine the effect of heterogeneous multi-agent
systems, we train nine permutations of mixed/same-
encoder systems over five random seeds on CUB10
data (45 permutations total), setting k = 100 for
ProtoPNet (default value from Chen et al. (2019))
and k = 10 for CW (using CUB10 classes as con-
cept classes). In Figure 3, we initially compare
the communication success rate (y-axis) over train-
ing epochs (x-axis), with each sub-figure corre-
sponding to a fixed sender encoder architecture.
The results exhibit a tendency for same-encoder
systems to outperform their heterogeneous coun-
terparts. This trend is evidenced by ConvNet-
ConvNet systems in Figure 3a (red line) and
ProtoPNet-ProtoPNet systems in Figure 3b (red
line). CW models generally under-performed as
receivers in Figure 3a-b, scoring 47.978± 14.325
and 42.001± 5.203 receiver accuracy, respectively.
In terms of disentangled categorization power, Pro-
toPNet is the strongest with k = 100 and up to
93% accuracy on the CUB10 classification task
(compared to 78% of CW).2

In Table 1 we report Top. Sim. and Dis. Sim.
measures for systems from Figure 3 at the best
epoch on the test set (according to Recv. Acc.).
Although CW models generally under-performed
in Figure 3, they score the best compositionality
(0.405) paired with ConvNet receivers. This is fol-
lowed by ConvNet senders (top three rows), with
0.316–0.363 Top.Sim. score. CW-ConvNet scored
the highest Dis. Sim. score despite having a Recv.
Acc. of 48.939± 22.226, aligning with Chaabouni
et al. (2020), who found that compositionality does
not necessarily emerge from generalization pres-
sure. Based on Figure 3 and Table 3, we conclude:

2We provide encoder accuracy scores from the upstream
classification task in Appendix Table 12.
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Figure 3: Comparison of communication success rate on CUB10 testing data for permutations of a) ConvNet
senders, b) ProtoPNet senders, and c) CW senders. Shaded regions denote standard deviation over five random
seeds (each swapping in a new CUB10 test split, sender encoder checkpoint, and receiver encoder checkpoint), with
L = 10.

Sf Rf Top. Sim. Dis. Sim.

ConvNet ConvNet 0.360±0.104 -
ConvNet CW 0.363±0.130 -
ConvNet ProtoPNet 0.316±0.056 -

ProtoPNet ProtoPNet 0.349±0.114 0.349±0.114

ProtoPNet CW 0.224±0.092 0.224±0.092

ProtoPNet ConvNet 0.209±0.043 0.209±0.043

CW CW 0.238±0.047 0.305±0.010

CW ConvNet 0.405±0.057 0.415±0.052

CW ProtoPNet 0.287±0.064 0.298±0.092

Table 1: Language compositionality under different
ResNet-50 encoder variants f for sender and receiver
on CUB10 test set (higher is better). All measures were
statistically significant with p ≤ 1−97.

A1: Heterogeneous systems appear to under-
perform compared to same-encoder (e.g., homo-
geneous) systems, although the former can exhibit
higher compositionality in the emerged language.

Categorization power on novel objects (Q2):
To better understand the description of novel
objects, in Figure 4 we repeat the previous
Q1 experiment by swapping CUB10 for mini-
ImageNet, whose test set consists of object
classes not seen during training. We observe a
similar trend that aligns with A1, except CW-
CW outperforms other methods, at best scor-
ing 85.585 ± 5.476 signaling accuracy com-
pared to ConvNet-ConvNet (76.586± 6.400) and
ProtoPNet-ProtoPNet (67.542± 3.001) despite re-
alizing the least amount of concepts (k = 10)
compared to ProtoPNet (k = 100). In some in-
stances, e.g., ConvNet-ProtoPNet, the mismatched
system can match the ConvNet-ConvNet perfor-
mance within 3% accuracy.

In Table 2, we capture Top.Sim. and Dis.Sim.

Sf Rf Top. Sim. Dis. Sim.

ConvNet ConvNet 0.254±0.054 -
ConvNet ProtoPNet 0.323±0.039 -
ConvNet CW 0.181±0.028 -

ProtoPNet ProtoPNet 0.395±0.097 0.395±0.097

ProtoPNet ConvNet 0.357±0.215 0.357±0.215

ProtoPNet CW 0.450±0.012 0.450±0.012

CW CW 0.380±0.071 0.162±0.134

CW ProtoPNet 0.335±0.056 0.052±0.035

CW ConvNet 0.259±0.078 0.131±0.012

Table 2: Language compositionality under different
encoder functions f for sender and receiver on mini-
ImageNet test set (higher is better) . All measures were
statistically significant with p ≈ 0.

measures for mini-ImageNet. Despite only reach-
ing a signaling accuracy of 33.328 ± 19.324, the
highest Top.Sim. and Dis.Sim. scores (0.450) are
realized by mismatched ProtoPNet-CW, thus com-
positionality was able to emerge despite the ab-
sence of generalization ability, as originally re-
ported by Chaabouni et al. (2020). CW-CW
and ProtoPNet-ProtoPNet scored similarly, ob-
taining 85.585 ± 5.476 and 67.542 ± 3.001 best
epoch signaling accuracy, respectively. The best
mixed-encoder system in Figure 4 was ConvNet-
ProtoPNet (74.929± 3.079 accuracy), with a sim-
ilarly high topographic similarity. We thus con-
clude:

A2: Heterogeneous systems evidence lower sig-
naling performance compared to same-encoder
baselines on novel objects, although the former
are capable of improving the language composi-
tionality. Holistically, disentangled networks either
matched or outperformed the ConvNet baselines.
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Figure 4: Comparison of communication success rate on mini-ImageNet few-shot testing data for permutations of a)
ConvNet senders, b) ProtoPNet senders, and c) CW senders. Shaded regions denote standard deviation over five
random seeds (each swapping in new sender encoder and receiver encoder checkpoints), with L = 10. Agents in
this experiment have never seen the testing objects before.

Sender Arch. Top. Sim. Dis. Sim. Recv. Acc.

ProtoPNet
z′ Utterance

0.523
±0.006

0.523
±0.006

81.625
±1.031

ProtoPNet 0.362
±0.078

0.362
±0.078

80.343
±0.681

ProtoPNet+LSA 0.383
±0.033

0.383
±0.033

81.496
±1.665

ConvNet 0.391
±0.055

- 86.753
±0.651

Table 3: Comparison of LSA module, 1-Length utter-
ance baseline, and normal RNNs on CUB10 testing data
using ProtoPNet disentangled structure to weight the
vocabulary (|V | = 10).

Informing design (Q3): Tables 3 and 4 exam-
ine the aggregate effect on CUB10 test data after
integrating concept-aligned latent vectors into the
agent utterance, using our LSA module described
in Section 3.1. We report statistics using each sys-
tem’s best signaling checkpoint. Since |V | = k, for
ease of comparison we set |V | = k = 10 for both
ProtoPNet and CW, and constrain all agents to com-
municate with fixed message lengths L = 10. In
addition to the normal variants, we compare against
a baseline which uses the latent vector z′ directly
as the vocabulary logits to produce a single utter-
ance, establishing the potential usefulness of the
disentangled vector for communication. In the case
of ProtoPNet in Table 3, we observe that the LSA
variant is competitive with the ConvNet baseline,
and slightly improves over the regular ProtoPNet
baseline. In fact, the 1-Length baseline was suffi-
cient for generalization (81.625± 1.031 signaling
accuracy). In Table 4 for CW models, we observe
that the LSA module had significant impact, in-
creasing signaling accuracy from 52.523± 17.600

to 79.859 ± 2.417. Notably, the 1-Length utter-
ance was scored 75.670 ± 1.820, indicating that
the learned concepts were more useful than the
proto-language created by the regular CW variant.
Despite this, the result with CW+LSA evidences
that incorporating both sources of information is
beneficial for signaling performance.

Apart from incorporating new information into
the sender’s message decoding process, our pro-
posed LSA module may enable better diversity in
the agent utterances. Recall from Section 3.1 that
the disentangled representation is linearly recom-
bined and multiplied with message logits at each
time-step, thus we posit that the LSA module en-
courages agents to use vocabulary that is otherwise
ignored, which may explain the higher topographic
similarity scores observed in Tables 3 and 4. We
study this idea for CW in Figure 5 (and ProtoPNet
in Appendix A.5.1) by taking the top-performing
multi-agent system for ConvNet (top row), CW
(middle row), and CW+LSA (bottom row). Each
inset heat map is the activated vocabulary usage
(x-axis) across input data classes (y-axis) in the
CUB10 test set at a given time step for each figure
column (i.e., columns t = 0 to t = 10), with the
cumulative sum over time displayed in the right-
most column. We quantify the vocabulary usage
by calculating normalized area (A) of shaded heat-
map pixels, shown below each cumulative matrix.
ConvNet and CW variants (top and middle row,
respectively) evidence a tendency to re-use vocabu-
lary at each time-step and do not explore different
combinations of vocabulary across time steps. LSA
variants (bottom row) instead have a higher distri-
bution of vocabulary across time, which can be
seen qualitatively by comparing early time-steps to
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Figure 5: Heat-maps of the best-performing agent’s vocabulary usage across time and data classes over the entire
CUB10 test set for CW (|V | = k = 10), where agents communicate for ten time-steps (with end-of-sentence
symbol ‘0’ at the final time-step). The final column shows the cumulative sum over all time steps, subtitled by the
normalized area of non-zero cells.

Sender Arch. Top. Sim. Dis. Sim. Recv. Acc.

CW
z′ Utterance

0.325
±0.031

0.503
±0.006

75.670
±1.820

CW 0.278
±0.079

0.339
±0.044

52.523
±17.600

CW+LSA 0.266
±0.087

0.439
±0.076

79.859
±2.417

ConvNet 0.391
±0.055

- 86.753
±0.651

Table 4: Comparison of LSA module, 1-Length utter-
ance baseline, and normal RNNs on CUB10 testing data
using CW disentangled representation to weight the vo-
cabulary (|V | = 10).

later time-steps. For example, the CW+LSA vari-
ant (bottom row) uses the vocabulary space [6, 10)
across classes early in the message, whereas this
space is less used in later parts of the message (e.g.,
compare space [6, 10) at t = 2 against t = 9). No-
tably, this space-swapping behavior can be seen in
the ConvNet variant (top row), which causes higher
cumulative area than the regular CW variant (mid-
dle row). In this analysis, CW+LSA obtains the
highest cumulative area, so it can be said that this
variant leverages the most tokens in the vocabu-
lary, which may help explain the high disentangled
similarity (0.439) in Table 4. We thus conclude:

A3: Incorporating the aligned subspace informa-
tion into the vocabulary logits can have substantial
impact on disentangled agents, remaining compet-
itive with the non-disentangled ConvNet baseline
accuracy, and improving or matching concept align-
ment (Dis. Sim.) compared to the baseline CW or
ProtoPNet variant.

Categorization power and communication (Q4):
Throughout the evaluation, we have compared
against ProtoPNet (k = 100) and CW (k = 10).
To better isolate the concept realization implied
by k, we train ProtoPNet encoders for k values
in {1, 10, 100}, then play signaling games with
mixed ProtoPNet variations (denoting each as Sk

or Rk) using fixed message length L = 10. We
report the communication success rate over epochs
in Figure 6, where each sub-figure is a fixed Sk.
For Sk = 10 in Figure 6a, it is capable of gener-
alization when paired with Rk ∈ {10, 100}, and
suffers with Rk = 1000. Although Rk = 1000
under-performs in each case (Figures 6a-c), we
observe that ProtoPNet encoders with k = 1000
have sufficient generalization in the upstream clas-
sification task, scoring at least 91% accuracy on
CUB10 (we report all upstream scores in Appendix
Table 13). This finding is nuanced by considering
additional model architectures, such as DenseNet-
161 in Appendix Section A.4.1, which shows that
the complexity penalty observed in Figures 6a-c is
mitigated by using the larger DenseNet-161 archi-
tecture (illustrated in Appendix Figure 10). Thus
certain model architectures have unexpected ben-
efits when deploying more complicated sender/re-
ceiver pairs. We thus conclude:

A4: Better concept realization does not always
equate to better reception, despite performance on
an upstream task such as classification. Otherwise,
mixed-k agents have a tendency to generalize simi-
larly, despite differences in the number of concepts.
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Figure 6: Modulating the sender’s categorization ability over realized concepts k for a) Sk = 10, b) Sk = 100, and
c) Sk = 1000, when paired with receivers of varying categorization ability.

5 Related Work

The properties of language acquisition and emer-
gence of its structural properties (e.g., composi-
tionality and recursion) were investigated early on
by Kirby (1998), who proposed that natural lan-
guage can evolve to possess an internal structure
as a result of observational learning. Due to the
availability of complex real-world data and the scal-
ability of deep learning, recent studies in language
evolution have focused on artificial, yet realistic
analogues of language evolution (Lazaridou et al.,
2017; Havrylov and Titov, 2017; Lazaridou and Ba-
roni, 2020). Notably, artificial language emergence
has been shown to exhibit an inner structure as orig-
inally investigated by Kirby (1998), e.g., composi-
tionality (Lazaridou et al., 2018; Chaabouni et al.,
2020) and encoding preference (Chaabouni et al.,
2019). During artificial language formation, agents
modulate the structure of the language in service
of jointly solving the learning task. For example,
by negotiating symbols in the artificial language,
Hagiwara et al. (2019) evidenced the ability for
same-encoder agents to realize data categories in
an unsupervised way, leading to a form of emer-
gent categorization. The most related work to ours
is by Chaabouni et al. (2020), who study concept
formation in same-encoder artificial agents through
the lens of disentanglement. However, their study
focuses on proposing new metrics of composition-
ality in small-scale, categorical data. We instead
investigate the case of mixed-encoder agents, each
realizing a different level of disentangled catego-
rization ability on large-scale RGB image data.

6 Conclusion

Our results suggest that agents in a cooperative
game setting are capable of communication despite
differences in concept realization. Despite this,

we find that heterogeneous agents can be at odds
with each other, often under-performing compared
to their same-encoder variants. In this way, the
reasoning process of an agent can largely deter-
mine its interaction with other agents. On novel
objects, there is a notable advantage to using disen-
tangled networks, and in some cases mismatched
agents, evidenced by higher signaling success and
language compositionality. Our proposed Latent
Self-attention module illustrates the advantage of
incorporating an agent’s categorization power into
utterances, evidenced by higher disentangled sim-
ilarity in experiments. The interplay between dis-
entanglement and interpretability of the emerged
language will be investigated in future work.
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A Appendix

A.1 Training details

In our experiments, every pair of sender and re-
ceiver is trained with distinct seeds, thus they
never share the same checkpoint, only the train-
ing data. We use the publicly available code to
train encoders from the respective authors (Chen
et al., 2019, 2020). The underlying model for CW
and ProtoPNet encoders is a standard ResNet-50

CNN (He et al., 2016) trained on the full-size Im-
ageNet dataset3, and fine-tuned on the respective
dataset (CUB10 or mini-ImageNet) for five epochs
over ten random seeds (i.e., unique sender/receiver
seeds for five systems).

The Gumbel-Softmax estimator samples from
the Gumbel distribution with a temperature term,
which controls how similar the relaxation is to
the true argmax distribution. As recommended
by Havrylov and Titov (2017), we allow the sender
agent to learn the inverse of the temperature in or-
der to avoid manual tuning. Agent parameters are
tuned by stochastic gradient descent (SGD) using
the Adam optimization algorithm (Kingma and Ba,
2015). The recurrent sender decoder g and receiver
encoder h are instantiated in practice with recurrent
neural networks (RNNs) using LSTM cells. We
leverage the NVIDIA DALI library to accelerate
data loading through the use of GPGPU hardware. 4

A.2 Hyperparameter selection

In order to achieve the best performance for agents
and encoders, we performed a grid-search over the
following hyperparameter combinations:

• Number of epochs in {30, 50, 100},

• Hidden dimension of LSTM hidden state in
{64, 128, 256},

• Number of distractors in {1, 3, 5},

• Message length L in {10, 100},

• ConvNet classifier fine-tuning learning rate in
{1−2, 1−3},

• ProtoPNet dense representation network f
learning rate in {1−4, 1−5},

• ProtoPNet interface layer learning rate in
{3−5, 3−4, 3−3},

• ProtoPNet prototype layer learning rate in
{3−5, 3−4, 3−3},

• ProtoPNet classifier learning rate in
{1−5, 1−4},

• CW classifier and whitening layer learning
rate {1−2, 1−3},

3https://pytorch.org/vision/stable/
models.html

4https://github.com/NVIDIA/DALI
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• Sender learning rate in {1−5, 1−4, 1−3, 1−2},
and

• Receiver learning rate in
{1−5, 1−4, 1−3, 1−2}.

As a result of the grid-search, we selected
the best performing hyperparameter combination
which balanced training time and communication
success rate performance (e.g., receiver signaling
accuracy). This combination is shown in Table 5.

A.3 Hardware description
All experiments were performed on an NVIDIA
DGX-2 compute node equipped with 16 NVIDIA
Tesla V100 Tensor Core GPUs, high-speed NVMe
flash storage, 1TB main system memory, and 40
Intel Xeon Platinum CPU cores.

A.4 Supplemental Results
A.4.1 Results on VGG-16 and DenseNet-161

variants
The disentangled representations discussed in the
main text are not restricted to residual networks
such as ResNet-50, in fact they are flexible enough
to interact with other network designs such as VGG-
16 (Simonyan and Zisserman, 2015) and DenseNet-
161 (Huang et al., 2017). To expand the empirical
contribution, we provide additional results address-
ing Q1, Q3, and Q4 of the main text using disentan-
gled image encoders built on top of VGG-16 and
DenseNet-161, as well as their non-disentangled
baselines.

Q1 (VGG-16 & DenseNet-161). In Figures 7
and 8, we see the same general tendency for same-
encoder systems to either match or outperform
the mixed-encoder versions. This is evidenced on
VGG-16 (Figure 7, red line) across each sender
variant, with CW being a notable exception due to
performing similarly between CW-CW and CW-
ConvNet variants. On DenseNet-161, we observe
a failure mode for CW (Figure 8c) due to low ac-
curacy on the upstream task (Table 16). We exper-
imentally observed that CW causes training insta-
bility for DenseNet-161 on CUB10. In this failure
mode, there is little difference between same- and
mixed-encoder agent systems, which may indicate
that the performance discrepancies are tied to suc-
cess of the upstream task.

As in the main text, we provide measures of the
language compositionality under different encoder
variants for VGG-16 (Table 6) and DenseNet-161

(Table 7). In this context, topographic similarity or
disentangled similarity for mixed-encoder systems
can be higher in some cases (e.g., VGG-16 CW-
ConvNet Dis. Sim. of 0.435 compared to 0.401
of CW-CW in Table 6, or VGG-16 ConvNet-CW
Top.Sim. of 0.312 compared to 0.305 of ConvNet-
ConvNet). In general, same-encoder variants evi-
dence a tendency to outperform the mixed-encoder
variants, invariant to the choice of underlying archi-
tecture. Returning to the failure mode of DenseNet-
161 CW seen previously, we observe that the to-
pographic similarity scores for DenseNet-161 CW
variants in Table 7 are competitive with models that
did not experience failure, e.g., the CW-CW sys-
tem scored Top.Sim. of 0.391 whereas ProtoPNet-
ProtoPNet scored 0.369. This is further evidence
of the effect observed by Chaabouni et al. (2020),
which is that compositionality can emerge despite
lack of generalization ability.

Q3 (VGG-16 & DenseNet-161). We investi-
gated Q3 under the same constraints of Sec-
tion 4, but instead using VGG-16 (Tables 8 and
9) and DenseNet-161 (Tables 10 and 11) instead of
ResNet-50. We observe the general tendency from
Section 4 for RNN+LSA variants to either match
or outperform the standard RNN variants, whilst
remaining competitive with the non-disentangled
ConvNet baseline. The exception to this trend is
the failure mode of DenseNet-161 CW variants (Ta-
ble 11), despite evidencing higher disentangled sim-
ilarity with low generalization ability (e.g., Dis.Sim
of 0.785 for RNN+LSA with 45.487% receiver ac-
curacy).

Q4 (VGG-16 & DenseNet-161). Under the con-
straints of Section 4, we repeat the experiment
using encoders based on VGG-16 (Figure 9) and
DenseNet-161 (Figure 10). Notably, variants based
on VGG-16 exhibit the same trend from Section 4
for more complex k = 1000 agents to perform
poorly as receivers (orange lines in Figure 9). The
results for DenseNet-161-based variants introduce
nuance to this trend, since complex receivers in
this setup perform within the random variance of
other receivers (i.e., orange lines in Figure 10 be-
ing within blue and pink shading). Referencing
the upstream performance of each variant in Ta-
bles 13, 15, and 17 offers some insight. First, we
observe that DenseNet-161 variants are the best
performing variants of ProtoPNet (up to 97% ac-
curacy compared to 90% and 95% of VGG-16 and
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Hyperparameter Main paper choice(s) Remarks

Sender learning rate (LR) 1−3

Receiver LR 1−3

Lewis Signaling Game Epochs 30
Number of distractors 5
Message length L 10
LSTM Hidden Dim. 256
ConvNet fine-tuning LR 1−2 Standard setting for CNNs
ProtoPNet Dense Rep. LR 1−5 Same as Chen et al. (2019)
ProtoPNet Interface LR 3−3 Same as Chen et al. (2019)
ProtoPNet Prototypes LR 3−3 Same as Chen et al. (2019)
ProtoPNet Classifier LR 1−4 Same as Chen et al. (2019)
ProtoPNet Epochs 20
CW LR 1−2 Same as Chen et al. (2020)

Table 5: Hyperparameter choices based on grid-search.
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Figure 7: Comparison of communication success rate on CUB10 testing data for permutations of a) ConvNet
senders, b) ProtoPNet senders, and c) CW senders, using image encoders based on VGG-16. Shaded regions denote
standard deviation over five random seeds (each swapping in a new CUB10 test split, sender encoder checkpoint,
and receiver encoder checkpoint), with L = 10.

ResNet-50, respectively), and second, DenseNet-
161 requires more model parameters (on the order
of 26M compared to 15M and 24M of VGG-16
and ResNet-50 variants). Given this result, it may
be possible to mitigate the complexity penalty ob-
served in Section 4 by leveraging parameter-heavy
densely-connected neural networks, although the
impact on smaller models is notable. The effect of
model parameterization on the language evolution
offers an interesting direction for future work.

A.4.2 Upstream task metrics
In Table 12 we provide the accuracy score for each
ResNet-50 encoder’s upstream classification task
on CUB10 data. We use the training code open-
sourced by the respective paper authors (Chen et al.,
2019, 2020). Table 13 gives the accuracy scores
for ProtoPNet encoders used in Section 4. The
same scores are provided for supplemental variants
corresponding to VGG-16 (Tables 14 and 15) and

DenseNet-161 (Tables 16 and 17).

A.5 Supplemental Analysis

A.5.1 LSA vocabulary usage
In Figure 11 we repeat the same experiment from
Section 4, this time for ProtoPNet variants. Al-
though the ProtoPNet+LSA variant (bottom row)
does not score the highest cumulative vocabulary
usage compared to the ConvNet variant (0.445
and 0.645, respectively), it encourages more ex-
ploration of the vocabulary compared to the regular
ProtoPNet variant (0.327). We observe the same
trend with CW in Figure 5, which suggests the LSA
mechanism can enable better vocabulary diversity
on multiple types of disentangled representations.

A.5.2 LSA concept alignment
Our proposed LSA module requires the disentan-
gled sender agent to weight their utterances by the
concept weight matrix M ′, which is obtained by
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Figure 8: Comparison of communication success rate on CUB10 testing data for permutations of a) ConvNet senders,
b) ProtoPNet senders, and c) CW senders, using image encoders based on DenseNet-161. Shaded regions denote
standard deviation over five random seeds (each swapping in a new CUB10 test split, sender encoder checkpoint,
and receiver encoder checkpoint), with L = 100.
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Figure 9: Modulating the sender’s categorization ability over realized concepts k for a) Sk = 10, b) Sk = 100, and
c) Sk = 1000, when paired with receivers of varying categorization ability and using VGG-16 as the base encoder
architecture.

the product of the learned L-head matrix M and
initial disentangled representation z′ (as discussed
in Section 3.1). This design enables a qualitative
analysis of the agent’s concept activation at each
time step, i.e., at some time t, we can plot the image
that corresponds to the highest-weighted dimension
in that time-step, max(M ′[t]). This is done for six
images across three data classes for the best per-
forming LSA+ProtoPNet model (Figure 12) and
LSA+CW model (Figure 13) from Section 4. We
observe that during the decoding of utterances, the
most active concept does not always correspond to
visual semantic features of the input data class, e.g.,
brown and black textures are not always present in
the top two rows. Instead, the sender agent may
rely on an arbitrary positional encoding of known
concepts to describe certain visual features. This is
evident across both ProtoPNet and CW models. A

notable effect of the LSA module on CW variants
is an increased exploration of the agent vocabulary,
as discussed in Section 4, which can be observed
in Figure 13 by the lack of repetition between top
categories, whereas in Figure 12 we note the same
concept is often repeated several times within the
same message. Given the qualitative results, we
posit that agents rely on an encoding preference
that can be considered incongruent with realized
concepts of the disentangled models. For example,
agents might rely on the position of a concept in
the utterance, rather than the concept itself, to cap-
ture information that leads to better decisions by
the receiver. The LSA module enables a first look
into the connection between these grounded con-
cepts and their recall during agent utterances, the
enforcement of which offers an exciting direction
for future work.
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Figure 10: Modulating the sender’s categorization ability over realized concepts k for a) Sk = 10, b) Sk = 100, and
c) Sk = 1000, when paired with receivers of varying categorization ability and using DenseNet-161 as the base
encoder architecture.
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Figure 11: Heat-maps of the best-performing agent’s vocabulary usage across time and data classes over the entire
CUB10 test set for ProtoPNet, corresponding to experiments based on ResNet-50 in Section 4, where |V | = k = 10,
and agents communicate for ten time-steps (with end-of-sentence symbol ‘0’ at the final time-step). The final
column shows the cumulative sum over all time steps, subtitled by the normalized area of non-zero cells.

Sender
Arch.

Recv.
Arch. Top. Sim. Dis. Sim.

ConvNet ConvNet 0.305 ±0.111 -
ConvNet CW 0.312 ±0.068 -
ConvNet ProtoPNet 0.305 ±0.066 -

ProtoPNet CW 0.299 ±0.143 0.299 ±0.143

ProtoPNet ProtoPNet 0.380 ±0.101 0.380 ±0.101

ProtoPNet ConvNet 0.255 ±0.063 0.255 ±0.063

CW CW 0.330 ±0.042 0.401 ±0.079

CW ProtoPNet 0.186 ±0.039 0.261 ±0.050

CW ConvNet 0.297 ±0.032 0.435 ±0.089

Table 6: Language compositionality under different
VGG-16 encoder variants f for sender and receiver on
CUB10 test set (higher is better). All measures were
statistically significant with p ≈ 0.

Sender
Arch.

Recv.
Arch. Top. Sim. Dis. Sim.

ConvNet ConvNet 0.437 ±0.078 -
ConvNet CW 0.296 ±0.168 -
ConvNet ProtoPNet 0.304 ±0.029 -

ProtoPNet CW 0.208 ±0.115 0.208 ±0.115

ProtoPNet ProtoPNet 0.369 ±0.054 0.369 ±0.054

ProtoPNet ConvNet 0.288 ±0.118 0.288 ±0.118

CW CW 0.391 ±0.112 0.265 ±0.068

CW ProtoPNet 0.367 ±0.033 0.186 ±0.100

CW ConvNet 0.390 ±0.013 0.235 ±0.056

Table 7: Language compositionality under different
DenseNet-161 encoder variants f for sender and re-
ceiver on CUB10 test set (higher is better). All measures
were statistically significant with p ≈ 0.
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Figure 12: Visualization of the most activated prototypical image at each time-step in an LSA+ProtoPNet agent’s
concept weight matrix (M’), given an input image from three classes in CUB10. When decoding utterances, the
most activated concept at a given time-step does not always correspond to the class of the observation.

Sender Arch. Top. Sim. Dis. Sim. Recv. Acc.

ProtoPNet
Utterance

0.263
±0.039

0.263
±0.039

58.110
±14.306

RNN 0.468
±0.064

0.468
±0.064

76.737
±1.995

RNN+LSA 0.424
±0.109

0.424
±0.109

76.619
±1.863

RNN
(ConvNet
Baseline)

0.422
±0.080

- 92.590
±2.945

Table 8: Comparison of LSA module, 1-Length utter-
ance baseline, and normal RNNs on CUB10 testing data
using ProtoPNet disentangled structure to weight the
vocabulary (|V | = 10) and VGG-16 as the base image
encoder.

Sender Arch. Top. Sim. Dis. Sim. Recv. Acc.

CW
Utterance

0.354
±0.032

0.496
±0.018

77.928
±2.208

RNN 0.313
±0.048

0.385
±0.058

83.167
±2.032

RNN+LSA 0.294
±0.035

0.520
±0.047

86.495
±0.622

RNN
(ConvNet
Baseline)

0.367
±0.033

- 92.653
±1.894

Table 9: Comparison of LSA module, 1-Length utter-
ance baseline, and normal RNNs on CUB10 testing data
using CW disentangled representation to weight the vo-
cabulary (|V | = 10) and VGG-16 as the base image
encoder.
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Figure 13: Visualization of the most activated image category at each time-step in an LSA+CW agent’s concept
weight matrix (M’), given an input image from three classes in CUB10. When decoding utterances, the most
activated concept at a given time-step does not always correspond to the class of the observation.

Sender Arch. Top. Sim. Dis. Sim. Recv. Acc.

ProtoPNet
Utterance

0.319
±0.027

0.319
±0.027

80.276
±2.416

RNN 0.325
±0.037

0.325
±0.037

79.793
±1.136

RNN+LSA 0.376
±0.072

0.376
±0.072

79.612
±3.409

RNN
(ConvNet
Baseline)

0.407
±0.092

- 88.929
±1.253

Table 10: Comparison of LSA module, 1-Length utter-
ance baseline, and normal RNNs on CUB10 testing data
using ProtoPNet disentangled structure to weight the
vocabulary (|V | = 10) and DenseNet-161 as the base
image encoder.

Sender Arch. Top. Sim. Dis. Sim. Recv. Acc.

CW
Utterance

0.210
±0.061

0.771
±0.188

40.547
±9.303

RNN 0.377
±0.073

0.135
±0.085

44.182
±29.066

RNN+LSA 0.203
±0.070

0.785
±0.183

45.487
±15.481

RNN
(ConvNet
Baseline)

0.431
±0.048

- 89.454
±3.403

Table 11: Comparison of LSA module, 1-Length ut-
terance baseline, and normal RNNs on CUB10 testing
data using CW disentangled representation to weight
the vocabulary (|V | = 10) and DenseNet-161 as the
base image encoder.
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fS Acc.
(# Param.)

fR Acc.
(# Param.)

ConvNet 95.280± 1.143
(23.52M)

94.951± 1.744
(23.52M)

ProtoPNet 91.559± 3.751
(23.81M)

93.183± 2.731
(23.81M)

CW 72.899± 8.264
(23.52M)

78.593± 8.293
(23.52M)

Table 12: Average classification accuracy of all Q1
CUB10 sender and receiver encoders based on ResNet-
50 (i.e., the variants used for main paper results). Each
entry represents the average over 5 random seeds (each
row consisting of 10 seeds total). Parameter counts are
applicable to Q2 experiments, due to shared model ar-
chitectures.

k
fS Acc.

(# Param.)
fR Acc.

(# Param.)

10 95.884± 0.980
(23.78M)

94.335± 2.457
(23.78M)

100 91.559± 3.751
(23.81M)

93.183± 2.731
(23.81M)

1000 92.891± 1.017
(24.05M)

93.371± 1.209
(24.05M)

Table 13: Average classification accuracy of sender and
receiver encoders based on ResNet-50 used in Section 4
(Q4). Each entry represents the average over 5 random
seeds (each row consisting of 10 seeds total).

fS Acc.
(# Param.)

fR Acc.
(# Param.)

ConvNet 93.327± 1.860
(134.30M)

94.191± 1.822
(134.30M)

ProtoPNet 86.558± 3.036
(14.83M)

88.799± 2.449
(14.83M)

CW 87.419± 3.736
(134.30M)

88.127± 2.352
(134.30M)

Table 14: Average classification accuracy of all Q1
CUB10 sender and receiver encoders based on VGG-16
(from supplemental results). Each entry represents the
average over 5 random seeds (each row consisting of 10
seeds total).

k
fS Acc.

(# Param.)
fR Acc.

(# Param.)

10 90.001± 4.486
(14.80M)

89.523± 3.719
(14.80M)

100 86.558± 3.036
(14.83M)

88.799± 2.449
(14.83M)

1000 90.884± 3.125
(15.07M)

89.482± 3.464
(15.07M)

Table 15: Average classification accuracy of sender and
receiver encoders based on VGG-16 for Q4 supplemen-
tal results. Each entry represents the average over 5
random seeds (each row consisting of 10 seeds total).

fS Acc.
(# Param.)

fR Acc.
(# Param.)

ConvNet 97.974± 0.472
(26.49M)

98.175± 0.759
(26.49M)

ProtoPNet 96.485± 1.063
(26.79M)

94.793± 2.188
(26.79M)

CW 25.690± 24.975
(26.49M)

25.545± 30.644
(26.49M)

Table 16: Average classification accuracy of all
Q1 CUB10 sender and receiver encoders based on
DenseNet-161 (from supplemental results). Each entry
represents the average over 5 random seeds (each row
consisting of 10 seeds total).

k
fS Acc.

(# Param.)
fR Acc.

(# Param.)

10 97.085± 0.679
(26.77M)

96.756± 0.666
(26.77M)

100 96.485± 1.063
(26.79M)

94.793± 2.188
(26.79M)

1000 95.767± 2.818
(27.03M)

95.398± 0.966
(27.03M)

Table 17: Average classification accuracy of sender
and receiver encoders based on DenseNet-161 for Q4
supplemental results. Each entry represents the average
over 5 random seeds (each row consisting of 10 seeds
total).
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