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Abstract
Task-oriented parsing (TOP) aims to convert
natural language into machine-readable repre-
sentations of specific tasks, such as setting an
alarm. A popular approach to TOP is to apply
seq2seq models to generate linearized parse
trees. A more recent line of work argues that
pretrained seq2seq models are better at gener-
ating outputs that are themselves natural lan-
guage, so they replace linearized parse trees
with canonical natural-language paraphrases
that can then be easily translated into parse
trees, resulting in so-called naturalized parsers.
In this work we continue to explore naturalized
semantic parsing by presenting a general re-
duction of TOP to abstractive question answer-
ing that overcomes some limitations of canon-
ical paraphrasing. Experimental results show
that our QA-based technique outperforms state-
of-the-art methods in full-data settings while
achieving dramatic improvements in few-shot
settings.

1 Introduction

Task-oriented parsing (TOP) takes an utterance as
input and generates an unambiguous specification
of a task that can be executed by machine (Gupta
et al., 2018). Traditional approaches to TOP treat
the task as an instance of slot filling (Liu and Lane,
2016), first classifying the intent of the utterance
as a whole and then tagging tokens with slot la-
bels that identify relevant entities (such as numbers,
persons, dates or times, organizations, and so on).
However, this approach only works for simple ut-
terances that have flat rather than compositional
semantics. That is, slot-filling approaches cannot
produce nested (or “hierarchical”) meaning repre-
sentations, such as the one shown in Fig 1, where
slots and intents can be composite and contain other
slots (or intents) as proper parts.

A straightforward way to handle compositional
semantics is to formulate TOP as a seq2seq prob-
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lem, where the input sequence is the utterance
and the output sequence is a linearized represen-
tation of a semantic tree (shown in the bottom
part of Fig 1). The recent development of high-
performing transformer-based pretrained language
models (PLMs) (Lewis et al., 2020; Raffel et al.,
2020; Brown et al., 2020) that can be fine-tuned
on specific tasks (such as a particular TOP dataset)
has made this formulation feasible.

This approach has achieved state-of-the-art per-
formance on a variety of TOP datasets (Rongali
et al., 2020; Aghajanyan et al., 2020; Chen et al.,
2020). However, the output sequences are typically
not expressed in natural language but rather in a
mixture of natural language and special symbols
(such as [SL:) that were not seen during pretrain-
ing and have no meaning to the PLMs. Depending
on the task, the output sequences may hardly con-
tain any natural language at all (for example, if the
outputs are SQL queries). It would seem reason-
able to conjecture that performance would improve
if we could reformulate TOP as a more conven-
tional NLP task in which both the inputs and the
outputs are expressed in natural language, as such
a reformulation might be better able to leverage the
PLM’s pretraining.

To bridge this gap, Shin et al. (2021) reduced
TOP to a canonical-paraphrasing task. They first
fine-tune a PLM to map a natural utterance u to
another canonical utterance u′, where canonical
utterances belong to a controlled fragment of the
relevant natural language. Then u′ can be translated
into the desired meaning representation (semantic
tree) via a context-free grammar that can parse
all and only canonical utterances. However, this
approach has a major limitation: canonical frag-
ments can be defined and parsed by hand-written
grammars only in closed-world domains where the
set of underlying entities is fixed and known in
advance (e.g., in a domain where people ask ques-
tions about basketball players, all of whom are
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Utterance: Look up directions to the nearest parking near S
Beritania Street.
Semantic parse tree of the utterance:

IN:GET_DIRECTIONS

SL:DESTINATION

IN:GET_LOCATION

SL:LOCATION_MODIFIER

nearest

SL:CATEGORY_LOCATION

parking

SL:LOCATION_MODIFIER

IN:GET_LOCATION

SL:SEARCH_RADIUS

near

SL:LOCATION

S Beritania Street

Linarized parse tree:
[IN:GET_DIRECTIONS

[SL:DESTINATION
[IN:GET_LOCATION

[SL:LOCATION_MODIFIER nearest]
[SL:CATEGORY_LOCATION parking]
[SL:LOCATION_MODIFIER

[IN:GET_LOCATION
[SL:SEARCH_RADIUS near]
[SL:LOCATION S Beritania Street] ] ] ] ] ]

Figure 1: A sample utterance and its semantic parse tree
in the Topv2 dataset, where nodes starting with “IN:”
are intents and nodes starting with “SL:” are slots. A
parse tree always has an intent node at the root. An
intent typically corresponds to a verb and can be viewed
as an action, with a sequence of slots as its arguments. A
slot may have additional intents nested in it, recursively.
A linearized parse tree that can be processed by seq2seq
models is shown at the bottom.

statically known). That condition rarely holds in
task-oriented domains, and therefore this method is
not applicable to datasets like Topv2. Moreover, as
input utterances grow more structurally complex,
the associated canonical utterances become much
longer, and generating long sequences is known to
be challenging for PLMs (Guo et al., 2018).

In this paper we focus on scenarios where it is
not viable to specify a canonical grammar with a
fixed set of rules. We instead propose to formulate
TOP as abstractive question answering, in such a
way that answering all questions for a given ut-
terance allows us to reconstruct the parse tree of
that utterance. Specifically, we introduce single-
turn QA (ST QA for short), which poses one single
query for a given utterance, and multi-turn QA (MT
QA), which dynamically constructs multiple ques-
tions for each utterance, depending on previous
answers. Because single-turn QA asks only one
question, it has lower latency; however, the model
must generate a longer text representing the entire
parse tree. By contrast, multi-turn QA generates
shorter answers that are more straightforward to
parse; however, all questions need to be answered
correctly, and if there are dependencies between

questions, they can’t be run within the same batch.
We study these two approaches and their tradeoffs
in both full-data and low-resource settings.

To summarize our contributions:

1. We propose a general reduction of composi-
tional TOP to abstractive QA and introduce
two specific variants: single-turn QA and
multi-turn QA, each with unique benefits.

2. We train the abstractive QA models with a
masked span prediction (MSP) objective, one
of the pretraining objectives of the seq2seq
model, which is shown to yield very substan-
tial improvements in few-shot scenarios.

3. We evaluate ST QA and MT QA on two pub-
lic datasets, Topv2 (Chen et al., 2020) and
Pizza (Arkoudas et al., 2021), and show that
our results improve on the state of the art
by 3% on full-data Topv2, 28% for few-shot
Topv2, and 7% on few-shot Pizza. 1

2 Related Work

Task-oriented parsing has been extensively stud-
ied in the literature. The most prevalent approach
is seq2seq modeling, which maps utterances to
their meaning representations, typically expressed
as a mixture of natural language and tokens such
as brackets and artificial intent and slot identi-
fiers (Rongali et al., 2020; Zhou et al., 2021; Agha-
janyan et al., 2020; Shrivastava et al., 2021; Man-
simov and Zhang, 2021); we take this approach as
our main baseline.

Few-shot semantic parsing has also attracted
wide interest. Chen et al. (2020) applied a differ-
ent training paradigm; they assumed there are sev-
eral source domains with labeled data and adopted
a first-order meta-learning algorithm, Reptile, to
train their model.

Shin et al. (2021) argued that PLMs are bet-
ter suited for directly generating natural language
rather than task-specific meaning representations,
and thus they fine-tune PLMs to generate canonical
paraphrases, which can then be parsed by a context-
free grammar to produce the corresponding seman-
tic trees. They further improve performance by aug-
menting input sequences with similar examples as
prompts. Rongali et al. (2022) push that direction
further by leveraging small amounts of unannotated
data. We use canonical paraphrasing as one of our

1The QA datasets converted from the TOP format are avail-
able at https://github.com/amazon-research/
semantic-parsing-as-abstractive-qa.
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baselines. As we already noted in the introduction,
canonical paraphrasing is not widely applicable in
open-world task-oriented parsing; our QA-based
approach overcomes that limitation. Desai et al.
(2021) applied modifications to the linearized trees
to make them more natural.

Inspired by the recent success of QA-driven ap-
proaches to a wide range of NLP tasks, such as
dialogue state tracking (Gao et al., 2019), named
entity recognition (Li et al., 2020), and multi-task
learning (McCann et al., 2018; Du et al., 2021),
Namazifar et al. (2021) framed semantic parsing as
an extractive QA task. This limits its scope to non-
compositional semantic structures. Our work is
the first to use QA for semantic parsing of arbitrar-
ily nested and complex meaning representations.
Moreover, in contrast to previous approaches, our
formulation usually results in fewer questions.

3 Reducing TOP to Abstractive QA

We now present a general method for reducing
compositional TOP to abstractive QA. Given an
utterance, our goal is to recover its semantic parse
tree by asking questions and parsing the answers
returned by a QA model. For this to succeed, all
questions associated with an input utterance need
to be answered correctly. At a high level, we for-
mulate questions so as to build the required parse
tree in a top-down, left-to-right fashion: We first
ask a question to determine the root node, and then
we recursively proceed towards the leaves. We start
by describing multi-turn QA; the single-turn case
is discussed in Section 3.3.

Each QA instance is a triple consisting of a con-
text, a question, and an answer. We use the parse
tree in Fig. 1 to illustrate the corresponding (multi-
turn) sequence of QA triples shown in Fig. 2. The
context is the utterance provided by the user plus
general information about the domain and/or state
from previous turns; the question corresponds to
a particular node of the parse tree; and the answer
provides the content of that node. We first extract
the top-level intent (get directions), then the corre-
sponding slots (destination), then the value of each
slot (destination is the nearest parking near S Beri-
tania Street), and then we start to recursively repeat
this process on the phrase the nearest parking near
S Beritania Street (by asking what is the intent in-
cluded in that utterance segment). We note that our
system is able to handle negative answers: If there
isn’t a nested intent in an utterance segment, the

Multi-turn QA:
Q: A user may intend to get directions, get distance, get
estimated arrival time, get estimated departure time, get
estimated duration, get road condition information, get
route’s information, get traffic information, get location,
make unsupported navigation, or update directions. A
user said, “Look up directions to the nearest parking near S
Beritania Street.” What did the user intend to do?
A: get directions
Q: The slots for get directions may be locations, ar-
rival datetimes, road conditions to avoid, waypoints,
amounts, paths, sources, travel methods, road condi-
tions, waypoints to avoid, departure datetimes, paths to
avoid, obstructions to avoid, and destinations. A user
said “Look up directions to the nearest parking near S Beri-
tania Street.” The user’s intent is to get directions. What
are the slots?
A: destination
Q: A user said “Look up directions to the nearest parking
near S Beritania Street.” The user’s intent is to get direc-
tions, and the slot is destination. What is the destination?
A: the nearest parking near S Beritania Street
Q: The nested intent in destination may be get school’s
location, get home’s location, get location, get event, and
get workplace’s location. A user said “Look up directions
to the nearest parking near S Beritania Street.” The user’s
intent is to get directions, and the destination is the nearest
parking near S Beritania Street. Is there an intent included
in “the nearest parking near S Beritania Street?”
A: get location
[· · · ]

Single-turn QA:
Q: All possible intents from a user are [...], and slots
could be [...]. A user said, “Look up directions to the
nearest parking near S Beritania Street.” What did the user
intend to do?
A: The user intended to get directions, where destination
is nearest parking near S Beritania Street. The intent for
“nearest parking near S Beritania Street” is to get location,
where location’s category is parking and location modifiers
are near S Beritania Street; nearest. The intent for “near
S Beritania Street” is get location, where location is S
Beritania Street and search radius is near.

Figure 2: Examples of multi-turn QA (top) and single-
turn QA (bottom) for the utterance Look up directions
to the nearest parking near S Beritania Street.

system returns none.

3.1 State Tracking
The triples we have described are processed inde-
pendently from one another. To provide richer in-
formation to the QA model, we include previous an-
swers as additional context (shown in italicized red
font in Fig. 2). We represent a previous question-
answer pair by combining them into a declarative
sentence, and we stack all previous states together.
This essentially encodes all parse-tree ancestors in
natural language, which can potentially help the
QA system resolve ambiguities. For example, the
nested intent in the nearest parking near S Berita-
nia Street could be different depending on whether
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this was a source or a destination.

3.2 Incorporating Domain Metadata
A given domain has predefined semantics, i.e., a
fixed number of intents, each of which has an asso-
ciated set of slots that describe important aspects
of user requests. We incorporate metadata relevant
to the current node as additional context (shown in
blue bold font in Fig. 2). This effectively reduces
the space of possible answers. For instance, while
a domain may have a large number of intents, the
intents that can appear at a particular node (e.g.,
at the root level) may be substantially fewer. And
because we explicitly list all possible intents, the
QA system can simply copy and paste the appro-
priate tokens, which is easier than searching over
the entire vocabulary.

3.3 Single-turn QA vs Multi-turn QA
We note that there is no need to limit ourselves
to one question for every node. For the example
of Fig. 2, for instance, we don’t ask one question
for each child node of IN:GET_LOCATION indi-
vidually (e.g., what is the first/second/third slot);
instead, we simply ask “what are the slots?” and
the answer should be “location modifier, location
category.” Another example is when we ask “what
is the location modifier?”, the answer being “near-
est; near S Beritania Street.”

On the extreme side, we could ask one ques-
tion that would return an answer representing the
entire parse tree, and this becomes somewhat sim-
ilar to canonical paraphrasing (Shin et al., 2021).
However, canonical paraphrasing assumes there is
concrete grammar that specifies a controlled frag-
ment of natural language (all and only the canonical
utterances), which can be used to map sentences
from that fragment into parse trees. That assump-
tion often fails in open-world TOP domains; for
example, when someone asks for directions, the
destination could be expressed by an unbounded
number of phrases (my parent’s house, a restaurant
that satisfies an arbitrary set of constraints, etc.)
that cannot be specified a priori by a closed-form
grammar.

In the single-turn part of Fig. 2, we show how
we compress an entire parse tree into a single QA
triple. The bold blue context is again encoding the
domain’s metadata. From left to right, the answer
explicitly lists the relevant intents, their associated
slots, and the tokens corresponding to the slots in a
top-down direction. We deal with nested intents by

recursively adding new sentences, which start with
the tokens under which the intent is nested.

While our approach is more general than canon-
ical paraphrasing, we still prefer canonicalization
when possible, as the corresponding fragments tend
to be more easily learnable. In the case of Pizza,
for instance, a canonical grammar can be defined
fairly straightforwardly. We illustrate the use of
such canonical utterances in combination with our
QA approach in Fig. 3. For multi-turn QA, we ask
one question for each order in the utterance, and the
answer is the order’s canonical paraphrase. We also
include the previous answers when asking about
the next order, to prevent the QA system from re-
peating the same orders. For single-turn QA, we
ask only one question for all orders. We also in-
clude the canonical paraphrasing formulation for
comparison.

Thus, when canonical representations exist,
single-turn QA and paraphrasing are similar; the
main difference is that our formulation always in-
cludes a context. However, we reiterate that canon-
icalization is often not viable in TOP.

In summary, the general principle guiding the
design of multi-turn interactions is that we first
ask questions about intents, then we ask questions
about their slots and slot values, and then repeat
the process if we detect a nested intent in a slot.
As for single-turn QA, we only ask one question
and ensure that the answer encodes the entire tree.
When canonical grammars exist in a given domain,
they can be used to train single-turn QA systems in
a straightforward way.

We experimentally evaluate the two QA variants
and show how one may be preferred over the other
under different settings.

3.4 Using MSP Objectives

Chada and Natarajan (2021) have shown that fine-
tuning pretrained seq2seq models to perform QA
tasks with too few examples leads to much de-
graded performance, while training a QA model
with a loss function directly aligned with the pre-
training objective performs better. Inspired by
this observation, we explore the following change
to our QA formulation: instead of making QA a
separate downstream task, we treat it as one of
the pretraining tasks—masked span prediction, for
which the models are trained to generate the entire
masked span given one unique mask token (Raffel
et al., 2020). Accordingly, instead of asking the
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ORDER

PIZZAORDER

NUMBER

two

SIZE

large

STYLE

everything

PIZZAORDER

NUMBER

two

SIZE

large

TOPPING

mushrooms

COMPLEX_TOPPING

QUANTITY

extra

TOPPING

cheese

DRINKORDER

NUMBER

six

SIZE

large

DRINKTYPE

cokes

Canonical paraphrasing:
Grammar for drink orders:
I want [number] [size]/[volumn] [drinktype] [container]
Grammar for pizza orders:
I want [number] [size] pizza in the [style] style with [top-
ping1; topping2; ...] with [complex_topping] without
[not_topping1; not_topping2; ...]
Input: “[utterance]”
Output: I want two large pizza in the everything style;
two large pizza with mushrooms with extra cheese; six
large-sized cokes

Multi-turn QA:
Q: A user said: “[utterance]” What order did the user place?
Q′: A user said: “[utterance]” The user ordered [MASK].
A: two large pizza in the everything style
Q: A user said: “[utterance]” What order did the user place
in addition to two large pizza in the everything style?
Q′:: A user said: “[utterance]” The user ordered [MASK]
in addition to two large pizza in the everything style.
A: two large pizza with mushrooms with extra cheese
Q: A user said: “[utterance]” What order did the user place
in addition to two large pizza in the everything style and
two large pizza with mushrooms with extra cheese?
Q′:: A user said: “[utterance]” The user ordered [MASK]
in addition to two large pizza in the everything style and
two large pizza with mushrooms with extra cheese.
A: six large-sized cokes
Q: A user said: “[utterance]” What order did the user place
in addition to two large pizza in the everything style and
two large pizza with mushrooms with extra cheese and six
large-sized cokes?
Q′:: A user said: “[utterance]” The user ordered [MASK]
in addition to two large pizza in the everything style and
two large pizza with mushrooms with extra cheese and six
large-sized cokes.
A: none

Single-turn QA:
Q: A user said: “...” What orders did the user place?
Q′:: A user said: “...” The user ordered [MASK].
A: The user ordered two large pizza in the everything style;
two large pizza with mushrooms with extra cheese; six
large-sized cokes

Figure 3: Parse tree, canonical paraphrasing formula-
tion, multi-turn, and single-turn QA formulations for the
utterance “i would like two large pizzas with everything
and two large pizzas with mushrooms and extra cheese
and four large cokes” in the Pizza dataset. The Q′ ques-
tions are used for training with the MSP (masked span
prediction) objective.

model questions and having it generate arbitrary
answers, we rephrase the question-answer pair as a
declarative sentence where the answer is masked.
Thus, the model now has to denoise and recover the
masked segment. We show an example of this ap-
proach in Fig. 3. The Q’s are the original questions,
whereas the primed Q’s in red are the declarative

sentences with the answers masked out. The an-
swers to both Q’s and primed Q’s are the same, as
mask tokens cover the exact answers.

3.5 Converting Answers to Parse Trees

Single-turn QA. In single-turn QA, each sen-
tence of the answer concerns up to a fixed number
of levels in the parse tree. Take the Topv2 instance
in the bottom part of Fig.2 as a running example,
where each sentence contains three levels: The first
level is an intent node, the second level is its slots,
and the third level is the value of each slot. In
the first sentence, which always corresponds to the
root intent, we take what follows the phrase “The
user wants to” as the intent, in the part before the
first comma; the rest of the sentence is of the form
“where S is V ”, where S is the slot and V is the
value. We note that one slot could have multiple
values separated by semicolons, and for each value
we create one slot node. In the case where an intent
node doesn’t have slot children, the sentence sim-
ply stops after the first part. To expand subsequent
sentences into tree nodes, we make these sentences
start with “The intent in [subutterance] is”, so we
can traverse the parse tree to find the “[subutter-
ance]” node and expand the tree from there.

Multi-turn QA. In the multi-turn model, recon-
structing the parse tree is more straightforward.
We categorize all questions into three groups: the
first asking the intent for a (sub-)utterance, the sec-
ond asking the slots that appear in an intent, and
the third asking for the value given to a slot. We
parse the questions for an utterance sequentially
and identify the group to which each question be-
longs. When the question asks for the top-level
intent, we build the root node. When it asks for
the intent of a sub-utterance, we traverse the parse
tree to look for the leaf node containing the exact
text and add an intent child node (with the text as
a node attribute) from there. For a question from
the second group, we find the intent node whose
attribute has the same sub-utterance and append
the slots as its children. When the question asks
for a slot value, we traverse the parse tree again,
find which slot node they belong to, and add it as a
child node.

A final note for both single- and multi-turn QA:
When we detect invalid entities generated by the
QA models, we stop parsing and simply count such
an instance as an incorrect output.
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4 Experiments

We evaluate our method against two state-of-the-
art seq2seq techniques, one generating linearized
parse trees and the other generating canonical para-
phrases. We chose Topv2 and Pizza because they
are the only two task-oriented datasets we are aware
of with nested meaning representations that cannot
be produced by slot-filling approaches. We investi-
gate both multi- and single-turn QA. In the former,
a question aims to recover one or several nodes in
the parse tree; in single-turn QA, we only ask one
question to reconstruct the entire tree. Additionally,
we perform ablation analysis to evaluate the contri-
bution of each component, as described in Sec. 3.
We show that our method achieves superior perfor-
mance, particularly on those TOPv2 utterances that
have more nested semantics.

4.1 Datasets

The Topv2 Dataset. The Topv2 dataset (Chen
et al., 2020) is a collection of queries produced by
crowdsourced workers and intended for smart voice
assistants. Topv2 has compositional queries with
hierarchical meaning representations and extends
the original TOP dataset (Gupta et al., 2018) with
six additional domains. We present statistics for
each domain in Table 1. The eight domains vary
widely, including the number of samples (ranging
from 13k to 31k), the number of slots (from 5 to
33), and the portion of flat utterances. Accordingly,
when we convert Topv2 instances to multi-turn
QA instances, the average number of questions per
instance varies a lot across the domains. We test our
QA approach on Topv2 under the full-data setting
for all domains, and select four domains to study in
a few-shot setting, with only 10 samples per intent
and slot (10SPIS).

The Pizza Dataset. Pizza is a new TOP
dataset (Arkoudas et al., 2021) consisting of com-
plex utterances that order pizzas and drinks. Pizza
consists of 2.4M training examples that are syn-
thetically generated from a CFG, along with 348
dev examples and 1357 test examples generated
and annotated by MTurk workers. Although the
training set is large, we focus on few-shot settings
with 30, 50, and 100 examples randomly drawn
from the dev set. The low-resource setting is in-
deed challenging—the dev set has only 107 unique
slot values, whereas the test set has 180, requiring
models to generalize well.

4.2 Evaluation Metric

We use a standard metric for evaluating TOP per-
formance: unordered exact match accuracy (abbre-
viated as EM), which does a node-to-node compari-
son between the generated parse tree and the golden
parse tree, modulo sibling order. EM doesn’t take
partially correct parses into account, so given a
reference and a hypothesis, EM is either 0 or 1.

4.3 Implementation Details

We use the T5-large model (Raffel et al., 2020) as
the backbone of our QA framework. We choose a
learning rate between 5e-6 and 5e-4, a batch size
from {32, 64, 96, 128} for the full-data setting, and
a batch size from {8, 16, 24} for the few-shot set-
ting. We search for the best set of hyperparameters
with 16 random trials for each configuration. With
full data, we train single-turn models for 10 epochs
and multi-turn models for 30 epochs to select the
best-performing checkpoint on validation. For few-
shot learning, we train for 3000 steps and make a
checkpoint every 100 steps. We used 8 Tesla V100
GPUs with 32 GB memory for all our training.

4.4 Baselines

We consider two baselines. The first applies a
seq2seq model trained on logical forms (LFs) ex-
pressed in the “TOP-decoupled format,” which re-
moves from the parse tree all text that does not
appear in a leaf slot (Aghajanyan et al., 2020). For
this baseline, we use the BART-Large model de-
scribed by Lewis et al. (2020), because this model
is commonly used for TOP (Rongali et al., 2020;
Aghajanyan et al., 2020; Shrivastava et al., 2021),
and we also use T5-large, because that is the back-
bone of our QA implementation. This allows us
to eliminate any benefit that may be derived from
the architecture itself. The second baseline method
we consider generates canonical paraphrases of the
original utterances (Shin et al., 2021), and we use
T5-large to allow for a direct comparison.

Note that for Topv2 we only compare our
method against the first baseline, since that dataset
doesn’t have a canonical representation. Pizza does,
so for that dataset we compare our method against
both baselines (LFs in Top-decoupled notation and
canonical paraphrases). Since we’re not aware
of any existing results on the baseline methods
for individual Topv2 domains and for Pizza, we
implemented both with HuggingFace (Wolf et al.,
2020) and performed hyperparameter tuning with
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domain #inst #int #slt flat% depth #q/inst
alarm 30488 8 9 84% 2.16 3.28
event 13160 11 17 80% 2.37 6.55
message 14602 12 27 84% 2.23 3.97
music 17320 15 9 100% 1.98 2.81
navigation 30044 17 33 57% 2.68 6.18
reminder 26133 19 32 79% 2.45 7.67
timer 17392 11 5 96% 2.00 2.39
weather 31403 7 11 100% 1.93 3.16

Table 1: Domain statistics for Topv2. #q/inst is the aver-
age number of questions per utterance in multi-turn QA.
Navigation and reminder are two most nested domains.
Music and weather have completely flat utterances.

the same computation budget given to our method.

4.5 Main Results

We first present Topv2 results for both full-data
and few-shot settings. The baseline methods, la-
beled as BART/T5 LF, are trained on linearized
Top-decoupled trees. We include four variants of
the QA approach: ST QA and MT QA, as well as
MSP ST QA and MSP MT QA (the same as ST
and MT QA, except that the models are trained
on the the masked span prediction objective). We
report the full-data EM scores in Table 2 and the
10SPIS EM scores in Table 3. The relative gain is
computed between the best QA approach and the
best baseline approach in each domain.

In the full-data setting, all four QA variants out-
perform the baselines, with MSP ST QA having a
slight overall edge, exceeding the best baseline
method by 3.07 absolute points. We have the
largest relative gain (6.19%) in reminder. In gen-
eral, we see smaller improvements in the flatter
domains: music, weather, timer, alarm are the four
domains with the smallest semantic-tree depths,
and relative gains for these domains are below 3%.

We see that different QA approaches are close
to each other when we have enough data; ST QA
performs only marginally better than MT QA. How-
ever, ST QA has shorter latency and may therefore
be practically preferable.

We choose four representative domains to per-
form low-resource experiments. For 10SPIS, MSP
MT QA is a clear winner over the other approaches,
improving the best baseline method by 17.16 ab-
solute points. ST QA has the worst performance.
Our explanation is that ST QA requires the genera-
tion of long texts (longer than the Top-Decoupled
LFs), and it is too challenging to learn a complex
new task with only 10 instances per intent and slot.

Therefore, in a few-shot setting, the benefit of hav-
ing short answers is much clearer. Additionally,
it is worth noting that having an objective that is
well-aligned with the pretraining stage provides a
significant benefit. It improves MT QA by nearly 5
absolute points on average, and it is a game changer
for ST QA, in that with this one modification ST
QA achieves competitive performance in three out
of four domains.

We also test whether the inclusion of previous
answers and metadata into the context helps in few-
shot scenarios (the difference may be negligible
with full data). We remove answers to previous
questions (“w/o state”) and metadata (“w/o meta-
data”) from MT QA and report the scores obtained
from both changes. The results suggest that both
state and metadata make strong contributions to
performance. Excluding prior answers has a more
negative impact on average.

We note that our QA approach is very competi-
tive against state-of-the-art results in the literature.
For instance, the best reported result for 10SPIS
reminder is 61.47 (Chen et al., 2020)2, which was
achieved by first pretraining the model with six
source domains. We improved that result by 9 ab-
solute points while training only with the target
domain’s data.

We next report results on Pizza, where we com-
pare our approach against both LF-trained base-
lines (with LFs expressed in TOP-decoupled nota-
tion) and canonical paraphrases. Table 4 summa-
rizes results for three low-resource settings. We
obtain the greatest improvement with 30 training
examples, for a relative gain exceeding 8%. Consis-
tently with the Topv2 results, as more training ex-
amples become available the gap between the QA
approaches and the baselines shrinks. Even though
T5 Canonical and ST QA are similar, the results
show that including context information about an
order is beneficial, especially when there are fewer
training examples. MT QA has a slight edge over
ST QA here, as asking more questions mitigates
the burden of generating longer and more complex
sequences.

4.6 Additional Analysis: Depth vs. Accuracy

We investigate how our approach performs on full-
data Topv2 as a function of semantic depth. We
chose to perform the analysis on navigation and

2We only mention reminder because Chen et al. (2020)
don’t report 10SPIS results for the other domains.
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Alarm Event Message Music Navigation Reminder Timer Weather Average
BART LF 88.68 85.66 92.73 80.35 83.08 82.66 77.91 89.81 85.11
T5 LF 88.58 85.12 88.85 82.60 82.77 78.39 83.46 89.95 84.97
ST QA 90.38 88.58 95.44 82.83 85.35 84.98 83.61 91.94 87.89
MT QA 90.05 88.43 96.81 83.60 82.07 87.72 81.84 92.22 87.84
MSP ST QA 90.27 88.88 95.07 82.95 86.25 86.35 84.05 91.62 88.18
MSP MT QA 90.17 88.43 96.81 84.97 82.78 87.78 81.91 92.34 88.15
Relative Gain 1.79% 3.76% 4.40% 2.87% 3.82% 6.19% 0.71% 2.82% 3.29%

Table 2: Topv2 results with full data. MSP refers to the model trained on masked span prediction. The relative gain
for each domain is computed between the best QA variant and the best baseline method. The average is computed
across eight domains. The best numbers are in bold.

Alarm Navigation Reminder Weather Average
BART LF 45.82 44.89 51.46 62.75 51.23
T5 LF 59.34 37.04 46.81 57.47 50.17
ST QA 52.54 28.39 48.58 52.25 45.44
MT QA 60.57 55.56 69.72 81.89 66.94

w/o state 50.22 48.18 69.65 78.95 61.75
w/o metadata 52.19 52.87 68.81 79.53 63.35

MSP ST QA 65.91 30.46 58.74 74.35 57.37
MSP MT QA 62.13 60.16 70.48 80.78 68.39
Relative Gain 11.1% 34.0% 37.0% 30.5% 28.1%

Table 3: Topv2 results in the 10SPIS setting. For MT
QA, we include results obtained by removing previous
answers from the context (“w/o state”) and by removing
domain metadata.

30 50 100
BART LF 65.67 72.00 83.51
T5 LF 74.06 77.82 86.07
T5 Canonical 71.17 77.67 87.47
ST QA 77.30 81.58 89.75
MT QA 66.96 79.35 85.98
MSP ST QA 77.45 83.14 88.34
MSP MT QA 80.01 83.99 91.74
Relative gain 8.03% 7.93% 4.96%

Table 4: Pizza results in three few-shot settings (training
with 30, 50, and 100 examples).

D L #inst LF EM QA EM Rel. Gain

Navigation

1 5.35 790 84.56 82.27 -2.71%
2 8.60 2689 86.28 91.56 6.12%
3 9.58 569 88.40 90.15 1.98%
4 12.09 1905 77.80 81.67 4.97%
6 12.46 115 46.96 50.43 7.39%

Timer
1 5.48 190 76.84 75.26 -2.06%
2 5.70 3746 86.28 85.69 -0.68%
4 7.82 310 53.87 71.29 32.34%

Table 5: Topv2 full-data result analysis per depth level
for navigation and timer. The average utterance length
(L) and the number of test instances (#inst) are shown
for each depth (D). LF EM is from the best baseline
method and QA EM is from the best QA method.

timer because navigation has the greatest average
tree depth, and we want to explain why our method
gave the lowest improvements on timer.

We present the breakdown in Table 5, where

LF EM shows EM scores from the best baseline
method generating TOP-decoupled trees, and QA
EM shows EM scores from the best QA variant. For
utterances with shallow semantics, generating TOP-
decoupled trees outperforms QA; but as we move
towards deeper semantic structures, the benefit of
using a more naturalized representation becomes
evident. Indeed, for both navigation and timer, QA
performs best at the deepest level. Thus, for prac-
tical purposes, when the goal is to build a system
that achieves high accuracy across all utterance
groups, it is worth considering a combination of
conventional LF generation for shallow utterances
and a QA model for more complex utterances. We
define the length of an utterance to be the number
of words the utterance has. Table 5 lists the aver-
age utterance length for each depth, and shows that
input size is a good proxy for semantic complexity
(and could thus be used to quickly decide between
the two approaches).

5 Conclusion

We have presented a reduction of compositional
task-oriented parsing to abstractive QA, whereby
parse tree nodes are recovered by posing queries to
a QA model. We have also proposed to train QA
models with the MSP (masked span prediction)
objective, to better leverage the massive amount of
linguistic knowledge gained during pretraining. We
experimentally evaluated single-turn QA and multi-
turn QA on two public datasets, both in full-data
and in few-shot settings, with and without MSP,
and showed that they consistently outperform a
number of powerful baseline techniques, including
canonical paraphrasing, in both settings. The MSP
variants perform best on average, with particularly
dramatic improvements obtained in the few-shot
setting.
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