
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 4363 - 4374

July 10-15, 2022 ©2022 Association for Computational Linguistics

Joint Extraction of Entities, Relations, and Events
via Modeling Inter-Instance and Inter-Label Dependencies

Minh Van Nguyen1, Bonan Min2, Franck Dernoncourt3, and Thien Huu Nguyen1,4

1 Dept. of Computer and Information Science, University of Oregon, Eugene, OR, USA
2 Raytheon BBN Technologies, USA

3 Adobe Research, San Jose, CA, USA
4 VinAI Research, Vietnam

{minhnv,thien}@cs.uoregon.edu,
bonan.min@raytheon.com, dernonco@adobe.com

Abstract
Event trigger detection, entity mention recog-
nition, event argument extraction, and relation
extraction are the four important tasks in in-
formation extraction that have been performed
jointly (Joint Information Extraction - JointIE)
to avoid error propagation and leverage depen-
dencies between the task instances (i.e., event
triggers, entity mentions, relations, and event
arguments). However, previous JointIE models
often assume heuristic manually-designed de-
pendency between the task instances and mean-
field factorization for the joint distribution of
instance labels, thus unable to capture optimal
dependencies among instances and labels to
improve representation learning and IE per-
formance. To overcome these limitations, we
propose to induce a dependency graph among
task instances from data to boost representation
learning. To better capture dependencies be-
tween instance labels, we propose to directly
estimate their joint distribution via Conditional
Random Fields. Noise Contrastive Estimation
is introduced to address the maximization of the
intractable joint likelihood for model training.
Finally, to improve the decoding with greedy
or beam search in prior work, we present Simu-
lated Annealing to better find the globally opti-
mal assignment for instance labels at decoding
time. Experimental results show that our pro-
posed model outperforms previous models on
multiple IE tasks across 5 datasets and 2 lan-
guages.

1 Introduction

To extract structured information from unstructured
text, a typical information extraction (IE) pipeline
involves four major tasks: event trigger detection
(ETD), event argument extraction (EAE), entity
mention recognition (EMR), and relation extraction
(RE). Previous work has performed such IE tasks
via pipelined approaches (Li et al., 2013; Chen
et al., 2015; Du and Cardie, 2020; Li et al., 2020),
where a model for one task uses output predic-
tions from other models performing other tasks.

Consequently, errors from the predictions can be
propagated between the models in the pipeline.

Recently, ETD, EMR, EAE, and RE have been
solved jointly in a single model, i.e., Joint Infor-
mation Extraction - JointIE (Wadden et al., 2019;
Lin et al., 2020; Nguyen et al., 2021a; Zhang and
Ji, 2021), to avoid error propagation and leverage
dependency between prediction instances of the
four IE tasks (i.e., event trigger, entity mention,
relation, and event argument candidates in a sen-
tence). For example, if a Person entity mention is a
Victim argument for a Die event, it is likely that the
same entity mention is also a Target argument for
an Attack event in the same sentence. To implic-
itly exploit instance dependency for representation
learning, Wadden et al. (2019) and Lin et al. (2020)
employ a shared encoder to obtain representation
vectors to classify instances of different IE tasks.
Later work heuristically captures dependency be-
tween IE task instances via explicitly connecting
the task instances that share an entity mention or
event trigger (Nguyen et al., 2021a) or aligning the
task instances that share text spans with some nodes
on a semantic graph (Zhang and Ji, 2021) to aid
representation learning. While natural, these man-
ual designs for dependency between task instances
might not be optimal for representation learning of
JointIE.

In addition to representation learning, at the pre-
diction level, previous work tends to factorize the
joint distribution of labels for all the task instances
in JointIE into the product of label distributions
for each individual instance (i.e., performing local
normalization), thus hindering the ability to fully
exploit the interactions of instance labels across IE
tasks. (Lin et al., 2020) and (Zhang and Ji, 2021)
mitigate this problem by decoding instance labels
with handcrafted global features while (Nguyen
et al., 2021a) focuses on encoding label interactions
via consistency regularization over global type de-
pendency graphs. However, these approaches still

4363

One

house

was

destroyed

during

the

strike

and

casualties

have

been

removed

from

the

area

.

house

casualties

area

strike

(house, casualties)

(house, area)

(casualties, area)

(strike, house)

(strike, casualties)

(strike, area)

Indentifying Task Instances
Joint Modeling and Decoding

of Instance Labels
Inducing Instance Dependency

area

(strike, house)

strike

house

(house, area)

casualties

(casualties, area)(strike, area)

Event:Attack

EventArgument:Place

EventArgument:Target

Relation:Part-Whole

Relation:Physical

Entity:Facility

Entity:Person

Entity:GPE
area

(strike, house)

strike

house

(house, area)

casualties

(casualties, area)(strike, area)

Figure 1: Overview of the three stages in our proposed model: i) identifying task instances, ii) inducing instance
dependency, and iii) joint modeling and decoding of instance labels. Each node represents an instance for one of the
four IE tasks, and edges (with weights > 0.3) between nodes represent induced instance dependency.

assume a factorization of the joint label distribu-
tion for prediction instances, thus unable to funda-
mentally address the label dependency encoding
issue. Recently, some works have attempted to di-
rectly model the joint distribution of instance labels
by reformulating JointIE tasks as text generation
problems using state-of-the-art pre-trained seq2seq
models, e.g., BART or T5 (Lewis et al., 2020; Raf-
fel et al., 2020). In such generative models, text
spans and labels for task instances are generated by
the decoder in an autoregressive fashion to encode
label dependency for joint distribution computa-
tion (Lu et al., 2021; Hsu et al., 2021). Unfortu-
nately, this approach needs to assume an order of
the task instances to be decoded (e.g., from left to
right) that disallows later instances in the order to
interfere/correct predictions for earlier instances,
causing suboptimal performance for JointIE.

In this work, we aim to overcome these issues by
inducing dependency between the task instances
for JointIE from data to boost representation learn-
ing, and directly modeling the joint distribution of
the labels for all the task instances to fully enable la-
bel interactions. To this end, we consider each task
instance as a node in a fully connected dependency
graph; the weight for each edge is then learned
to capture the dependency level between two cor-
responding instances. Note that this is different
from prior work (Nguyen et al., 2021a; Zhang and
Ji, 2021) that heuristically designs sparser depen-
dency graphs with disconnected task instance pairs,
thus failing to explore all possible interactions be-
tween instance pairs for optimal representations.
In our method, the induced dependency graph for
instance nodes is then employed by Graph Con-
volutional Networks (GCNs) (Kipf and Welling,

2017; Nguyen and Grishman, 2018) to enhance the
representation for each instance node with infor-
mation from all the other nodes according to their
dependency levels. Afterwards, the enhanced in-
stance representations and the induced dependency
graph are utilized to estimate the joint distribution
of instance labels via Conditional Random Fields
(CRFs) (Lafferty et al., 2001). This formulation en-
ables us to approximately maximize the intractable
joint likelihood of the ground-truth instance labels
via Noise Contrastive Estimation (NCE) (Gutmann
and Hyvärinen, 2012), which converts the maxi-
mization problem into the nonlinear logistic regres-
sion discriminating between the true labels and the
noise labels.

Finally, previous work for JointIE has employed
a greedy or beam search for decoding instance la-
bels, which is not optimal due to their greedy nature.
In this work, we propose a novel decoding algo-
rithm for JointIE via Simulated Annealing (SA)
(Kirkpatrick et al., 1983), which has been shown
to be able to approximate the global optimum of a
function (Kirkpatrick et al., 1983; Van Laarhoven
and Aarts, 1987). Experimental results show that
our proposed model for JointIE significantly out-
performs previous models on multiple tasks with
large margins across 5 datasets and 2 languages.

2 Problem Statement

Given an input sentence, ETD aims to predict text
spans and event types for event triggers based on
a predefined set of event types, e.g., “Attack” and

“Transport” (Lai et al., 2020). Similarly, EMR seeks
to determine text spans and entity types (e.g., “Per-
son”, “Organization”) for entity mentions in the
sentence (Nguyen et al., 2016b). Different from the

4364

first two tasks, EAE and RE involves predictions
for a pair of objects at a time. Given an event trig-
ger and an entity mention, EAE aims to predict the
argument role (e.g, “Victim”) of the entity mention
for the event trigger (Veyseh et al., 2020c). An ar-
gument role can be “Not-an-argument” indicating
that the entity mention is not an argument for the
trigger. For RE (Veyseh et al., 2020a,b), the task
focuses on the classification of relation (e.g, “Work
for”) for a given pair of entity mentions. There is
also a special type “No-relation” to specify no rela-
tion between two entity mentions. As such, we call
the union set C of the predefined event types, en-
tity types, argument roles, and relation types as the
information types (excluding “Not-an-argument”
and “No-relation”).

3 Model

To capture dependency among task instances for
JointIE, an approach is to obtain all text spans for
entity/event mention candidates along with their
possible pairs to form the nodes for a dependency
graph to improve representation learning. How-
ever, this approach will retain many text spans for
non-entity/event mentions to introduce noise into
the modeling. It will also entail a large depen-
dency graph that can hinder the efficiency of the
model. To this end, our model for JointIE first
identifies text spans for entity mentions and event
triggers. Afterwards, all possible pairs of event-
entity and entity-entity mentions are considered to
identify positive pairs for event arguments and re-
lations respectively. The detected entity mentions,
event triggers, event arguments, and relations are
called task instances that should be classified to
obtain corresponding information types in C. In
our model, a dependency graph among the detected
task instances will be learned to provide inputs for
GCNs to compute dependency-enhanced represen-
tations for the task instances. Finally, the enhanced
representations will be used to compute a joint dis-
tribution over labels for all the task instances to
train our model. We will also employ Simulated
Annealing to achieve the global optimum for label
assignment of the task instances in the decoding
phase.

3.1 Identifying event and entity mentions

Given an input sentence w = [w1, . . . , wN] with
N words, we identify its event triggers and entity
mentions by solving two corresponding sequence

tagging problems for event and entity mentions.
In particular, we use the BIO tagging schema to
assign two labels to each word in w to mark the
text spans of event triggers and entity mentions,
i.e., {“B-TRIGGER”, “I-TRIGGER”, “O”} labels
for event triggers, and {“B-ENTITY”, “I-ENTITY”,

“O”} labels for entity mentions. The pre-trained
transformer-based language model BERT (Devlin
et al., 2019) is first utilized to obtain the contextu-
alized embeddings for the words in the sentence:
X = x1, . . . , xN = BERT([w1, . . . , wN]).

Next, the vector sequence X is sent to two dif-
ferent CRF layers (Lafferty et al., 2001; Chiu and
Nichols, 2016) to compute two distributions for
the tag sequences of w for event triggers and event
mentions. The negative log-likelihoods Lt and Le

for golden trigger and entity tag sequences are then
obtained to be included in the overall training loss.
At test time, the Viterbi algorithm (Forney, 1973)
is employed to determine the best tag sequences
for event triggers and event mentions in w.

Let V t and V e be the sets of text spans for event
triggers and entity mentions respectively in w (i.e.,
golden spans in the training time and predicted
spans in the test time). To prepare for the next com-
ponents, we compute the representations vectors
zti and zej for each event trigger/instance ti ∈ V t

and entity mention/instance ej ∈ V e respectively
by averaging over the contextualized embeddings
of the words inside the spans.

3.2 Identifying event arguments and relations

Given the detected event triggers and entity men-
tions, we obtain a representation vector zaij for each
pair of event-entity mentions aij = (ti, ej) (i.e.,
ti ∈ V t, ej ∈ V e), and a representation vector zrij
for each pair of entity-entity mentions rij = (ei, ej)
(i.e., ei, ej ∈ V e) via:

zaij = FFNdown
a (concat(zti, zej)) and zrij =

FFNdown
r (concat(zei , zej)).

Here, we use the feed-forward networks
FFNdown

a and FFNdown
r to make sure that zti,

zej , zaij , and zrij have the same dimensionality. Next,
the pair representation vectors zaij and zrij are sent
into two different feed-forward networks followed
by sigmoid activations to compute the possibili-
ties for being positive examples for event argu-
ments and relations of aij and rij respectively:
paij = σ(FFNa(zaij)), and prij = σ(FFNr(zrij)).
Here, paij ∈ (0, 1) is the probability for the en-
tity mention ej being an actual argument for the

4365

event trigger ti while prij ∈ (0, 1) is the likelihood
that there exists a relation of interest between the
entity mentions ei and ej . At training time, we
obtain the the negative log-likelihoods La and Lr

for the golden event argument and relation identi-
fication to be included in the overall loss function
for minimization. At test time, the event-entity pair
aij and entity-entity pair rij are retained as positive
examples for event arguments and relations if their
likelihooods paij and prij are greater than 0.5.

For convenience, let V a and V r be the sets of
positive event-entity pairs aij (called argument in-
stances) and entity-entity pairs rij (called relation
instances) respectively. Also, let V = V t ∪ V e ∪
V a ∪ V r be the set of all detected event, entity,
argument, and relation instances. For each instance
vi ∈ V , we will use vi for its corresponding in-
stance representation (i.e., from zti, zej , zaij , or zrij).

3.3 Inducing Instance Dependency

Given the detected event, entity, argument, and re-
lation instances in V , it remains to predict the infor-
mation types in C for the instances to solve JointIE.
While it is possible to directly employ the instance
representations vi for label prediction, our goal is
to exploit instance dependency in IE to enhance
the representation vector for one instance with the
information from other instances to facilitate type
prediction. In particular, using the instances vi in
V as the nodes in a dependency graph G, we aim
to enrich instance representations by feeding them
into a GCN model. As such, instead of assuming
a heuristic manually-designed dependency graph
among the instances as in previous work (Zhang
and Ji, 2021; Nguyen et al., 2021a), we propose to
automatically learn the dependency graphG for the
instances in V . To this end, our dependency graph
G is a fully connected graph among the nodes in
V where a weight αij ∈ (0, 1) is learned for each
edge to quantify the dependency between the in-
stances vi and vj in V . In this work, we present two
sources of information that can be used for deter-
mining the dependency between the task instances:
(i) semantic and (ii) syntactic information.
Semantic Information: The semantic-based
weight αsem

ij for the edge between vi and vj quanti-
fies their relatedness/dependency based on seman-
tic information, i.e., via the representation vec-
tors vi and vj : αsem

ij = FFN sem(concat(vi, vi)).
Here, FFN sem is a feed-forward network with the
sigmoid function in the end.

Syntactic Information: The syntax-based weight
αsyn
ij for the edge between vi and vj is computed

in a similar way as αsem
ij . In particular, for each

word wk ∈ w, we retrieve the dependency relation
dk between wk and its governor in the dependency
tree of w, which is generated by the Trankit’s de-
pendency parser (Nguyen et al., 2021b). We then
obtain the embedding mk of dk for wk by look-
ing up the learnable dependency embedding matrix
M. Afterwards, the syntax-based representation
vector ui for the instance vi ∈ V is computed via:
ui = max-poolwk∈SPANvi

(mk). Here, SPANvi

involves the words in the corresponding text span
of vi in w if vi is an event trigger or entity mention
instance. Otherwise, SPANvi contains the words
inside the text spans of the involving event triggers
and entity mentions in the pair for vi. As such, we
compute the syntax-based dependency weight αsyn

ij

for vi and vj via: αsyn
ij = FFN syn(concat(ui,ui))

where FFN syn is also a feed-forward network
with the sigmoid function in the end. Finally, we
combine the semantic- and syntax-based weights
to obtain the overall dependency weight αij for vi
and vj in V : αij = (αsem

ij + αsyn
ij)/2.

3.4 Enhancing Representations with GCNs
To enhance the representation vectors for the in-
stances vi ∈ V , a GCN model with K layers is
applied over the induced dependency graph G to
compute richer representations for the instances:

hk
i = ReLU(

∑
vj∈V αijWkhk−1

j + bk

∑
vj∈V αij

), 1 ≤ k ≤ K (1)

Here, hki is the representation for the instance vi at
the k-th layer of the GCN (h0

i ≡ vi), and Wk,bk

are trainable weight and bias for the layer.
In this way, representation information from all

the other instances vj (j ̸= i) will be incorporated
into the enhanced representation vector for vi ac-
cording to their learned dependency weights. Fi-
nally, the last layer’s representation hK

i ≡ hi (we
omit K for simplicity) is used to compute the score
vector si ∈ R|C| for vi, where si[c] measure the
possibility for vi to have the c-th label in the label
set C: si = FFN score(hi) (FFN score is a scor-
ing feed-forward network). The score vectors si
will later be used for modeling the joint distribution
of the labels for all the instances in V .

3.5 Computing Joint Distribution of Labels
Let Y be the set of labels yi for the instances vi in
V . To infer the labels for the instances in V , we

4366

need to estimate the joint distribution P (Y |w, V).
In previous work (Wadden et al., 2019; Lin et al.,
2020; Nguyen et al., 2021a; Zhang and Ji, 2021),
JointIE methods mostly focus on learning repre-
sentations for the task instances to compute a la-
bel distribution for each instance vi for predic-
tion: P (yi|w, V) := softmax(si) . This practice
essentially implies the following factorization for
P (Y |w, V): P (Y |w, V) =

∏
yi∈Y P (yi|w, V).

As a result, this factorization assumes the indepen-
dence of the instance labels, thus unable to fully
capture beneficial label dependency for IE tasks.

To address this issue, we directly estimate the
joint distribution P (Y |w, V) so that the depen-
dency between instance labels can be facilitated to
improve prediction performance. To this end, we
formulate the joint distribution P (Y |w, V) with
Conditional Random Fields (Lafferty et al., 2001):

P (Y |w, V) =
1

Z(V)

∏

(vi,vj)

ψij(yi, yj , V) (2)

where ψij(yi, yj , V) is a positive po-
tential function defined on the edge
(vi, vj) of the dependency graph G, and
Z(V) =

∑
Y ′∈CV

∏
(vi,vj)

ψij(y
′
i, y

′
j , V) is the

normalization term to make sure that P (Y |w, V)
is a valid probability distribution (CV is the set of
all possible label assignments Y for the instances
in V). Considering the instance information, the
instance dependency, and the label dependency, we
propose the potential function as:

ψij(yi, yj , V) := exp(si[yi] + sj [yj] + αijπyi↔yj) (3)

where si[yi] is the local score for instance vi be-
ing assigned with the label yi, αij is the induced
dependency weight for the edge (vi, vj) in G, and
πyi↔yj is a learnable transition score indicating the
dependency between the labels yi and yj . With this
formulation, we can derive the joint distribution
P (Y |w, V):

P (Y |w, V) =
exp(s(Y))∑

Y ′∈CV
exp(s(Y ′))

(4)

where:

s(Y) = γ
∑

vi∈V

si[yi] +
∑

(vi,vj)

αijπyi↔yj (5)

is the global score for the label assign-
ment/configuration Y of the instances. γ is a hyper-
parameter to balance the local and transition scores.

To train the model, we need to maximize
the joint likelihood in Equation (4) for the

golden label configuration Y ∗. However, this re-
quires the computation of the normalization term∑

Y ′∈CV
exp(s(Y ′)), which is intractable. To over-

come this issue, we employ Noise Contrastive Es-
timation (NCE) (Gutmann and Hyvärinen, 2012;
Mikolov et al., 2013). NCE converts the maximiza-
tion problem into the nonlinear logistic regression
that discriminates between the golden label config-
urations and the noise label configurations. In par-
ticular, the maximization of P (Y ∗|w, V) is done
with NCE via minimizing the contrastive loss:

LNC = −logσ(s(Y ∗))−
Nnoi∑

n=1

EY ′
n∼Pnoi

[
logσ(−s(Y ′

n))
]

(6)

where σ is the sigmoid function and Nnoi is the
number of noise configurations Y ′

n drawn from
Pnoi, assumed to be a uniform distribution. In-
tuitively, the minimization of LNC increases the
global score s(Y ∗) for the true label configuration
Y ∗ while decreasing the global scores s(Y ′) for the
noise label configurations Y ′ to appropriately train
the model. To the end, the overall loss function to
train our model is: L = Lt+Le+La+Lr+LNC .

Algorithm 1: Simulated Annealing Search
Input : Ŷ0 where ŷi,0 = argmaxc∈Csi[c].

1 Ŷcur ← Ŷ0; n← 1;
2 while n ≤ Niter do
3 t← T/n;
4 if t < ϵ then
5 return Ŷcur;
6 else
7 Ŷnew = random_successor(Ŷcur);
8 δn = s(Ŷnew)− s(Ŷcur);
9 if δn > 0 then

10 Ŷcur ← Ŷnew;
11 else
12 Ŷcur ← Ŷnew with p = exp(δn

t
) ;

13 end
14 end
15 n← n+ 1;
16 end
17 return Ŷcur .

3.6 Joint Decoding via Simulated Annealing
At inference time, we need to search for the con-
figuration Ŷ that has the highest global score s(Ŷ)
in CV : Ŷ = argmaxY ′∈CV

s(Y ′). A brute-force
search for Ŷ cannot be done as the search space
CV is exponentially large (|CV | = |C||V |). Previ-
ous work has made several attempts to deal with
this issue. (Wadden et al., 2019) and (Nguyen et al.,
2021a) simply perform greedy decoding for each

4367

instance label independently, thus unable to exploit
the label dependency. (Lin et al., 2020) and (Zhang
and Ji, 2021) resort to beam search that step by
step constructs a complete decoding assignment
Y for the instances in V by expanding an initially
empty assignment. Each step corresponds to an in-
stance in V where only top candidate labels for the
instance are considered for assignment expansion
and only top partial assignments produced so far
are kept for the next step. Unfortunately, the selec-
tion of top candidate labels for expansion at each
step is based only on the local scores si, which
might discard the candidates that can eventually
provide greater global scores. To overcome this
issue, we propose to apply Simulated Annealing
(SA) (Kirkpatrick et al., 1983) to search for the
optimal assignment Ŷ for V . SA is a probabilis-
tic algorithm that is able to approximately find the
global optimum of a function (Kirkpatrick et al.,
1983; Van Laarhoven and Aarts, 1987). Algorithm
1 presents our implementation for SA to find Ŷ .

Datasets Split #sents #ents #rels #events

ACE05-R
Train 10,051 26,473 4,788 -
Dev 2,424 6,362 1,131 -
Test 2,050 5,476 1,151 -

ACE05-E
Train 17,172 29,006 4,664 4,202
Dev 923 2,451 560 450
Test 832 3,017 636 403

ACE05-E+
Train 19,240 47,525 7,152 4,419
Dev 902 3,422 728 468
Test 676 3,673 802 424

ERE-EN
Train 14,219 38,864 5,045 6,419
Dev 1,162 3,320 424 552
Test 1,129 3,291 477 559

ERE-ES
Train 7,067 11,839 1,698 3,272
Dev 556 886 120 210
Test 546 811 108 269

Table 1: Data statistics. #sents, #ent, #rels, and #events
indicate the number of sentences, entity mentions, rela-
tions, and events respectively.

The input for the algorithm is the initial config-
uration Ŷcur = Ŷ0 = {ŷi,0}, which contains the
greedily predicted labels for each instance: ŷi,0 =
argmaxc∈Csi[c]. The algorithm then runs over
Niter iterations to improve the global score s(Ŷcur)
for the current label configuration Ŷcur. This is
done via updating the current configuration to a suc-
cessor configuration Ŷnew that gives a higher global
score (i.e., δn > 0). A successor configuration
is obtained via the function random_successor()
by randomly changing some label ŷi ∈ Ŷcur. Dif-
ferent from beam search decoding with partial as-
signments, each searching step in SA examines a
complete label assignment for the instances in V
to provide complete information to measure the

global scores/quality of the assignments. Impor-
tantly, SA sometimes allows the current configura-
tion to transition to a successor configuration with
a lower global score (i.e., δn ≤ 0) with an accep-
tance probability of p = exp(δnt). Here, t is the
temperature of the algorithm, gradually decreased
via t ← T/n (T is a hyper-parameter). This ex-
ploration property enables SA to escape from local
optimum configurations, thus increasing the chance
to find the globally optimal configuration Ŷ .

4 Experiments

Datasets: Following previous work (Wadden et al.,
2019; Lin et al., 2020; Zhang and Ji, 2021; Nguyen
et al., 2021a; Lu et al., 2021; Hsu et al., 2021), we
conduct experiments on 5 different datasets cre-
ated by the 2005 Automatic Content Extraction
(ACE05) (Walker et al., 2006) and Entity Relation
Event (ERE) (Song et al., 2015) programs. The
three ACE05 datasets feature ACE05-R, ACE05-
E, and ACE-E+, all in English, involving 33 event
types, 7 entity types, 6 relation types, and 22 argu-
ment roles. The two ERE datasets are ERE-EN
(English portion) and ERE-ES (Spanish portion),
introducing 38 event types, 7 entity types, 5 rela-
tion types, and 20 argument roles. We use the same
data processing and train/dev/test splits as the prior
work for a fair comparison. Detailed statistics for
the datasets are shown in Table 1.
Baselines: We compare our method, called Gra-
phIE, with the following baselines for JointIE:

Generative baselines: Text2event (Lu et al.,
2021) and DEGREE (Hsu et al., 2021). The gen-
erative baselines perform ETD and EAE via for-
mulating the tasks as text generation. The models
receive an input sentence and generate an output
text containing text spans and labels for event trig-
gers and event arguments, structured in a way that
a post-processing step can be used to extract ETD
and EAE predictions for the models.

Classification baselines: OneIE (Lin et al.,
2020), AMRIE (Zhang and Ji, 2021), and FourIE
(Nguyen et al., 2021a). The classification baselines
represent the instances for ETD, EMR, EAE, and
RE via a shared encoder and perform classification
for the instances based on task-specific label dis-
tributions. AMRIE and FourIE employ a heuristic
dependency graph among task instances to improve
representation learning. Dependency between in-
stance labels is exploited in OneIE and AMRIE via
a beam search decoding with manually-designed

4368

PLMs Model ACE05-R ACE05-E ACE05-E+ ERE-EN ERE-ES
Ent Rel Ent Trg Arg Ent Rel Trg Arg Ent Rel Trg Arg Ent Rel Trg Arg

T5 Text2event - - - 71.9 53.8 - - 71.8 54.4 - - 59.4 48.3 - - - -
BART DEGREE - - - 72.2 56.0 - - 71.7 58.0 - - 56.6 51.1 - - - -

BERT

OneIE 88.6 63.4 90.2 74.7 56.8 89.6 58.6 72.8 54.8 87.0 53.2 57.0 46.5 81.3 48.1 56.8 40.3
AMRIE* 88.7 67.2 90.8 75.3 58.2 90.4 62.9 72.8 56.3 86.9 55.5 58.3 44.2 - - - -
FourIE 88.9 68.9 91.3 75.4 58.0 91.1 63.6 73.3 57.5 87.4 56.1 57.9 48.6 82.2 57.9 57.1 42.3
GraphIE 88.9 69.5 90.6 75.7 58.8 91.0 65.4 74.8 59.9 87.2 57.8 61.4 52.2 81.4 58.9 61.3 45.7

RoBERTa

OneIE* 89.0 65.2 90.2 74.7 55.6 90.8 60.4 72.5 56.3 86.3 52.8 57.1 47.1 83.7 57.5 58.3 42.5
AMRIE 89.2* 66.8* 92.1 75.0 58.6 91.0* 62.8* 72.7* 57.7* 87.9 55.2 61.4 45.0 - - - -
FourIE* 89.1 67.5 91.6 74.9 58.7 91.1 63.1 72.8 58.3 88.0 56.2 61.5 49.1 83.9 61.0 62.3 44.2
GraphIE 89.3 68.5 91.4 75.1 59.4 91.6 66.0 73.3 60.2 87.7 57.0 62.0 54.7 84.3 62.3 65.7 46.9

Table 2: Model performance on the test data of 5 datasets. “Ent”, “Rel”, “Trg”, and “Arg” are the F1 scores for
identification and classification of entity mentions, event triggers, relations, and event arguments respectively. *
indicates results that are not reported in the original papers but produced by their official code. Underlined numbers
designate the tasks where GraphIE is significantly better (p < 0.01) than the baselines.

global features, and in FourIE via global type de-
pendency regularization. FourIE and AMRIE are
the current state-of-the-art models for JointIE.
Hyper-parameters: Prior work for JointIE em-
ploys two different versions of pre-trained language
models (PLM), i.e., BERT (Devlin et al., 2019; Lin
et al., 2020; Nguyen et al., 2021a) and RoBERTa
(Liu et al., 2019; Zhang and Ji, 2021), which might
cause incompatible compassion. To this end, we ex-
plore both BERT and RoBERTa to obtain the word
representations xi for GraphIE for a fair compar-
ison. For the Spanish ERE-ES dataset, following
prior work (Lin et al., 2020; Nguyen et al., 2021a),
we utilize the multilingual versions of BERT and
RoBERTa. For each PLM, we fine-tune the hyper-
parameter for GraphIE on the development data.

In particular, the best values for the hyper-
parameters of the proposed model are reported as
follows. We employ the learning rate of 1e− 5 for
the models with the BERT-based PLM (i.e., using
bert-large-cased and bert-multilingual-cased) and
the learning rate of 5e− 6 for the RoBERTa-based
PLM (i.e., using roberta-large and xlm-roberta-
large). For other hyper-parameters, our tuning pro-
cess results in the same values for BERT-based and
RoBERT-based models: Adam (Kingma and Ba,
2014) for the optimizer, batch size of 10, 100 for
the size of the dependency relation embeddings,
400 for the size of the hidden vector for the feed-
forward networks, 200 for the hidden vector size
in the GCN model, 2 for the number of layers for
the feed-forward networks and GCN model, γ = 1
for the trade-off hyper-parameter for the global
score, Nnoi = 5 for the number of noise examples
for the contrastive loss (we re-sample the noise
examples every epoch), T = 5 for the initial tem-
perature, Niter = 50 for the number of iterations
of Simulated Annealing (SA), and ϵ = 0.1 for the
temperature threshold for the SA decoding.

Comparison with Baselines: We compare the pro-
posed model GraphIE with the baselines on test
data of the 5 datasets in Table 2. As can be seen,
the generative baselines perform worse than the
classification models on most of the settings. This
might be due the implicit modeling of the label
distributions and the assumption of a decoding or-
der for task instances that limit the interactions of
instance labels. Comparing OneIE, FourIE and AM-
RIE, it is clear that the exploitation of instance and
label dependency in the training phase in FourIE
can lead to better performance for JointIE than
using such dependency in the decoding phase as
done by OneIE and AMRIE over most tasks and
PLMs. Most importantly, the proposed GraphIE
significantly outperforms all the baselines across a
majority of settings for tasks, datasets and PLMs,
thus demonstrating the benefits of induced depen-
dency graph, joint label distribution estimation, and
simulated annealing for decoding in our method.

Model (all use Roberta) ACE05-E+
Ent Rel Trg Arg

GraphIE 89.8 67.2 72.6 66.3
- induced dep 89.3 65.8 71.3 65.0
- semantic-based dep 89.0 66.4 71.6 65.9
- syntactic-based dep 89.4 66.3 72.0 65.4
- induced dep + heuristic dep 89.3 66.2 71.7 65.5
- GCN 89.4 65.6 70.9 64.6

Table 3: Performance (F1) on the ACE05-E+ develop-
ment data.

Ablation Study: To understand the contributions
of each proposed component to GraphIE, we con-
duct ablation experiments where we remove each
component from the full model and evaluate the
performance of the remaining models.

The first three ablated models in Table 3 are “-
induced dep”, “- semantic dep”, and “- syntac-
tic dep”, formed by excluding the dependency
weight induction of αij (i.e., setting αij = 1),

4369

the semantic-based dependency αsem
ij , and the

syntactic-based dependency αsyn
ij (respectively)

from the model computation. In each case, the
performance of GraphIE decreases significantly;
the removal of both semantic- and syntactic-based
dependency in “- induced dep” leads to the largest
performance drop. This shows that the semantic
and syntactic weighting captures complementary
information for instance dependency induction that
is useful for our model. The next ablated model

“- induced dep + heuristic dep” is obtained by re-
placing the induced dependency graph represented
by αij with the heuristic dependency graph for in-
stances from the best baseline FourIE. The decrease
in the performance of this model suggests that the
induced dependency graph is better than the heuris-
tic graph for JointIE. The final ablated model “-
GCN” in Table 3 eliminates the GCN component
from our full model. The result shows that GCN is
beneficial to exploit the induced dependency graph
to improve representation learning.

Model (all use Roberta) ACE05-E+
Ent Rel Trg Arg

GraphIE 89.8 67.2 72.6 66.3
- joint distribution 89.3 65.5 70.9 64.5
- SA + greedy 89.2 65.9 71.2 65.2
- SA + beam 89.5 66.0 71.5 65.4
- SA + hill climbing 89.5 66.8 71.7 65.3
OneIE 88.7 64.2 69.5 63.2
- beam + SA 88.1 63.9 69.1 62.7
AMRIE 89.4 65.4 71.2 64.4
- beam + SA 88.8 65.1 70.5 64.1

Table 4: Performance (F1) on the ACE05-E+ develop-
ment data.

In Table 4, we first eliminate the computation of
the joint label distribution P (Y |w, V) from Gra-
phIE. As such, the “- joint distribution” model
employs the local label distributions P (yi|w, V) to
train models and infer labels (with greedy decod-
ing). Due to the significantly worse performance
of “- joint distribution”, it is clear that directly es-
timating the joint label distribution is helpful for
JointIE. To evaluate the benefit of the proposed
SA, we replace it with other decoding algorithms
for GraphIE, including greedy search, beam search
and hill climbing. The beam search is implemented
with our global score function s(Y) and follows
those in (Lin et al., 2020; Zhang and Ji, 2021) while
hill climbing is implemented by removing the con-
figuration exploration in lines 11-12 of Algorithm
1. As reported in Table 4, SA performs much better
than other decoding algorithms for GraphIE, thus

demonstrating SA’s ability to find globally optimal
labels. In addition, we also attempt to replace the
beam search decoding in OneIE and AMRIE with
SA, which indeed leads to worse performance for
such models as shown in the last four rows of Table
4. We attribute this to the learning of the global
scores for configurations in OneIE and AMRIE that
involves a limited set of predefined global features.
Such features do not exist for many possible as-
signments Y for V , thus causing poor global score
computation and hindering the configuration rank-
ing critically required by SA.

Label pair Transition score
(Argument:Origin, Argument:Place) 10.02
(Event:Transport, Relation:Physical) 4.33
(Relation:Org-Aff, Relation:Part-Whole) 3.58
(Event:Execute, Event:Sentence) 2.58
(Event:Die, Event:Be-Born) -2.34
(Event:Attack, Argument:Origin) -87.07
(Relation:Per-Soc, Entity:Facility) -93.93
(Transport, Attacker) -99.91

Table 5: Transition scores for some label pairs learned
by our model on ACE05-E+.

Analysis: To further understand the advantages of
GraphIE over baseline models, we manually ana-
lyze the instances on the ACE05-E+ development
data where GraphIE can make correct predictions,
but the best baseline model FourIE fails. Figure
2 presents some instances along with their edges
and weights in the dependency graphs. The most
important insight from our analysis is that GraphIE
is able to connect an instance (e.g., blew) with other
supporting instances (e.g., suicide) in the depen-
dency graph to provide vital information to facili-
tate correct prediction. Such supporting instances
do not share any event trigger or entity mention
with the current instance that cannot establish links
in FourIE and lead to failure predictions.

Finally, Table 5 shows the transition scores
πyi↔yj learned by GraphIE for some label pairs
in ACE05-E+. The table show that our model is
able to learn high scores for correlated label pairs
(e.g., the Execute and Sentence event types) and
very low scores for uncorrelated label pairs (e.g.,
an argument for a Transport event cannot play the
role Attacker).

5 Related Work

Capturing dependency between IE tasks has been
a main focus of previous work on Joint IE. Early
work employed feature engineering methods (Roth
and Yih, 2004; Yu and Lam, 2010; Li et al., 2013;

4370

Example GraphIE FourIE

In the January attack, two Palestinian suicide bombers blew themselves

up in central Tel Aviv, killing 23 other people.

Explanation: “blew” is correctly predicted by GraphIE as a “Die”

event trigger while FourIE incorrectly predicted it as an “Attack” event

trigger.

We pretty much know that Marinello, while on the board, has arranged to

get future money from the USCF.

Explanation: The relation between “Marinello” and “USCF” is

correctly predicted by GraphIE as a “ORG-AFF” relation while FourIE

incorrectly predicted it as a “GEN-AFF” relation.

A second rocket landed in farmlands and the other hit a house inside the

refugee camp, …

Explanation: “other” is correctly predicted by GraphIE as an

“Instrument” for the event trigger “hit” while FourIE incorrectly

predicted it as an “Attacker” for the event trigger “hit”.

(blew, themselves)

suicide

(blew, bombers)

(blew, Tel Aviv)

Event:Die

blew

(blew, themselves)

suicide

(blew, bombers)

(blew, Tel Aviv)

Event:Attack

blew

0.49

0.56

0.74

0.33

1.0

1.0
1.0

Marinello USCF

board

(Marinello, USCF)

Relation:ORG-AFF

Marinello USCF

board

(Marinello, USCF)

Relation:GEN-AFF

1.0 1.00.86 0.85
0.61

EventArgument:Instrument

hit

other
rocket

(hit, other)

EventArgument:Attacker

hit

other
rocket

(hit, other)

0.75
0.82

0.64

1.0 1.0

1.0

1.0

Figure 2: Instances along with their dependency subgraphs in ACE05-E+. Supporting instances are underlined.

Yang and Mitchell, 2016). Later work applied deep
learning via shared parameters to facilitate joint
modeling for IE, however, for only two or three
tasks (Nguyen et al., 2016a; Zheng et al., 2017;
Bekoulis et al., 2018; Luan et al., 2019; Zhang
et al., 2019; Nguyen and Nguyen, 2019). Recently,
the four IE tasks have been solved jointly (Wadden
et al., 2019; Lin et al., 2020; Zhang and Ji, 2021;
Paolini et al., 2021; Lu et al., 2021; Nguyen et al.,
2021a). However, such recent works only employ
heuristics to manually design dependency graphs
for instances. Mean-field factorization of the joint
label distribution for JointIE instances is dominant
in prior work.

Our work is also related to prior work that uses
CRFs (Lafferty et al., 2001; Chiu and Nichols,
2016) to estimate joint distribution of instance la-
bels. Sequence labeling is a typical problem that
has been solved by CRFs, including part of speech
tagging and named entity recognition (Lafferty
et al., 2001; Ekbal et al., 2007; Shishtla et al., 2008;
Sobhana et al., 2010; Zea et al., 2016; Chiu and
Nichols, 2016; Xu et al., 2017). However, these
prior work only employ CRFs for simple graph
structures (i.e., linear chains). A few prior work
has considered CRFs for more complicated graph
structures (Sun et al., 2017; Gao et al., 2019; Qu
et al., 2019; Yuan and Ji, 2020); however, none of
such works has applied CRFs for JointIE as we do.

6 Conclusion

We propose a novel model for jointly solving four
IE tasks (EMR, ETD, EAE, and RE). Our proposed
model learns a dependency graph among the in-

stances of the tasks via a novel edge weighting
mechanism. We also estimate the joint distribu-
tion among instance labels to fully enable inter-
actions between instance labels for improved per-
formance. The experimental results show that our
model achieves best performance for multiple Join-
tIE tasks across 5 datasets and 2 languages. In the
future, we plan to extend our method to cover more
IE tasks such as event coreference resolution.

Acknowledgement

This research has been supported by the Army Re-
search Office (ARO) grant W911NF-21-1-0112
and the NSF grant CNS-1747798 to the IU-
CRC Center for Big Learning. This research is
also based upon work supported by the Office
of the Director of National Intelligence (ODNI),
Intelligence Advanced Research Projects Activ-
ity (IARPA), via IARPA Contract No. 2019-
19051600006 under the Better Extraction from Text
Towards Enhanced Retrieval (BETTER) Program.
The views and conclusions contained herein are
those of the authors and should not be interpreted
as necessarily representing the official policies, ei-
ther expressed or implied, of ARO, ODNI, IARPA,
the Department of Defense, or the U.S. Govern-
ment. The U.S. Government is authorized to re-
produce and distribute reprints for governmental
purposes notwithstanding any copyright annotation
therein. This document does not contain technol-
ogy or technical data controlled under either the
U.S. International Traffic in Arms Regulations or
the U.S. Export Administration Regulations.

4371

References
Giannis Bekoulis, Johannes Deleu, Thomas Demeester,

and Chris Develder. 2018. Adversarial training for
multi-context joint entity and relation extraction. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing.

Yubo Chen, Liheng Xu, Kang Liu, Daojian Zeng, and
Jun Zhao. 2015. Event extraction via dynamic multi-
pooling convolutional neural networks. In Proceed-
ings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Pro-
cessing.

Jason PC Chiu and Eric Nichols. 2016. Named entity
recognition with bidirectional lstm-cnns. In Transac-
tions of the Association for Computational Linguis-
tics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies.

Xinya Du and Claire Cardie. 2020. Event extraction by
answering (almost) natural questions. In Proceedings
of the 2020 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 671–683,
Online. Association for Computational Linguistics.

Asif Ekbal, Rejwanul Haque, and Sivaji Bandyopad-
hyay. 2007. Bengali part of speech tagging using
conditional random field. In Proceedings of the sev-
enth International Symposium on Natural Language
Processing, SNLP-2007.

G David Forney. 1973. The viterbi algorithm. Proceed-
ings of the IEEE, 61(3):268–278.

Hongchang Gao, Jian Pei, and Heng Huang. 2019. Con-
ditional random field enhanced graph convolutional
neural networks. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 276–284.

Michael U Gutmann and Aapo Hyvärinen. 2012. Noise-
contrastive estimation of unnormalized statistical
models, with applications to natural image statistics.
Journal of Machine Learning Research, 13(2).

I Hsu, Kuan-Hao Huang, Elizabeth Boschee, Scott
Miller, Prem Natarajan, Kai-Wei Chang, Nanyun
Peng, et al. 2021. Degree: A data-efficient gen-
erative event extraction model. arXiv preprint
arXiv:2108.12724.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In Proceedings of the 5th International
Conference on Learning Representations.

Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vecchi.
1983. Optimization by simulated annealing. science,
220(4598):671–680.

John Lafferty, Andrew McCallum, and Fernando CN
Pereira. 2001. Conditional random fields: Proba-
bilistic models for segmenting and labeling sequence
data.

Viet Dac Lai, Tuan Ngo Nguyen, and Thien Huu
Nguyen. 2020. Event detection: Gate diversity and
syntactic importance scores for graph convolution
neural networks. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP).

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Fayuan Li, Weihua Peng, Yuguang Chen, Quan Wang,
Lu Pan, Yajuan Lyu, and Yong Zhu. 2020. Event
extraction as multi-turn question answering. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: Findings,
pages 829–838.

Qi Li, Heng Ji, and Liang Huang. 2013. Joint event
extraction via structured prediction with global fea-
tures. In Proceedings of the 51th Annual Meeting of
the Association for Computational Linguistics.

Ying Lin, Heng Ji, Fei Huang, and Lingfei Wu. 2020.
A joint neural model for information extraction with
global features. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Yaojie Lu, Hongyu Lin, Jin Xu, Xianpei Han, Jialong
Tang, Annan Li, Le Sun, Meng Liao, and Shaoyi
Chen. 2021. Text2event: Controllable sequence-to-
structure generation for end-to-end event extraction.
arXiv preprint arXiv:2106.09232.

Yi Luan, Dave Wadden, Luheng He, Amy Shah, Mari
Ostendorf, and Hannaneh Hajishirzi. 2019. A general
framework for information extraction using dynamic
span graphs. In Proceedings of the 2019 Conference
of the North American Chapter of the Association

4372

https://doi.org/10.18653/v1/2020.emnlp-main.49
https://doi.org/10.18653/v1/2020.emnlp-main.49
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703

for Computational Linguistics: Human Language
Technologies.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositionality.
In Advances in neural information processing sys-
tems, pages 3111–3119.

Minh Van Nguyen, Viet Lai, and Thien Huu Nguyen.
2021a. Cross-task instance representation interac-
tions and label dependencies for joint information
extraction with graph convolutional networks. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 27–38, Online. Association for Computational
Linguistics.

Minh Van Nguyen, Viet Dac Lai, Amir Pouran Ben
Veyseh, and Thien Huu Nguyen. 2021b. Trankit: A
light-weight transformer-based toolkit for multilin-
gual natural language processing. In Proceedings of
the 16th Conference of the European Chapter of the
Association for Computational Linguistics: System
Demonstrations.

Thien Huu Nguyen, Kyunghyun Cho, and Ralph Grish-
man. 2016a. Joint event extraction via recurrent neu-
ral networks. In Proceedings of the 2016 Conference
of the North American Chapter of the Association for
Computational Linguistics.

Thien Huu Nguyen and Ralph Grishman. 2018. Graph
convolutional networks with argument-aware pool-
ing for event detection. In Proceedings of the AAAI
Conference on Artificial Intelligence.

Thien Huu Nguyen, Avirup Sil, Georgiana Dinu, and
Radu Florian. 2016b. Toward mention detection ro-
bustness with recurrent neural networks. In Proceed-
ings of IJCAI Workshop on Deep Learning for Artifi-
cial Intelligence (DLAI).

Trung Minh Nguyen and Thien Huu Nguyen. 2019.
One for all: Neural joint modeling of entities and
events. In Proceedings of the Association for the
Advancement of Artificial Intelligence (AAAI).

Giovanni Paolini, Ben Athiwaratkun, Jason Krone,
Jie Ma, Alessandro Achille, Rishita Anubhai, Ci-
cero Nogueira dos Santos, Bing Xiang, and Stefano
Soatto. 2021. Structured prediction as translation
between augmented natural languages. In 9th Inter-
national Conference on Learning Representations,
ICLR 2021.

Meng Qu, Yoshua Bengio, and Jian Tang. 2019. Gmnn:
Graph markov neural networks. In International
conference on machine learning, pages 5241–5250.
PMLR.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text

transformer. Journal of Machine Learning Research,
21(140):1–67.

Dan Roth and Wen-tau Yih. 2004. A linear program-
ming formulation for global inference in natural lan-
guage tasks. In Proceedings of the Eighth Conference
on Computational Natural Language Learning.

Praneeth M Shishtla, Karthik Gali, Prasad Pingali, and
Vasudeva Varma. 2008. Experiments in telugu ner:
A conditional random field approach. In Proceedings
of the IJCNLP-08 Workshop on Named Entity Recog-
nition for South and South East Asian Languages.

N Sobhana, Pabitra Mitra, and SK Ghosh. 2010. Condi-
tional random field based named entity recognition in
geological text. International Journal of Computer
Applications, 1(3):143–147.

Zhiyi Song, Ann Bies, Stephanie Strassel, Tom Riese,
Justin Mott, Joe Ellis, Jonathan Wright, Seth Kulick,
Neville Ryant, and Xiaoyi Ma. 2015. From light
to rich ERE: Annotation of entities, relations, and
events. In Proceedings of the The 3rd Workshop on
EVENTS: Definition, Detection, Coreference, and
Representation, pages 89–98, Denver, Colorado. As-
sociation for Computational Linguistics.

Xiaofeng Sun, Xiangguo Lin, Shuhan Shen, and Zhanyi
Hu. 2017. High-resolution remote sensing data clas-
sification over urban areas using random forest en-
semble and fully connected conditional random field.
ISPRS International Journal of Geo-Information,
6(8):245.

Peter JM Van Laarhoven and Emile HL Aarts. 1987.
Simulated annealing. In Simulated annealing: The-
ory and applications, pages 7–15. Springer.

Amir Pouran Ben Veyseh, Franck Dernoncourt, Dejing
Dou, and Thien Huu Nguyen. 2020a. Exploiting the
syntax-model consistency for neural relation extrac-
tion. In Proceedings of the Annual Meeting of the
Association for Computational Linguistics (ACL).

Amir Pouran Ben Veyseh, Franck Dernoncourt,
My Thai, Dejing Dou, and Thien Huu Nguyen. 2020b.
Multi-view consistency for relation extraction via
mutual information and structure prediction. In Pro-
ceedings of the Association for the Advancement of
Artificial Intelligence (AAAI).

Amir Pouran Ben Veyseh, Tuan Ngo Nguyen, and
Thien Huu Nguyen. 2020c. Graph transformer net-
works with syntactic and semantic structures for
event argument extraction. In Proceedings of the
Findings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP Find-
ings).

David Wadden, Ulme Wennberg, Yi Luan, and Han-
naneh Hajishirzi. 2019. Entity, relation, and event
extraction with contextualized span representations.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics.

4373

https://doi.org/10.18653/v1/2021.naacl-main.3
https://doi.org/10.18653/v1/2021.naacl-main.3
https://doi.org/10.18653/v1/2021.naacl-main.3
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.3115/v1/W15-0812
https://doi.org/10.3115/v1/W15-0812
https://doi.org/10.3115/v1/W15-0812

Christopher Walker, Stephanie Strassel, Julie Medero,
and Kazuaki Maeda. 2006. Ace 2005 multilingual
training corpus. In Technical report, Linguistic Data
Consortium.

Kai Xu, Zhanfan Zhou, Tianyong Hao, and Wenyin Liu.
2017. A bidirectional lstm and conditional random
fields approach to medical named entity recognition.
In International Conference on Advanced Intelligent
Systems and Informatics, pages 355–365. Springer.

Bishan Yang and Tom M. Mitchell. 2016. Joint extrac-
tion of events and entities within a document context.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies.

Xiaofeng Yu and Wai Lam. 2010. Jointly identifying
entities and extracting relations in encyclopedia text
via a graphical model approach. In Proceedings of
the 23th International Conference on Computational
Linguistics.

Hao Yuan and Shuiwang Ji. 2020. Structpool: Struc-
tured graph pooling via conditional random fields. In
Proceedings of the 8th International Conference on
Learning Representations.

Jenny Linet Copara Zea, Jose Eduardo Ochoa Luna,
Camilo Thorne, and Goran Glavaš. 2016. Spanish
ner with word representations and conditional ran-
dom fields. In Proceedings of the sixth named entity
workshop, pages 34–40.

Junchi Zhang, Yanxia Qin, Yue Zhang, Mengchi Liu,
and Donghong Ji. 2019. Extracting entities and
events as a single task using a transition-based neural
model. In Proceedings of the Twenty-Eighth Interna-
tional Joint Conference on Artificial Intelligence.

Zixuan Zhang and Heng Ji. 2021. Abstract meaning
representation guided graph encoding and decoding
for joint information extraction. In Proceedings of
the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 39–49.

Suncong Zheng, Feng Wang, Hongyun Bao, Yuexing
Hao, Peng Zhou, and Bo Xu. 2017. Joint extraction
of entities and relations based on a novel tagging
scheme. In Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics.

4374

