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Abstract
As a fundamental task in opinion mining, as-
pect and opinion co-extraction aims to identify
the aspect terms and opinion terms in reviews.
However, due to the lack of fine-grained an-
notated resources, it is hard to train a robust
model for many domains. To alleviate this is-
sue, unsupervised domain adaptation is pro-
posed to transfer knowledge from a labeled
source domain to an unlabeled target domain.
In this paper, we propose a new Generative
Cross-Domain Data Augmentation framework
for unsupervised domain adaptation. The pro-
posed framework is aimed to generate target-
domain data with fine-grained annotation by ex-
ploiting the labeled data in the source domain.
Specifically, we remove the domain-specific
segments in a source-domain labeled sentence,
and then use this as input to a pre-trained
sequence-to-sequence model BART to simul-
taneously generate a target-domain sentence
and predict the corresponding label for each
word. Experimental results on three datasets
demonstrate that our approach is more effec-
tive than previous domain adaptation meth-
ods. The source code is publicly released at
https://github.com/NUSTM/GCDDA.

1 Introduction

Aspect and opinion co-extraction is a fundamental
task in opinion mining. It aims to extract aspect
terms and opinion terms from review sentences.
Given a review “the keyboard is great”, the aspect
term is keyboard and the opinion term is great.
Most existing works formulate aspect and opinion
co-extraction as a sequence labeling task. With the
support of deep learning, many supervised methods
have achieved remarkable results (Liu et al., 2015;
Yin et al., 2016; Wang et al., 2017; Wu et al., 2020).
However, owing to the high cost of fine-grained
annotations, the scarcity of labeled data in many
new domains makes them fail to obtain a robust
performance.

∗Corresponding authors.

To alleviate the deficiency of labeled data, unsu-
pervised domain adaptation is proposed to transfer
knowledge from a labeled source domain to an un-
labeled target domain. The main difficulty of unsu-
pervised domain adaptation lies in the distribution
discrepancy between data from different domains.
Specifically, reviews from different domains may
have distinct aspect terms, opinion terms, and ex-
pression patterns. To tackle the distribution discrep-
ancy problem, many domain adaptation methods
were proposed for coarse-grained sentiment classi-
fication (Blitzer et al., 2007; Yu and Jiang, 2016;
Ziser and Reichart, 2018; Ghosal et al., 2020).
However, due to the complexity of fine-grained
domain adaptation for aspect and opinion extrac-
tion, only a handful of studies attempt to address
this issue. Most of them are based on the following
three paradigms:

• rule-based adaptation, which iteratively ex-
tracts aspects and opinions in sentences based
on domain-independent syntactic rules and
opinion dictionary (Li et al., 2012; Ding et al.,
2017).

• feature-based adaptation, which incorporates
the general syntactic information to learn a
domain-invariant word representation across
domains (Wang and Pan, 2018; Li et al., 2019;
Pereg et al., 2020; Chen and Qian, 2021).

• data augmentation-based adaptation, which
utilizes the labeled data in the source domain
to directly generate high-quality target-domain
data with fine-grained annotation (Yu et al.,
2021).

However, the paradigms mentioned above suffer
from the following problems. For rule-based adap-
tation methods, it is difficult to design high-quality
manual rules and opinion set, which may bring
low precision results. For feature-based adaptation
methods, although they can bridge the domain gap
by using the unlabeled data from both domains, the
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main task classifier is only trained by the source
labeled data, which fails to exploit the important
supervision signals in the target domain. Although
our recent work (Yu et al., 2021) has shown the
superiority of data augmentation-based adaptation
methods, its main limitation lies in that it only re-
places source-specific aspects and opinions in the
source domain review with target-specific aspects
and opinions, but ignoring other domain-specific at-
tributes such as collocations and expression styles,
which limits the quality and diversity of generated
target-domain data.

To this end, we propose a Generative Cross-
Domain Data Augmentation framework for unsu-
pervised domain adaptation, which generates tar-
get labeled data from source labeled data based
on a pre-trained sequence-to-sequence model, i.e.,
BART (Lewis et al., 2020). Specifically, given
the labeled samples in the source domain, we first
train a classifier to assign pseudo labels for each
unlabeled sample in the target domain. With the
labeled and pseudo labeled samples from both
domains, we then remove their domain-specific
features to obtain domain-independent samples.
Next, we employ the BART model by feeding the
domain-independent samples and their token la-
bels to the encoder and reconstructing their origi-
nal texts and corresponding labels in the decoder.
In the inference stage, given a source-domain sen-
tence in which the domain-specific features are
removed, the model can generate a target-domain
sentence by integrating target-specific features into
the source context while predicting its token-level
labels. Compared with the previous method (Yu
et al., 2021), our new approach generates high-
quality target-domain data with more flexible syn-
tactic patterns by making full use of the knowledge
from the domain-invariant source contexts. With
the label prediction, our approach can easily ob-
tain the adaptive token labels for each generated
target-domain sample.

Our main contributions in this work can be sum-
marized as follows:

• We propose a Generative Cross-Domain Data
Augmentation framework for unsupervised do-
main adaptation, which exploits the pre-trained
sequence-to-sequence model BART to generate
the target-domain data with fine-grained anno-
tation based on the labeled source-domain data.

• Extensive experiments on three datasets of as-
pect and opinion co-extraction demonstrate the

effectiveness of our generative framework. Fur-
ther analysis shows that our framework is able
to generate more fluent and diversified target-
domain samples than previous approaches.

2 Related Work

2.1 Aspect and Opinion Extraction

Aspect and opinion extraction is an fundamental
task in opinion mining, which is widely studied in
the literature. Unsupervised learning methods have
been proposed to extract aspect and opinion terms
by association rule and extended opinions (Hu and
Liu, 2004) or by manual syntactic rules and pre-
defined opinion dictionary (Qiu et al., 2011). With
the constant attention on deep learning, many su-
pervised approaches have achieved remarkable re-
sults (Liu et al., 2015; Zhang et al., 2015; Yin et al.,
2016; Wang et al., 2017; Yu et al., 2018; Wu et al.,
2020). However, the deficiency of annotated data
in many domains make them fail to achieve desired
results.

2.2 Domain Adaptation

To solve the issue mentioned above, many domain
adaptation methods proposed for coarse-grained
sentiment classification either align the domain-
specific feature space with domain-independent
pivot words (Blitzer et al., 2007; Pan et al., 2010;
Yu and Jiang, 2016) or learn a domain-invariant
representation based on auto-encoder (Glorot et al.,
2011; Yin et al., 2016) and domain adversarial
learning (Li et al., 2018b). However, only a few
fine-grained domain adaptation approaches are pro-
posed for ABSA (Li et al., 2019; Gong et al., 2020)
or aspect and opinion extraction. Most of them
can be categorized into two types: 1) rule-based
methods (Li et al., 2012; Ding et al., 2017) exploit
manual syntactic rules and opinion seeds to extract
aspects and opinions, which usually obtains less sat-
isfactory results due to the quality of rules; 2) fea-
ture representation-based methods focus on learn-
ing a domain-invariant word representation (Wang
and Pan, 2018; Pereg et al., 2020; Chen and Qian,
2021) based on the unlabeled data. However, the
main task classifier fails to exploit the important
supervision signals in the target domain.

2.3 Data Augmentation

Data augmentation is another solution for the
scarcity of annotation data. Many previous works
mainly focus on the sentence-level task (Guo
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Figure 1: Overview of our proposed Generative Cross-Domain Data Augmentation framework.

et al., 2019; Min et al., 2020) and the token-level
task (Gao et al., 2019; Chen et al., 2020) . For
aspect/opinion extraction, Ding et al. (2020) de-
signed a data augmentation method with language
models trained on the linearized labeled sentences
to generate considerable labeled data. Hsu et al.
(2021) exploited a masked language model BERT
to substitute unimportant words in sentences to
enhance the data diversity. Li et al. (2020) pro-
posed to generate a new review while preserving
its original labels and aspect terms with a masked
sequence-to-sequence model. However, all the
studies above follow the in-domain setting, which
fails to exploit the rich contexts from other do-
mains. Our recent work (Yu et al., 2021) proposed
a cross-domain review generation method, which
replaces source-specific aspects and opinions in la-
beled source-domain reviews with target-specific
aspect and opinions based on the masked language
model BERT. However, it fails to consider other
domain-specific attributes such as collocations and
expression styles in cross-domain review genera-
tion. Based on our previous work, we propose
a Generative Cross-Domain Data Augmentation
framework for unsupervised domain adaptation,
which can generate more flexible target data with
fine-grained annotation in this paper.

3 Problem Formulation

In this paper, we focus on the aspect and opin-
ion co-extraction task and formulate it as a se-
quence labeling problem. We denote a review

as a sequence of tokens x = [x1, x2, ..., xn], and
the task aims to predict the label sequence of the
review y = [y1, y2, ..., yn], where yi∈{B−ASP ,
I−ASP,B−OP, I−OP,O}. For unsupervised
domain adaptation, we are given a set of source-
domain labeled reviews DS = {(xsi , ysi )}N

s

i=1 and a
set of unlabeled data from the target domain DU

= {xui }N
u

i=1. The goal is to predict token-level la-
bels on the test set from the target domain DT =
{xti}N

t

i=1.

4 Methodology

In this paper, we propose a Generative Cross-
Domain Data Augmentation framework, which
generates target-domain reviews with fine-grained
annotation from source-domain labeled reviews.
Figure 1 illustrates the overall architecture of our
generative framework. Specifically, we leverage
the labeled samples in the source domain to train
a classifier, and then assign pseudo labels for each
unlabeled sample in the target domain. Given the
labeled and pseudo labeled sentences from both
domains, we employ a segment mask module to
remove their domain-specific features while pre-
serving their context and original labels. Next,
a pre-trained sequence-to-sequence model BART
concatenates the domain-invariant context and orig-
inal labels as the input of the encoder, followed by
recovering the original sentences and predicting
their token-level labels via the decoder. During
the inference stage, given a labeled source-domain
sentence, the model removes its domain-specific
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features, and then employs the fine-tuned BART
model to generate a target-domain sentence with
its token-level labels.

4.1 Pseudo Label Annotation

First, we train a base classifier on the labeled data
from the source domain DS , which employs a pre-
trained BERT model (Devlin et al., 2019) to obtain
the contextualized word representation and a Con-
ditional Random Field (CRF) layer for sequence
labeling. The trained classifier is then applied to
assign pseudo labels on the unlabeled data from the
target domain DU to achieve the pseudo labeled
target-domain data DTP . However, the label qual-
ity of DTP tends to be relatively low due to the
distribution discrepancy between the source and
target domains. Therefore, it is crucial to generate
high-quality target-domain data by combining the
contexts from the labeled source-domain data DS

with the weak supervision in the pseudo labeled
target-domain data DTP .

4.2 Domain-Specific Feature Mask and
Reconstruction

To automatically generate the target-domain data
with fine-grained annotation, we propose a two-
step approach as follows. First, a domain-specific
segment set is extracted from the labeled and
pseudo labeled datasets in both domains. Next,
given a labeled sentence, we replace the domain-
specific segments with [mask] tokens, followed by
feeding the masked domain-independent review to
a pre-trained BART model (Lewis et al., 2020) to
reconstruct its original text, domain prompt, and
token-level labels.

4.2.1 Domain-Specific Segment Mask
Because reviews in different domains contain dif-
ferent aspects, opinions, and expression patterns,
we define the text segments occurring more fre-
quently in one domain as domain-specific segments
or features. To obtain these domain-specific fea-
tures, we introduce a frequency-ratio method based
on (Li et al., 2018a). Specifically, we segment all
sentences into word segments of different lengths,
and then calculate the relative frequency of the n-
gram segment w in the dataset Dv as follows:

s(w,Dv) =
count(w,Dv) + λ(∑

v′∈V,v′ ̸=v count(w,Dv′ )
)
+ λ

,

(1)

where count(w,Dv) denotes the frequency of an
n-gram w in Dv, v ∈ V , V = {S, TP}, and λ is
the smoothing parameter.

Next, we filter these n-gram w based on the rela-
tive frequency as follows:

s(w,Dv) ≥ δ, (2)

where δ is a specified threshold.
We regard the filtered n-gram segments as the

domain-specific segment set M . Given a review,
we exploit the Forward Maximum Matching algo-
rithm to match the segments that appear in M , and
then replace each matched word with a special to-
ken [mask]. For example, in Figure 1, given a sen-
tence "i like the spicy tuna roll", if the matched seg-
ment is "spicy tuna roll", we obtain a correspond-
ing masked sentence "i like the [mask] [mask]
[mask]". It is worth noting that as long as one
word of a domain-specific aspect phrase or opinion
phrase is masked, we will mask the whole aspect
or opinion phrase.

4.2.2 Reconstruction and Label Generation
According to the above steps, for each sample
(X,L) ∈ DS ∪ DTP , a corresponding masked
tuple (X̃, L) can be obtained as the model input,
where the masked sentence is X̃ = [x̃1, x̃2, ..., x̃n]
and the label sequence for each word is L =
[l1, l2, ..., ln]. To reconstruct the original text as
well as its corresponding labels, we implement sev-
eral modification on BART.

Encoder: In addition to the word embedding
and position embedding layers in BART, we also
establish a label embedding layer:

Ex = TokenEmb([x̃1, x̃2, ..., x̃n]), (3)

El = LabelEmb([l1, l2, ..., ln]), (4)

where Ex ∈ Rn×d, El ∈ Rn×d, and d is the dimen-
sion of the embedding. The output of the hidden
state can be formulated as:

H = BartEncoder(Ex + El), (5)

where H ∈ Rn×d
′
, d

′
denotes the hidden dimen-

sion.
Decoder: To inform the BART model to distin-

guish the features from different domains, we insert
a domain label tuple ([source], O) or ([target], O)
at the beginning of the decoder, which can be re-
garded as a domain prompt. For each time step t,
the decoder takes the previous decoder predictions
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Algorithm 1 Training Procedure
Require: DS : source labeled dataset; DU : target unlabeled

dataset; K: number of training iterations for BART;
1: Train a base classifier on dataset DS

2: Get the target pseudo labeled dataset DTP by assigning
pseudo labels on DU

3: Extract and construct domain-specific n-gram segments
set M from DS ∪DTP using Eq.(1),Eq.(2)

4: for i← 1 to K do
5: Select an example(X,L),d from DS ∪ DTP ,where

d ∈ {[source], [target]}
6: (X̃, L)←SegmentMask(X,L,M)

7: (X
′
, L

′
)← ([d] +X, [O] + L)

8: θ ← BART ((X̃, L), (X
′
, L

′
))

9: end for
10: Return θ

(x<t, l<t) and the encoder output H as inputs to
get the possibility of the next token and the next
token label with two separate linear layers:

P (xt|x<t, l<t, H) = Softmax(Wxzt + bx), (6)

P (lt|l<t, x<t, H) = Softmax(Wlzt + bl), (7)

where Wx ∈ R|Vx|×d, Wl ∈ R|Vl|×d, and |Vx| and
|Vl| refer to the dictionary size and the number of
label types, respectively. The hidden layer vector
zt for the time step t is as follows:

zt = BartDecoder(Et), (8)

Et = TokenEmb(xt−1) + LabelEmb(lt−1).
(9)

For each sample, we calculate the negative log-
likelihood loss for tokens and the label sequence,
respectively:

Lx = −
n+1∑

t=1

log(P (xt|x<t, l<t, H)), (10)

Ll = −
n+1∑

t=1

log(P (lt|l<t, x<t, H)). (11)

The final training loss consists of the addition of
two parts:

L = Lx + Ll. (12)

Algorithm 1 details the training procedure of our
method.

4.3 Cross-Domain Data Generation
During the inference stage, given a source-domain
labeled sentence (X,L) ∈ DS , we employ the
same mask strategy to remove its domain-specific
features. Then, the masked tuple (X̃, L) is fed to
the BART encoder. Different from the decoder in

Dataset Domain Sentence Train Test

R Restaurant 5841 4381 1460

L Laptop 3845 2884 961

D Device 3836 2877 959

Table 1: The statistics of our datasets.

the training phase, we only provide ([target], O)
as the domain prompt to decode a target-domain
sentence based on the auto-regressive way and
jointly predict its token-level labels. To generate
more samples and further increase the diversity of
generated samples, we introduce several strategies
as follows. For each sample (X,L) ∈ DS , we re-
peat the mask step three times to get three masked
tuple (X̃, L) with different seeds. Specifically for
the matched segments without any aspects or opin-
ions, we randomly mask them with a probability
of 60%. Thus, we can obtain three different target
reviews from one source labeled review.

4.4 Post-Processing

We post-process our generated target labeled data
with the following steps: 1) Delete sentences with
incorrect labels that do not follow the BIO schema;
2) Use a base classifier trained on the labeled
source-domain data to assign labels on the gen-
erated target-domain data. Delete sentences whose
assigned tags are inconsistent with generated ones.

4.5 Training for the Main Task

Finally, we can obtain the high-quality target-
domain data with fine-grained annotation generated
from our approach. We then use these generated
samples for the main task of aspect and opinion
co-extraction. Similar to Section 4.1, we employ a
pre-trained BERT model (Devlin et al., 2019) with
a CRF layer as the main task classifier, and train it
on the generated data only. Based on the trained
classifier, we evaluate its performance on the test
set of the target domain.

5 Experiments

5.1 Datasets

We use three benchmark datasets from different
domains, namely Restaurant (R), Laptop (L) and
Device (D). R and L are two combination datasets
from SemEval 2014 and 2015 (Pontiki et al., 2014,
2015). D consists of reviews from digital device
collected by (Hu and Liu, 2004). Following previ-
ous works (Wang and Pan, 2018; Pereg et al., 2020;
Chen and Qian, 2021), we use three different seeds
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to split the dataset from each domain into training
set and testing set by a ratio of 3:1. The statistics
are shown in Table 1. We report the average results
on different splits.

5.2 Experimental Setting
5.2.1 Cross-Domain Data Augmentation
For domain-specific segment mask module, we set
the length of n-gram segment w to n ∈ [1, 4] and
the relative frequency threshold δ to 10. A pre-
trained sequence-to-sequence model BART is fine-
tuned on DS ∪ DTP for 3 training epochs with
batch size set to 8. We use Adam as the optimizer
with a learning rate of 5e-5. The fine-tuned BART
is used to generate triple target-domain labeled data
conditioned on the source-domain labeled data.

5.2.2 Aspect and Opinion Co-Extraction
As mentioned in Section 3, we formulate aspect
and opinion co-extraction as a sequence labeling
task. We use BERTE+CRF as the base classifier to
assign pseudo labels in Section 4.1 and Section 4.4,
which consists of the uncased BERTbase (Devlin
et al., 2019) model post-trained on a combined data
of E-commerce reviews from the Amazon Electron-
ics dataset and the Yelp Challenge (Xu et al., 2019)
and a CRF layer (Lafferty et al., 2001). For the
main task, we also use the BERTE+CRF classifier
and train it on our generated data. We use the Adam
optimizer fro both BERT and CRF with different
learning rates of 3e-5 and 0.02, respectively. More-
over, we employ the early stopping strategy, and
stop the training procedure of the BERTE+CRF
classifier after 2 epochs in both pseudo label an-
notation and main task training stages. We finally
report the average Micro-F1 of three different splits
for aspect and opinion co-extraction.

5.3 Compared Methods
We divide all comparison systems into four parts:

Part 1 denotes hand-built feature-based meth-
ods. CrossCRF (Jakob and Gurevych, 2010) uses
a linear-chain CRF with some manual features
including POS tags and dependency relations to
bridge the domain gap. RAP (Li et al., 2012) pro-
poses a Relational Adaptive bootstraPping method
to extract aspects and opinions based on source
labeled data and pre-defined syntactic rules.

Part 2 denotes word2vec-based methods. Hier-
Joint (Ding et al., 2017) is a cross-domain RNN
model, which exploits auxiliary labels consisting
of aspect terms extracted by manually designed

syntactic rules and opinion seeds. RNSCN (Wang
and Pan, 2018) and TRNN-GRU (Wang and Pan,
2020) integrate syntactic relations by construct-
ing the dependency tree. TIMN (Wang and Pan,
2019) proposes a Transferable Interactive Mem-
ory Network that can learn shared representations
across domains effectively. SemBridge (Chen and
Qian, 2021) is a CNN-based model, which links the
source and target domains with semantic bridges by
retrieving transferable semantic prototypes based
on syntactic roles.

Part 3 denotes pre-trained model-based methods.
BERTB+CRF consists of the uncased BERTbase

model and a CRF layer. SA-EXAL (Pereg et al.,
2020) achieves domain adaptation by combining
the pre-trained BERT model with a syntactic-aware
attention mechanism. BERTE+CRF is the base
classifier introduced in Section 5.2.2. Both the
BERTB+CRF and BERTE+CRF are only trained
on the labeled source-domain data. CDRG (Yu
et al., 2021) is a data augmentation-based adap-
tation method, which generates labeled target-
domain data by replacing source-specific aspects
and opinions in source domain reviews with target-
specific aspects and opinions. CDRG-Merge trains
the BERTE+CRF classifier on the combination of
labeled source-domain data and generated target-
domain data for aspect and opinion co-extraction.

Part 4 denotes the proposed Generative Cross-
Domain Data Augmentation Framework, i.e.,
GCDDA, which designs a BART-based generative
model (Lewis et al., 2020) to convert the labeled
source-domain review to a target-domain review
while predicting its corresponding token-level la-
bels. We train the BERTE+CRF classifier on the
generated target-domain data for aspect and opin-
ion co-extraction.

5.4 Main Results

The comparison results of all methods are shown
in Table 2. We can clearly observe that our ap-
proach achieves the best performance in terms of
the average Micro-F1. Specifically, GCDDA out-
performs the baseline approach BERTE+CRF by
4.90% and 0.36% for aspect extraction and opin-
ion extraction, respectively. Compared with the
significant improvement on aspect extraction, we
achieve a relatively low result on opinion term ex-
traction. We attribute it to the following reasons:
1) the aspect terms across two domains tend to
be quite different and have small overlaps; and
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Model
R->L R->D L->R L->D D->R D->L AVE

AS OP AS OP AS OP AS OP AS OP AS OP AS OP

CrossCRF 19.72 59.20 21.07 52.05 28.19 65.52 29.96 56.17 6.59 39.38 24.22 46.67 21.63 53.17

RAP 25.92 62.72 22.63 54.44 46.90 67.98 34.54 54.25 45.44 60.67 28.22 59.79 33.94 59.98

Hier-Joint 33.66 - 33.20 - 48.10 - 31.25 - 47.97 - 34.74 - 38.15 -

RNSCN 40.43 65.85 35.10 60.17 52.91 72.51 40.42 61.15 48.36 73.75 51.14 71.18 44.73 67.44

TRNN-GRU 40.15 65.63 37.33 60.32 53.78 73.40 41.19 60.20 51.17 74.37 51.66 68.79 45.88 67.12

TIMN 43.68 68.44 35.45 59.05 54.12 73.69 38.63 62.22 53.82 76.52 52.46 69.32 46.36 68.21

SemBridge 50.67 71.51 43.34 63.46 63.04 80.48 44.91 64.15 60.19 80.21 53.02 72.63 52.53 72.08

BERTB+CRF 40.71 74.96 40.28 64.73 40.31 80.74 44.24 59.22 59.35 81.17 53.46 75.05 46.39 72.65

SA-EXAL 47.59 75.79 40.50 63.33 54.67 80.05 42.19 60.19 54.54 71.57 47.72 63.98 47.87 69.15

BERTE+CRF 52.77 75.94 43.65 66.36 50.08 82.39 45.47 60.29 64.21 81.79 58.75 76.15 52.49 73.82

CDRG-Merge 58.23 76.08 37.96 62.19 72.88 82.34 40.62 59.04 66.79 82.23 54.26 76.42 55.12 73.05

GCDDA (Ours) 66.56 77.63 44.80 64.86 62.22 82.67 45.11 60.72 68.23 82.44 57.44 76.75 57.39 74.18

Table 2: Comparison results of different methods for aspect and opinion extraction on Micro-F1. The AVE above
means averaged scores on all domain pairs. The best scores are in bold. All methods are grouped into four parts.
The last part is our approach.

Model
F1

BLEU Perplexity
ASP OP

Source 52.49 73.82 100.00 27.48

CDDA-MLM 56.66 73.66 90.59 28.49

GCDDA 57.39 74.18 89.72 28.14

Table 3: Comparison results of two different Cross-
Domain Data Augmentation methods on several eval-
uation metrics for generated data. Source denotes the
source-domain labeled data. CDDA-MLM denotes the
data generated by BERT. GCDDA is our method.

2) the opinion terms across two domains tend to
have a significant overlap, e.g., great, good, terri-
ble usually occurring in both domains. The similar
trend can also be observed in the state-of-the-art ap-
proach SemBridge (Chen and Qian, 2021). More-
over, compared with SemBridge which is based
on static word vectors, our method GCDDA im-
proves its performance by 4.86% and 2.10%, which
proves the effectiveness of the pre-trained language
model. Lastly, GCDDA outperforms our recent
data augmentation-based method CDRG-Merge by
2.27% and 1.13% on the two tasks, respectively.
All these observations show the effectiveness of
our proposed approach.

5.5 Evaluation on Generated Samples

In this section, we conduct several experiments to
evaluate the quality of our generated target labeled
data. For better comparison, we construct another
cross-domain data augmentation approach (CDDA-
MLM), which can be regarded as a variant of our
GCDDA approach based on the masked language
model BERT. CDDA-MLM adopts the same mask

strategy and post-processing as GCDDA, and we
post-train BERT on the unlabeled data from the
target domain with the standard MLM objective.
Moreover, we employ it to replace the [mask] to-
ken with target words. Unlike GCDDA, there is
no label embedding and label prediction in CDDA-
MLM. In addition, the original labels can be di-
rectly transferred to the target sentence due to the
word-to-word generation.

As shown in Table 3, we evaluate the generated
data with three metrics including F1-score, BLEU1,
and Perplexity2, and report the average results on
six cross-domain pairs. For F1-score, we observe
that our proposed model GCDDA achieves the best
result. It is due to the fact that we add the label
embedding for GCDDA to capture the consistency
between tokens and labels, which leads to more pre-
cise and controllable generation of target aspects
or opinions in the appropriate place conditioned
on the source-domain context and its labels. Addi-
tionally, compared with only using source labeled
data, the significant improvement shows that our
method GCDDA is indeed helpful for the domain
adaptation problem.

Moreover, GCDDA obtains lower BLEU than
CDDA-MLM, which indicates that our method gen-
erates more diverse sentences. This is because that
GCDDA decodes the whole sentence while CDDA-
MLM generates new words only on the [mask]

1We choose the source data as the reference and use BLEU-
1 as the final result. The lower value means more differences
from the source data.

2We calculate the perplexity with a pre-train language
model GPT. The more fluent sentence has a lower value.

4225



Source CDDA-MLM GCDDA

R->L 0.3502 0.1796 0.1128
R->D 0.3897 0.2284 0.1598
L->R 0.3306 0.2315 0.1488
L->D 0.0826 0.0667 0.0575
D->R 0.3888 0.2685 0.1429
D->L 0.1078 0.0812 0.0701

AVE 0.2749 0.1760 0.1153

Table 4: Maximum Mean Discrepancy (MMD) between
the target-domain test set and the dataset generated from
CDDA-MLM, GCDDA. The lower is better.

Source the food was extremely tasty , creatively presented
and the wine excellent .

CDDA-MLM the screen is extremely well ##sty , creative ##ly
presented and the are excellent .

GCDDA the screen is extremely lightweight , creatively pre-
sented and the battery excellent .

Source the food is prepared quickly and efficiently .
CDDA-MLM the received is up quickly and efficiently .
GCDDA the computer runs quickly and efficiently .

Source i recommend the jelly fish , drunken chicken and the
soupy dumplings , certainly the stir fry blue crab .

CDDA-MLM i recommend the color ##screen , other 8 , the really
key ##ba also , certainly the anti the hybrid ##nes .

GCDDA i recommend the backlit , wireless keyboard , the
pre-loaded mbp applications , certainly the toshiba
satellite .

Source we had the lobster sand and it was fantastic .
CDDA-MLM i had it head basement and it was fantastic .
GCDDA i bought this netbook and it was fantastic .

Source instead of wasting your time here : support restau-
rants that care about food .

CDDA-MLM instead of wasting your time here : call people that
care about you .

GCDDA instead of wasting your time here : buy computers
that care about gaming .

Table 5: Comparison examples from source-domain
labeled data and generated data by CDDA-MLM,
GCDDA. Words in blue denote the aspect terms and
words in red denote the opinion terms. All generated
samples are extracted from domain pair (R->L).

position. Furthermore, each masked token is pre-
dicted independently in CDDA-MLM, which may
generate incoherent collocation as the length of the
mask segment grows. Instead, the auto-regressive
model BART in GCDDA takes into account the
coherence and the consistency of sentences. Thus,
GCDDA obtains a better result than CDDA-MLM
in terms of Perplexity.

Moreover, we measure the distribution distance
between our generated target dataset and the test
set from the target domain. Specifically, we use the
BERT model to obtain the representation of each
sentence in two datasets, and then calculate the
distribution distance by Maximum Mean Discrep-
ancy (MMD3). The comparison results are shown
in Table 4. The results, on the other hand, proves

3Maximum Mean Discrepancy (MMD) reflects the simi-
larity of distribution between two datasets.

R->L dvd games, wireless devices, wireless keyboard, toshiba
speakers, digital graphics, hp g73, hard drive applications,
pre-loaded applications,light weight, precise, over weight,
ingenious, well built

L->R corn sauce, house vibe, wine quality, chili sauce, grilled
meat, outdoor dining atmosphere, service provider, internal
decor, heating system, steak platter, cleaner, much larger,
softer

R->D ipod plug, battery capacity, radio signal, sound quality of
music, built-in speakerphone, usb connection, sony camera,
black card with fm transmitter, 2mb flash card, amazing
great , user friendly

Table 6: New aspect and opinion terms generated by
GCDDA which have not appeared in the training data of
both domains. These examples are extracted from cross-
domain pairs(R->L, L->R, R->D)with three dif-
ferent target domains.

that our method can be used to alleviate the domain
discrepancy issue in domain adaptation.

Case Study: In Table 5, we show several exam-
ples generated by CDDA-MLM and GCDDA on
the cross-domain pair R->L. It can be obviously
found that our method produces more precise as-
pects or opinions related to the domain laptop. We
summarize this into two reasons: 1) integrating the
BART model with label embedding has captured
the consistency between token and its label; and 2)
the other is owed to the domain prompt in the front
of the decoder, which controls the domain where
the generated words come from. Moreover, the
label prediction from the decoder makes it possible
to generate more flexible sentence while obtaining
the adaptive token tags. We also present aspects
and opinions extracted from our generated dataset
in Table 6. These words or phrases have not ap-
peared in the source and target training datasets,
which shows that the generated dataset expands the
vicinity distribution for aspect/opinion identifica-
tion. To sum up, our method GCDDA not only
exploits the rich contexts from the source domain,
but also produces new aspects and opinions to gen-
erate more diverse target-domain samples. The two
factors are integrated to train a more robust model
for the target domain.

Parameter Study: As mentioned in Section 4.3,
we mask sentences with different seeds to produce
more target samples. Figure 2 shows the average
F1 score of generating different sizes of augmented
data from CDDA-MLM and GCDDA for aspect
and opinion co-extraction. It can be seen that the
two models consistently achieve the best result
when the size is 3, i.e., generating three different
target reviews from one labeled source review.
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Figure 2: Average F1-score on different size of samples
generated by CDDA-MLM and GCDDA for aspect and
opinion co-extraction.

Index Method
F1

ASP OP

0 GCDDA (ours) 57.39 74.18

1 W/O data augmentation 54.27 73.56

2 BART ⇒ Bi-LSTM 56.78 73.58

3 W/O data filter 55.50 72.71

4 1∼4-gram ⇒ 1-gram 56.92 73.55

5 W/O source data 56.71 73.80

6 W/O encoder label embedding 55.88 73.04

Table 7: Ablation study of our Generative Cross-
Domain Data Augmentation method.

5.6 Ablation Study

Finally, to better analyze the effectiveness of each
key component in our method, we conduct the ab-
lation study and show the results in Table 7.

We first remove the whole cross-domain data
augmentation framework in index 1, and only use
the pseudo labeled data DTP to train the main task
classifier. It shows a considerable performance
drop due to the label noise in DTP . This indi-
cates that cross-domain data augmentation needs to
be applied, which can produce high-quality target
samples by combining the contexts from DS with
the weak supervision signals in DTP . In index 2,
we replace the pre-trained model BART with Bi-
LSTM. Compared with Bi-LSTM, the pre-trained
BART model obtains a better result, because it
possesses rich language knowledge and a more
complex model structure for generation tasks.

Index 3 proves the importance of data filter in
the post-processing step. As shown in Table 5, our
generated samples usually have the same syntac-
tic structure as the labeled source data. Therefore,
the base classifier trained on DS can be employed
to filter out some noisy samples in our generated
target-domain data. In index 4, compared with
our 1∼4-gram mask, the single word mask strat-
egy limits the diversity of generated sentences, and
thus decreases the model performance. Moreover,
the performance drops when we remove the la-

beled source data for the reconstruction task, which
can capture the domain-invariant features for the
BART model. Finally, removing the label embed-
ding layer in the BART encoder also leads to the
performance decline.

6 Conclusion

In this paper, we proposed a Generative Cross-
Domain Data Augmentation Framework for un-
supervised domain adaptation, which leverages the
labeled source-domain data to directly generate
labeled target-domain data based on a fine-tuned
sequence-to-sequence model BART. Experiments
on three benchmark datasets show that our genera-
tive approach generates high-quality target-domain
data with fine-grained annotation and outperforms
previous domain adaptation methods for aspect and
opinion co-extraction.

Acknowledgments

The authors would like to thank the anonymous
reviewers for their insightful comments. This work
was supported by the Natural Science Foundation
of China (62076133 and 62006117), and the Nat-
ural Science Foundation of Jiangsu Province for
Young Scholars (BK20200463) and Distinguished
Young Scholars (BK20200018).

References
John Blitzer, Mark Dredze, and Fernando Pereira. 2007.

Biographies, bollywood, boom-boxes and blenders:
Domain adaptation for sentiment classification. In
Proceedings of the 45th annual meeting of the asso-
ciation of computational linguistics, pages 440–447.

Jiaao Chen, Zhenghui Wang, Ran Tian, Zichao Yang,
and Diyi Yang. 2020. Local additivity based data
augmentation for semi-supervised ner. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
1241–1251.

Zhuang Chen and Tieyun Qian. 2021. Bridge-based
active domain adaptation for aspect term extraction.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
317–327.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for

4227

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423


Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Bosheng Ding, Linlin Liu, Lidong Bing, Canasai Kru-
engkrai, Thien Hai Nguyen, Shafiq Joty, Luo Si, and
Chunyan Miao. 2020. DAGA: Data augmentation
with a generation approach for low-resource tagging
tasks. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 6045–6057, Online. Association for
Computational Linguistics.

Ying Ding, Jianfei Yu, and Jing Jiang. 2017. Recur-
rent neural networks with auxiliary labels for cross-
domain opinion target extraction. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 31.

Fei Gao, Jinhua Zhu, Lijun Wu, Yingce Xia, Tao Qin,
Xueqi Cheng, Wengang Zhou, and Tie-Yan Liu. 2019.
Soft contextual data augmentation for neural machine
translation. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 5539–5544, Florence, Italy. Association for
Computational Linguistics.

Deepanway Ghosal, Devamanyu Hazarika, Abhinaba
Roy, Navonil Majumder, Rada Mihalcea, and Sou-
janya Poria. 2020. Kingdom: Knowledge-guided do-
main adaptation for sentiment analysis. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 3198–3210.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio.
2011. Domain adaptation for large-scale sentiment
classification: A deep learning approach. In ICML.

Chenggong Gong, Jianfei Yu, and Rui Xia. 2020. Uni-
fied feature and instance based domain adaptation
for end-to-end aspect-based sentiment analysis. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7035–7045.

Hongyu Guo, Yongyi Mao, and Richong Zhang. 2019.
Augmenting data with mixup for sentence clas-
sification: An empirical study. arXiv preprint
arXiv:1905.08941.

Ting-Wei Hsu, Chung-Chi Chen, Hen-Hsen Huang, and
Hsin-Hsi Chen. 2021. Semantics-preserved data
augmentation for aspect-based sentiment analysis.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
4417–4422.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In Proceedings of the tenth
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 168–177.

Niklas Jakob and Iryna Gurevych. 2010. Extracting
opinion targets in a single and cross-domain setting
with conditional random fields. In Proceedings of

the 2010 conference on empirical methods in natural
language processing, pages 1035–1045.

John Lafferty, Andrew McCallum, and Fernando CN
Pereira. 2001. Conditional random fields: Proba-
bilistic models for segmenting and labeling sequence
data.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020. Bart:
Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and comprehen-
sion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7871–7880.

Fangtao Li, Sinno Jialin Pan, Ou Jin, Qiang Yang, and
Xiaoyan Zhu. 2012. Cross-domain co-extraction of
sentiment and topic lexicons. In Proceedings of the
50th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
410–419.

Juncen Li, Robin Jia, He He, and Percy Liang. 2018a.
Delete, retrieve, generate: a simple approach to senti-
ment and style transfer. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers),
pages 1865–1874.

Kun Li, Chengbo Chen, Xiaojun Quan, Qing Ling,
and Yan Song. 2020. Conditional augmentation
for aspect term extraction via masked sequence-to-
sequence generation. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7056–7066.

Zheng Li, Xin Li, Ying Wei, Lidong Bing, Yu Zhang,
and Qiang Yang. 2019. Transferable end-to-end
aspect-based sentiment analysis with selective adver-
sarial learning. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP).

Zheng Li, Ying Wei, Yu Zhang, and Qiang Yang. 2018b.
Hierarchical attention transfer network for cross-
domain sentiment classification. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 32.

Pengfei Liu, Shafiq Joty, and Helen Meng. 2015. Fine-
grained opinion mining with recurrent neural net-
works and word embeddings. In Proceedings of the
2015 conference on empirical methods in natural
language processing, pages 1433–1443.

Junghyun Min, R Thomas McCoy, Dipanjan Das, Emily
Pitler, and Tal Linzen. 2020. Syntactic data aug-
mentation increases robustness to inference heuris-
tics. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
2339–2352.

4228

https://doi.org/10.18653/v1/2020.emnlp-main.488
https://doi.org/10.18653/v1/2020.emnlp-main.488
https://doi.org/10.18653/v1/2020.emnlp-main.488
https://doi.org/10.18653/v1/P19-1555
https://doi.org/10.18653/v1/P19-1555


Sinno Jialin Pan, Xiaochuan Ni, Jian-Tao Sun, Qiang
Yang, and Zheng Chen. 2010. Cross-domain senti-
ment classification via spectral feature alignment. In
Proceedings of the 19th international conference on
World wide web, pages 751–760.

Oren Pereg, Daniel Korat, and Moshe Wasserblat. 2020.
Syntactically aware cross-domain aspect and opinion
terms extraction. In Proceedings of the 28th Inter-
national Conference on Computational Linguistics,
pages 1772–1777.

Maria Pontiki, Dimitrios Galanis, Harris Papageorgiou,
Suresh Manandhar, and Ion Androutsopoulos. 2015.
Semeval-2015 task 12: Aspect based sentiment analy-
sis. In Proceedings of the 9th international workshop
on semantic evaluation (SemEval 2015), pages 486–
495.

Maria Pontiki, Dimitris Galanis, John Pavlopoulos, Har-
ris Papageorgiou, Ion Androutsopoulos, and Suresh
Manandhar. 2014. SemEval-2014 task 4: Aspect
based sentiment analysis. In Proceedings of the 8th
International Workshop on Semantic Evaluation (Se-
mEval 2014), pages 27–35, Dublin, Ireland. Associa-
tion for Computational Linguistics.

Guang Qiu, Bing Liu, Jiajun Bu, and Chun Chen.
2011. Opinion word expansion and target extrac-
tion through double propagation. Computational
linguistics, 37(1):9–27.

Wenya Wang and Sinno Jialin Pan. 2018. Recursive
neural structural correspondence network for cross-
domain aspect and opinion co-extraction. In Proceed-
ings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2171–2181.

Wenya Wang and Sinno Jialin Pan. 2019. Transferable
interactive memory network for domain adaptation
in fine-grained opinion extraction. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 33, pages 7192–7199.

Wenya Wang and Sinno Jialin Pan. 2020. Syntacti-
cally meaningful and transferable recursive neural
networks for aspect and opinion extraction. Compu-
tational Linguistics, 45(4):705–736.

Wenya Wang, Sinno Jialin Pan, Daniel Dahlmeier, and
Xiaokui Xiao. 2017. Coupled multi-layer attentions
for co-extraction of aspect and opinion terms. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 31.

Meixi Wu, Wenya Wang, and Sinno Jialin Pan. 2020.
Deep weighted maxsat for aspect-based opinion ex-
traction. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 5618–5628.

Hu Xu, Bing Liu, Lei Shu, and S Yu Philip. 2019. Bert
post-training for review reading comprehension and
aspect-based sentiment analysis. In Proceedings of

the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 2324–2335.

Yichun Yin, Furu Wei, Li Dong, Kaimeng Xu, Ming
Zhang, and Ming Zhou. 2016. Unsupervised word
and dependency path embeddings for aspect term
extraction. In Proceedings of the Twenty-Fifth Inter-
national Joint Conference on Artificial Intelligence
(IJCAI), pages 2979–2985.

Jianfei Yu, Chenggong Gong, and Rui Xia. 2021. Cross-
domain review generation for aspect-based sentiment
analysis. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
4767–4777.

Jianfei Yu and Jing Jiang. 2016. Learning sentence
embeddings with auxiliary tasks for cross-domain
sentiment classification. In Proceedings of the 2016
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 236–246.

Jianfei Yu, Jing Jiang, and Rui Xia. 2018. Global infer-
ence for aspect and opinion terms co-extraction based
on multi-task neural networks. IEEE/ACM Transac-
tions on Audio, Speech, and Language Processing,
27(1):168–177.

Meishan Zhang, Yue Zhang, and Duy-Tin Vo. 2015.
Neural networks for open domain targeted sentiment.
In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages 612–
621.

Yftah Ziser and Roi Reichart. 2018. Pivot based lan-
guage modeling for improved neural domain adap-
tation. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 1241–1251.

4229

https://doi.org/10.3115/v1/S14-2004
https://doi.org/10.3115/v1/S14-2004

