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Abstract

Previous studies on the timeline summariza-
tion (TLS) task ignored the information in-
teraction between sentences and dates, and
adopted pre-defined unlearnable representa-
tions for them. They also considered date se-
lection and event detection as two independent
tasks, which makes it impossible to integrate
their advantages and obtain a globally optimal
summary. In this paper, we present a joint
learning-based heterogeneous graph attention
network for TLS (HeterTLS), in which date se-
lection and event detection are combined into
a unified framework to improve the extraction
accuracy and remove redundant sentences si-
multaneously. Our heterogeneous graph in-
volves multiple types of nodes, the representa-
tions of which are iteratively learned across the
heterogeneous graph attention layer. We evalu-
ated our model on four datasets, and found that
it significantly outperformed the current state-
of-the-art baselines with regard to ROUGE
scores and date selection metrics.

1 Introduction

Timeline summarization (TLS) is designed to ex-
tract sentences that describe an evolutionary story
from a massive amount of web articles with respect
to a specific topic in chronological order. TLS has
drawn much attention in recent years (Chen et al.,
2019; Martschat and Markert, 2018; You et al.,
2021b; Ghalandari and Ifrim, 2020; Yu et al., 2021)
since it releases people from burdensome manual
creation of summaries and gives readers a faster but
comprehensive access to track events from many
aspects, such as start and end, causality, and the
main protagonists involved.

Most studies on TLS seek ways to combine two
individual subtasks: date selection and event detec-
tion. Depending on different strategies for them,
current methods are generally divided into three
categories (Ghalandari and Ifrim, 2020): 1) direct
summarization approaches (Chieu and Lee, 2004;

Tran et al., 2013; Martschat and Markert, 2018;
Duan et al., 2020) directly identify topic-related
sentences from a collection of news articles to form
a timeline; 2) date-wise summarization methods
(Wang et al., 2016; Ghalandari and Ifrim, 2020; Li
et al., 2021; Quatra et al., 2021) first select salient
dates then construct a timeline for each date indi-
vidually with sentences of the highest score; and
3) event detection algorithms (Steen and Markert,
2019; Duan et al., 2020; Yu et al., 2021) detect
events by clustering sentences from multi-timeline
news articles then identify several of the most im-
portant events and summarize them separately.

Although great successes have been achieved in
conducting TLS, several issues remain unsolved.
First, current TLS methods mainly adopt statistical
hand-designed features to represent dates, e.g., the
number of published articles and topic-related sen-
tences in a specific time duration (Yu et al., 2021;
Ghalandari and Ifrim, 2020), and employ sentence-
BERT (Reimers and Gurevych, 2019) and other pre-
defined unchangeable representations for sentences.
The low-level or unlearnable representations tend
to ignore the semantic and temporal information
interaction between sentences and dates, which
significantly degrades the performance of down-
stream tasks. Secondly, traditional approaches fo-
cus on either date selection or event detection. Al-
though excellent date selection algorithms can pin-
point accurate timeline dates, they usually extract
topic-irrelevant sentences. While event detection
algorithms are capable of avoiding redundant sum-
maries by various clustering strategies, they some-
times capture wrong timeline dates. To the best of
our knowledge, there is no framework that jointly
learns the advantages of the above two subtasks
to accurately capture salient dates and eliminate
topic-irrelevant sentences in a timeline.

To circumvent the above dilemma, we propose
to jointly learn date/sentence representations and
event detection-based sentence clustering in a het-
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erogeneous graph attention network (HAN) for
TLS. Specifically, we construct a heterogeneous
graph with dates, words, and sentences as seman-
tic units to solve the first problem. In this graph,
words act as a bridge between dates and sentences,
enabling date nodes to learn different granularities
(word- and sentence-level) of semantic information
and sentence representations to be complemented
with a date-related intra- and cross-sentence mes-
sage. As for the second issue, semi-supervised
date prediction and event detection-based cluster-
ing are integrated into an overall objective, where
labeled dates guide and facilitate sentence clus-
tering, and sentence-level clustering information
indicating main events improves the accuracy of
unlabeled date prediction. Note that we create a
new way beyond the above-mentioned three cate-
gories as a joint end-to-end approach since we no
longer have to handle each subtask step by step.

We highlight our contributions as follows:

• This study is the first to construct a model for
automatic TLS as a HAN that propagates het-
erogeneous information with different granu-
larities, of date-word-sentence, to effectively
learn flexible and accurate representations for
both date and sentence nodes.

• Date selection and event detection subtasks
are incorporated into an overall objective so
that they can be jointly optimized to obtain a
globally optimal solution.

• We have empirically shown that HeterTLS

outperformed all existing competitors on four
benchmark datasets. Its effectiveness and ro-
bustness were further confirmed via ablation
studies and parameter analysis.

2 Related Work

2.1 Timeline summarization
Unlike multi-document summarization (MDS),
TLS executes both date selection and summary ex-
traction (Zhou et al., 2021). In accordance with dif-
ferent strategies for defining the two subtasks, avail-
able approaches are categorized into three classes,
whose major methods are reviewed as follows.

Direct summarization approaches (Allan et al.,
2001; Yan et al., 2011a; Li and Li, 2013; Zhao et al.,
2013; Suzuki and Kobayashi, 2014) treat the task as
MDS with time-stamped textual summaries. Chieu
and Lee (2004) directly rank and extract sentences

relevant to a query from a collection of documents
and place them along a timeline. As the current
state-of-the-art method for direct summarization,
revised submodular-function optimization, which
is commonly used for MDS, is applied to search
for a combination of sentences from an entire doc-
ument collection (Martschat and Markert, 2018).

Date-wise summarization methods (Li et al.,
2021) first select dates then extract sentences cor-
responding to the dates. Tran et al. (2013, 2015b)
propose a supervised graphical model for select-
ing salient dates and tracking events on each date.
In another study, text and image embeddings are
jointly learned using a scalable low-rank approxi-
mation approach to generate a more readable time-
line summary (Wang et al., 2016).

Event detection algorithms (Tran et al., 2015c;
Pasquali et al., 2019; Duan et al., 2020) usually
cluster documents by affinity propagation to detect
events and summarize them individually along a
timeline (Steen and Markert, 2019) or implement
multi-timeline summarization (Yu et al., 2021).

2.2 Heterogeneous graph for summarization

A heterogeneous graph contains different types of
nodes and multiple relationships between nodes
(Xu et al., 2021; Hu et al., 2021). Wang et al. (2020)
present a HAN for single or multiple document ex-
tractive summarization to enrich cross-sentence re-
lations through additional semantic units. Jia et al.
(2020) leverage a sentence-level redundancy layer
into a HAN to remove excessive phrases. Although
much research has gone into constructing source
documents as heterogeneous graphs and using
graph attention network-based first-order neighbors
during information dissemination, longer-distance
heterogeneous paths have not been considered. In-
spired by Wang et al. (2019), we extended a HAN
to TLS and developed HeterTLS to learn better
node representations for downstream tasks.

3 Methodology

3.1 Problem definition and preliminaries

Given a collection of news documents D within
T dates, TLS involves 1) predicting a sequence
of date labels {y1, · · · , yT |yi ∈ {0, 1}}, where
yt = 1 represents the t-th date included in the
timeline; and 2) ranking and extracting sentences
from candidates for each selected date. The number
of dates as well as the length of the daily summaries
are typically controlled by the user.
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Figure 1: Model overview. HeterTLS consists of three chief components: (a) graph constructor and initializer,
(b) heterogeneous graph encoder with sentence clustering constraint, and (c) timeline summary extractor. We first
construct heterogeneous network for date, sentence, and word nodes with two initialization strategies. We then
extract meta-paths and iteratively update node representations via HAN under nuclear norm constraint on sentence
nodes. Finally, we predict unlabeled date nodes and extract sentences from candidate clusters.

Given a graph G = {V, E} with V = Vd ∪
Vw ∪ Vs and E = Ew−d ∪ Ew−s, where Vd, Vw,
and Vs respectively denote a node set for dates,
words, and sentences and Ew−d and Ew−s are a
set of undirected edges between word-date and
word-sentence. Specifically, Vd = {d1, · · · , dT },
Vw = {w1, · · · , wm}, and Vs = {s1, · · · , sn} cor-
respond to T dates, m unique words, and n sen-
tences within D. eij 6= 0 (i ∈ {1, · · · ,m}, j ∈
{1, · · · , n}) of Ew−s indicates that the i-th word
appears in the j-th sentence. eij 6= 0 (i ∈
{1, · · · ,m}, j ∈ {1, · · · , T }) of Ew−d signifies
the i-th word appears in the articles published on
the j-th date. No edge exists between nodes of the
same type, e.g., word pairs. We then define a meta-
path and meta-path-based neighbors for dissemi-
nating information among heterogeneous nodes.

Definition 1 Meta-path Φ is defined as a path
in the form of v1

e1−→ · · · eq−→ vq+1, which de-
scribes a composite edge relation e = e1 ◦ · · · ◦ eq
between nodes v1 and vq+1, where ◦ denotes the
composition of relations.

Definition 2 Meta-path-based neighbors NΦ
i

of the i-th node are defined as all nodes in a single
meta-path Φ.

Figure 1 exhibits an overview of HeterTLS,
which consists of three main components: (a)

graph constructor and initializer, (b) heteroge-
neous graph encoder with sentence clustering con-
straint, and (c) timeline summary extractor. Each
component is introduced subsequently in detail in
the following subsections.

3.2 Graph constructor and initializer

Let Xd ∈ RT ×rd , Xw ∈ Rm×rw , and Xs ∈ Rn×rs
respectively denote input feature matrices for date,
word, and sentence nodes, where rd, rw, and rs are
dimensions of date representations, word embed-
dings, and sentence representations. We initialize
the j-th sentence node in Figure 1 (a) by concatenat-
ing its local n-gram feature pj and sentence-level
global feature qj as Xsj = [pj ; qj ]. pj is captured
by a convolutional neural network (CNN) (LeCun
et al., 1998) with different kernel sizes, and qj is
gripped by a bidirectional long short-term memory
(Bi-LSTM) (Hochreiter and Schmidhuber, 1997).
Considering the success of transformer-based pre-
trained models, we also provide another initializa-
tion strategy: using BERT (Devlin et al., 2019) and
sentence-BERT (Reimers and Gurevych, 2019) as
word and sentence encoders. Date nodes take the
average-pooling of their connected sentences as
initialization for both aforementioned strategies.

To leverage the saliency of each word in differ-
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ent sentences or dates, we propose term frequency-
inverse sentence frequency (TF-ISF) and term
frequency-inverse date frequency (TF-IDATEF)
weights to initialize edges in Ew−s and Ed−w.
Specifically, TF is the number of occurrences of
wi in sj or dt, and ISF/IDATEF is determined by
dividing the total number of sentences or dates in
D by the number of sentences or dates containing
wi (refer to Appendix D for more details).

3.3 Heterogeneous graph encoder with
sentence clustering constraint

As Figure 1 (b) illustrates, we first iteratively up-
date node representations via meta-paths in hetero-
geneous graph attention layers. We then introduce
how we constrain sentence representations to re-
serve a low-rank-based clustering structure, which
helps sentence nodes learn better event-related in-
formation. Finally, the semi-supervised date classi-
fication and sentence clustering structure are jointly
learned in an overall objective.

3.3.1 Heterogeneous graph attention layer

Node representations are updated by hierarchi-
cal heterogeneous graph attention layers, where
the node-level attention layer ensures information
propagation and aggregation in a single meta-path,
while the semantic-level one is committed to merg-
ing messages from multiple meta-paths. Specifi-
cally, referring to hi as the hidden state of the i-th
node, the node-level attention layer is calculated as

e
Φp

ij = LeakyReLU(Wa[Wφihi; Wφjhj ]), (1)

α
Φp

ij =
exp(e

Φp

ij )
∑

l∈NΦp
i

exp(e
Φp

il )
, (2)

zΦp

i =
K

‖
k=1

σ(
∑

j∈NΦp
i

α
Φp

ij Wφjhj), (3)

where Wa, Wφi , and Wφj are trainable parameters,
zΦ
i is the representation of the i-th node learned

from the node-level attention layer by Φ, αΦ
ij mea-

sures the importance of the j-th node to the i-th
node via Φ, NΦ

i contains all nodes in single meta-
path Φ, and K is the number of multi-heads.

Afterwards, the semantic-level attention layer
fuses all the meta-path information for the i-th
node. We extract meta-paths Φ̂d1∼3={date-word,
date-word-date, date-word-sent} for date nodes,
Φ̂w1∼2={word-sent, word-date} for word nodes,

and Φ̂s1∼3={sent-word, sent-word-sent, sent-word-
date} for sentence nodes (Figure 1 (b)), while long-
distance meta-paths are discarded due to their lim-
ited impact. With the assumption that the i-th node
has P meta-paths as {Φ1, · · · ,ΦP }, the represen-
tation of the i-th node is updated as

wΦp =
1

|V|
∑

i∈V
qT tanh(WzΦp

i + b), (4)

βΦp =
exp(wΦp)

∑P
l=1 exp(wΦl

)
, (5)

zi =
P∑

p=1

βΦpzΦp

i , (6)

where q, W, and b are learnable parameters and
βΦp represents the importance of the p-th meta-
path for the final embedding of the i-th node.

In the same manner described by Wang et al.
(2020), to avoid gradient vanishing after certain
iterations, a residual connection and position-wise
feed-forward network (FFN) layer with two linear
transformations (Vaswani et al., 2017) are added
after the semantic-level attention layer.

Iterative update: We alternately update each
type of node to realize information propagation
and aggregation. The updating process for the t-th
iteration is measured as

Zt+1
w1∼2

= NLevel(Ht
d, H

t
s, H

t
w), (7)

Ht+1
w = FFN(SLevel(Zt+1

w1∼2
) +Ht

w), (8)

Zt+1
d1∼3

= NLevel(Ht
d, H

t
s, H

t+1
w ), (9)

Ht+1
d = FFN(SLevel(Zt+1

d1∼3
) +Ht

d), (10)

Zt+1
s1∼3

= NLevel(Ht+1
d , Ht

s, H
t+1
w ), (11)

Ht+1
s = FFN(SLevel(Zt+1

s1∼3
) +Ht

s), (12)

where NLevel and SLevel respectively indicate
node-level and semantic-level attention layers, and
Ht is the stacked hidden state of a certain type
of node at the t-th timestep. Eqs. 8, 10, and 12
represent the residual connection and FFN layer.

3.3.2 Sentence clustering constraint
Detecting main events from D can effectively re-
duce the redundancy when generating summaries.
Current TLS methods (Yu et al., 2021) identify
major events by applying K-means directly to sen-
tence representation matrix Hs, which has two lim-
itations. First, K-means is sensitive to initialization
and outliers, resulting in unstable outputs (Ding
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and Li, 2007). Furthermore, the clustering perfor-
mance is undesirable due to the independence of
sentence representation learning and sentence clus-
tering. Even though structure learning has the po-
tential to address the above issues by co-clustering
on a newly created bipartite graph to extract the
clustering structure (You et al., 2021a; Nie et al.,
2017), it is not suitable for our framework to make
Hs a block-diagonal matrix with k components.
Theorem 1 paves the way to detect the clustering
structure of Hs by adding a low-rank constraint.

Theorem 1 (Chung and Graham, 1997) The
multiplicity of eigenvalue 0 of the normalized
Laplacian matrix of Hs is equal to the number of
clusters in Hs.

Theorem 1 indicates that the block-diagonal clus-
tering structure relies on newly constructing an
adjacency network of sentence nodes, which in-
creases the complexity of the model. Haeffele and
Vidal (2020); Piao et al. (2019) propose the nuclear
norm and prove that the constraint on the Laplace
matrix of Hs is mathematically equal to the con-
straint on sentence representation matrix Hs as

Lcluster = ‖Hs‖∗, (13)

where ‖Hs‖∗ is defined as the sum of the k small-
est eigenvalues, i.e.,

∑n
i=n−k λi with λi as the i-

th smallest eigenvalue (Piao et al., 2019). When
‖Hs‖∗ is set to 0, we obtain k clusters in Hs by
reorganizing its columns or rows and converting it
into a block-diagonal form with k blocks, as shown
in Figure 1 (c). We also determine parameter k by
the elbow method (Bholowalia and Kumar, 2014).

3.3.3 Joint learning framework
Past work considered date selection and sentence
clustering-based event detection as independent
tasks. In HeterTLS, they are jointly trained to com-
bine their advantages into an overall objective:

L = Lclassify + λLcluster , (14)

where Lclassify minimizes the cross-entropy over
all labeled date nodes between the ground-truth
during training, and λ serves as a weighted coef-
ficient to balance Lclassify with Lcluster . Eq. 14
can be optimized via stochastic gradient descent
(SGD) (Zinkevich et al., 2010) in an end-to-end
manner. Readers can also refer to (Piao et al., 2019;
Liu and Vandenberghe, 2009) for the detailed nu-
clear norm optimization strategy of Lcluster .

Our date classification is trained in a transductive
learning-based semi-supervised manner. We iterate

T17 Crisis Ent. Covid.

Topics 9 4 47 1
Timelines 19 22 47 1
Avg.Documents 508 2,310 959 26,376
Avg.Sentences 20,409 82,761 31,545 791,280
Avg.Dates 124 307 600 218
Avg.Duration 212 343 4,437 266

Table 1: Basic dataset statistics. Avg.X demonstrates
average X for each topic, and Timelines refers to num-
ber of ground-truths in each dataset.

all node representations in the heterogeneous graph
simultaneously with 50% labeled date nodes (40%
for training and 10% for verification) and 50% un-
labeled date nodes as the test set. The joint learning
model is able to effectively find event-based candi-
date clusters (see Figure 1 (c)), thereby save much
running time and improve the accuracy of TLS.

3.4 Timeline summary extractor
With l selected dates and their corresponding repre-
sentations {hd1 , · · · ,hdl}, we represent the k clus-
ters as {hc1 , · · · ,hck} by averaging sentence repre-
sentations inside that cluster. As shown in Figure 1
(c), candidate clusters for the t-th selected date
are determined by calculating the cosine similarity
between the date representation with all cluster rep-
resentations as cos(hdt ,hcj )(j ∈ {1, · · · , k}). If
the cosine similarity is larger than the pre-defined
threshold δ (see Section 5.4), the corresponding
cluster is considered a candidate for the date. Fi-
nally, we apply CENTROID-OPT (Ghalandari,
2017) as a sentence ranking algorithm within a
cluster and summarize each date individually by
selecting one sentence per cluster with the highest
ranking score.

4 Experiments

4.1 Datasets
We carried out our experiments on the four most
widely used benchmark datasets, i.e., 17 Time-
lines (T17) (Tran et al., 2013), Crisis (Tran et al.,
2015a), Entities (Ghalandari and Ifrim, 2020), and
CovidTLS (Quatra et al., 2021). All contain human-
written timelines concerning certain topics, the
source news articles of which are retrieved from
the web at a given point in time.

Using these datasets makes it possible to com-
prehensively verify the effectiveness and general-
ization of HeterTLS because both the number of

4095



Datasets T17 Crisis Entities

Metrics CR1-F CR2-F AR1-F AR2-F CR1-F CR2-F AR1-F AR2-F CR1-F CR2-F AR1-F AR2-F

Full Oracle 0.500 0.180 0.312 0.128 0.490 0.160 0.360 0.150 0.348 0.079 0.232 0.075
CHIEU (2004) 0.290 0.072 0.067 0.019 0.374 0.070 0.052 0.012 0.275 0.053 0.036 0.011
TRAN (2013) 0.336 0.065 0.094 0.022 0.271 0.034 0.054 0.012 0.275 0.052 0.042 0.012
MARTSCHAT (2018) 0.383 0.092 0.105 0.030 0.333 0.072 0.075 0.016 0.275 0.052 0.042 0.011
DATEWISE (2020) 0.385 0.097 0.121 0.035 0.347 0.075 0.089 0.026 0.271 0.051 0.057 0.017
DASG (2021) 0.333 0.064 0.118 0.029 0.323 0.068 0.077 0.018 0.282 0.052 0.045 0.010
SDF (2021) 0.401 0.101 0.106 0.033 0.360 0.073 0.064 0.014 0.275 0.052 0.041 0.011
HeterTLS-HAN 0.398 0.101 0.141 0.052 0.372 0.070 0.092 0.026 0.272 0.052 0.054 0.015
HeterTLS-Joint 0.392 0.101 0.132 0.042 0.323 0.068 0.079 0.015 0.271 0.048 0.049 0.012
HeterTLS+Pre-trained 0.401 0.103 0.142 0.053 0.379† 0.078† 0.107† 0.028† 0.282 0.054 0.057 0.019
HeterTLS 0.408† 0.108† 0.145† 0.058† 0.374 0.075 0.105 0.028 0.288† 0.058† 0.059† 0.019†

Table 2: Concatenation- and alignment-based ROUGE-1/2 F1-scores for T17, Crisis, and Entities datasets. Best
results among model-generated timelines are marked in bold. Symbol † indicates that our results significantly
surpass all baselines using bootstrap test (Dror et al., 2018) with p < 0.005.

topics and their time spans are completely different.
Specifically, the Entities dataset contains dozens
of topics and spans decades per topic, while the
others involve only a few topics within two years.
The basic statistics are summarized in Table 1.

4.2 Evaluation metrics

In our experiments, the evaluation of model-
generated timelines depended on the ROUGE met-
ric and its variants as follows (Yu et al., 2021):
Concatenation-based ROUGE F1 Similar to con-
ventional ROUGE, it compares a concatenated sys-
tem summary with its corresponding ground-truth
by referring only to the textual overlap while ig-
noring all time stamps of the timeline (Yan et al.,
2011b; Nguyen et al., 2014; Wang et al., 2016).
Alignment-based ROUGE F1 On the basis of the
above concatenation metric, it linearly penalizes
the ROUGE score by the distance of date align-
ments (Martschat and Markert, 2017).
Date selection F1 It only measures how well the
model selects dates contained in the ground-truth
(Martschat and Markert, 2018).

4.3 Experimental settings

Since each topic has at least one ground-truth time-
line, we considered each timeline independently if
multiple ground-truths exist, and the final evalua-
tion results were obtained by averaging scores over
all timelines. We split training/verification/test sets
in accordance with the ratio of 40%/10%/50% men-
tioned to Sec. 5.5. All experiments for a dataset
were subject to leave-one-out cross-validation, and
significant differences were determined by boot-
strap test (Dror et al., 2018) with p-value of 0.005.

For our heterogeneous network, the vocabulary
size was limited to 50, 000 and tokens were ini-
tialized with 400-dimensional GloVe embeddings
(Pennington et al., 2014). We truncated an input
document to a maximum length of 40 sentences and
removed 10% of vocabulary with the lowest TF-
IDATEF values to eliminate noise. Date/sentence
nodes and edge features individually included rd =
rs = 128 and 40-dimensional vectors for initial-
ization. We set the learning rate and regularization
hyper parameter λ to 5e− 4 and 1.5, respectively.
Each HAN layer had 8 heads and 64-dimensional
hidden size. The inner hidden size of the FFN layer
was set to 512. An early stop was carried out when
the validation loss did not descend for three con-
tinuous epochs. We trained all baselines as well as
HeterTLS on a single Titan RTX GPU.

4.4 Baselines

The following excellent baselines were used for
comparison and to demonstrate the effectiveness
of HeterTLS: direct summarization including
CHIEU (Chieu and Lee, 2004) and MARTSCHAT
(Martschat and Markert, 2018); date-wise summa-
rization such as TRAN (Tran et al., 2013), DATE-
WISE (Ghalandari and Ifrim, 2020), and SDF (Qua-
tra et al., 2021); and event detection method DASG
(Liu et al., 2021). We additionally follow Ghalan-
dari and Ifrim (2020) to obtain full oracle.

5 Results and Discussion

5.1 Performance of HeterTLS

According to Tables 2 and 3, HeterTLS outper-
formed all baselines in terms of all metrics. Con-
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Dataset T17 Crisis Entities
Metric Date-F1 Date-F1 Date-F1

Full Oracle 0.926 0.974 0.757
CHIEU (2004) 0.252 0.142 0.102
TRAN (2013) 0.517 0.289 0.185
MARTSCHAT (2018) 0.544 0.281 0.167
DATEWISE (2020) 0.544 0.295 0.205
SDF (2021) 0.553 0.302 0.397
HeterTLS-HAN 0.668 0.455 0.432
HeterTLS-Joint 0.620 0.418 0.395
HeterTLS+Pre-trained 0.688 0.494† 0.478
HeterTLS 0.703† 0.492 0.488†

Table 3: Date F1-scores on T17, Crisis, and Entities
datasets. Bold-faced characters and † indicate best re-
sults and significant improvements over all baselines.

sidering that DASG ignores date information, we
excluded it from the Date F1 experiment. We no-
ticed that HeterTLS with pre-trained initial node
representations surpassed HeterTLS only on Cri-
sis and CovidTLS (refer to Appendix A) datasets.
This indicates that pre-trained models require larger
downstream datasets (Crisis or CovidTLS datasets)
to escape from the local optimum, while CNN- and
Bi-LSTM-based initialization can better capture
the characteristics of small-scale datasets and reach
the globally optimal solution in a few epochs.

We consider three possible reasons for the excel-
lent performance of HeterTLS. First, the HAN is
configured to learn multi-level semantic features
for date representations. Compared with hand-
designed statistical low-level features, these fea-
tures are much more distinguishable, so they im-
prove the accuracy of date selection. Second, re-
garding the improvement of ROUGE scores, the
introduction of low-rank-based regularization helps
sentence representations learn a diagonal cluster-
ing structure, which enables HeterTLS to effec-
tively capture the topic-related events and informa-
tive sentences. Third, date selection and sentence
clustering-based event detection are jointly learned
and optimized to obtain a globally optimal solution.

5.2 Ablation study

We investigated the contribution of each module to
HeterTLS via ablation studies using each dataset.

HeterTLS-HAN To verify the interaction within
heterogeneous connections, we show the ablation
performance in Table 2 by removing the HAN and
simply using unlearnable semantic features with
nuclear norm constraint. We suspect that the HAN
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Figure 2: Comparison of running time of current state-
of-the-art models and HeterTLS

layer plays a critical role in facilitating date selec-
tion with semantic messages and providing sen-
tence nodes with temporal clustering information,
which cannot be replaced with fixed features. Meta-
paths also provide abundant iterative patterns to
pass semantic and temporal information.

However, sentence nodes initialized by CNN
and Bi-LSTM layers help capture local and global
sentence relationships, which has been proved pre-
dominant with regard to the extractive summariza-
tion task (Wang et al., 2020). Furthermore, the
nuclear norm constraint can effectively reduce the
redundancy between selected summary sentences.
The above two components ensure the promising
performance of the ablation model.

HeterTLS-joint learning Based on the assump-
tion that the remarkable improvement of HeterTLS

compared with baselines is due to jointly training
node representations and clustering regularization,
we show the performance in a separate learning
pattern. Date representations are first learned using
a HAN to predict which date should be selected to
form a timeline. We then cluster sentence nodes in
the graph to produce center cluster representations.

From the last block in Tables 2 and 3, imple-
menting the subtasks individually degrades the per-
formance to a great extent. We consider that in
the joint learning framework of HeterTLS, vertices
learn more discriminative features under the guid-
ance and constraint of sentence clustering and in
turn improve clustering accuracy, which cannot be
imitated by separate learning. This result further in-
dicates the superiority of HeterTLS, implying that
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Figure 3: Impact of parameters on Entities dataset

the combination of node representations and clus-
tering structure is promising for identifying salient
dates and sentence candidates simultaneously.

5.3 Running time

We conducted an investigation of running time with
all models being trained with the same device and
show the results in Figure 2. HeterTLS ran up to
an order of magnitude faster than most baselines,
while it achieved comparable running efficiency to
the current fastest baseline DATEWISE (2020).

The following two reasons may explain the effi-
ciency of HeterTLS. 1) Accurate node initialization
enables the model to converge to a globally opti-
mal solution in less than eight epochs. Since trans-
ductive semi-supervised learning requires fewer
labeled date nodes, it can simplify the scale of the
training model and reduce the training time caused
by parameter updates. 2) Previous methods rank all
candidates by measuring informativeness, redun-
dancy, coherence, and diversity (Yan et al., 2011b).
In contrast, our strategy reduces the time complex-
ity by measuring the similarity between date and
cluster representations to select candidate clusters
that exceed a pre-defined threshold. It can thus
extract the most informative sentence in each can-
didate cluster as a summary without consuming
time on the multi-index optimization problem.

5.4 Impact of parameters

There are two essential hyper parameters in our ex-
periments: λ is adopted to balance the importance
between Lclassify and Lcluster in Eq. 14, and δ acts
as a threshold to decide the most related clusters
for selected dates (Figure 1(c)). Several sets of λ
and δ were tested in terms of AR1-F and AR2-F.
We can clearly see the best performance from Fig-
ure 3 when λ ∈ [2.0, 2.5] and δ = 0.55 on Entities
dataset. It is explicit that a larger δ works better. A
plausible reason is that a relatively high threshold
can effectively filter irrelevant clusters and reduce
the redundancy of generated timelines. However,
the gradual changes in histograms indicate that our
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Figure 4: Ratio of labeled date nodes on training set vs.
corresponding accuracy on test set

method rarely fails to converge as parameters vary
because it is robust and insensitive to parameters.
The parameter impact on other datasets is discussed
in Appendix B due to limited space.

5.5 Ratio of labeled dates
Figure 4 shows that our model achieved promising
Macro-F1 scores for date classification on test sets
when the ratio of labeled dates was set to 40 or
50% in the training phase. Therefore, we reason-
ably believe that our HAN-based transductive learn-
ing earns high-quality date classification even with
small-scale labeled data, so it can be effectively
applied to real TLS tasks. Specifically, HeterTLS

learns high-order semantic features implied in a
small amount of labeled dates, which can help pre-
dict critical time stamps that should be preserved.

5.6 Consecutive dates and redundancy
The proportions of consecutive dates in chrono-
logically ordered model-generated timelines and
ground-truth timelines were experimentally mea-
sured according to Ghalandari and Ifrim (2020).
News articles and sentences published on adjacent
dates tend to refer to the same story, especially in a
long-time-span dataset such as Entities.

T17 Crisis Entities CovidTLS

Ground-truth 0.45 0.18 0.03 0.48
MARTSCHAT 0.63 - 0.18 0.68
DATEWISE 0.62 0.52 0.30 0.66
HeterTLS 0.48 0.23 0.10 0.56

Table 4: Proportions of consecutive dates of timelines
produced with different methods and ground-truths

Combining with Table 1, Table 4 reveals that
because the time duration of Entities dataset is the
longest, up to 12 years, the proportion of adjacent
dates is the lowest among all datasets. Therefore,
we reasonably believe that the trend of adjacent
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Topic: Steve_Jobs Ground-truth timeline

2003-04-28
Apple launches the iTunes store, a download music service.
2004-07-31
Undergoes surgery to remove a tumor related to the cancer.
2006-04-01
Apple celebrates its 30th birthday.
2007-01-09
Jobs unveils the iPhone at the Macworld conference.
2008-06-27
A class action suit is filed against Jobs and several members of the Apple's 
board of directors, claiming that they had participated in the backdating of 
stock option grants. In 2006, Apple was forced to restate its financial results 
after acknowledging that an internal investigation had revealed 
irregularities in its stock option grants between 1997 and 2001.
2008--2009
! ! ! ! ! !
2009-06-29
Apple spokesman Steve Dowling announces that Jobs has returned to work.
2010-01-27
Jobs introduces the iPad. The half-inch-thick, 1.5pound 9.7inch iPad allows 
users to read books, play games or watch video.
2011-03-02
Jobs receives a standing ovation when he takes the stage to unveil the iPad 
2.
2011-06-06
At the Worldwide Developers Conference (WWDC) Jobs introduces iCloud 
the new online media storage system. Other Apple officials demo the new 
operating systems OS-X Lion and iOS-5.
2011-08-24
Resigns as CEO of Apple, but announces he will stay on as chairman. Tim 
Cook is promoted to CEO.

Topic: Steve_Jobs HeterTLS-generated timeline

2003-04-28
Apple launches the Powerbook laptop.
2004-07-31
When Jobs was recovering from surgery to remove the original cancer.
2006-04-01
Appropriately enough, April 1 is the date Apple plans to celebrate its 30th birthday.
2008-06-27
The computer maker said it has brought in independent counsel to review the handing out of 
options between 1997 and 2001, including a batch for chief executive Steve Jobs, after an internal 
inquiry found potential irregularities, Steve Jobs cooperated with Apple 's independent investigation
and with the government 's investigation of stock option grants at Apple, directors said.
2008—2009
! ! ! ! ! !
2009-06-29
Apple spokesman Steve Dowling said the decision to pull Jobs out of the show indicated the 
company 's intention to stop exhibiting at Macworld. Big Brother permitting the choice that Jobs has 
made this time round.
2010-01-27
Apple says that it “lets users browse the web, read and send email, enjoy and share photos, watch 
videos, listen to music, play games, read ebooks and much more on the Mac, the iPad, the iPod , 
the iPhone”.
2011-03-02
We should know in a couple of hours, when Jobs takes the stage to keynote ( sic ) Apple 's 
Worldwide Developer Conference 2005, which opens today in San Francisco. A rapturous standing 
ovation follows.
2011-06-06
Next week is the Apple Worldwide Developers' Conference, where Steve Jobs will address the 
adoring masses. Details of the new operating systems have been dribbling out for months, with the 
official unveiling in October last year.
2011-08-24
Tim Cook is widely tipped as a possible replacement as CEO. I hereby resign as CEO of Apple.

Figure 5: Partial timelines on topic of Steve Jobs from Entities dataset produced with ground-truth and HeterTLS

date proportion is the same as that of redundancy.
The results in Table 4 indicate that HeterTLS is
the closest to the ground-truth, thereby proving its
ability to predict salient dates.

5.7 Case study

We now show the quality of timelines generated by
HeterTLS through a cases study. The topic Steve
Jobs is taken from Entities dataset with the time
duration from 2003-04-28 to 2011-08-24. In Fig-
ure 5, parts of the ground-truth timeline of certain
dates are shown on the left, while the right side
lists the HeterTLS-generated timeline with similar
period coverage as the ground-truth. We manually
colored some keywords to illustrate consistent con-
tents in both timeline summaries. The examples
demonstrate different levels of detail in describing
particular events. Three advantages of HeterTLS

are explicit by comparing it with the ground-truth:

• The semi-supervised date prediction compo-
nent of HeterTLS can accurately position
salient dates as the ground-truth, which is the
very principle for extracting TLS sentences.

• Our model can capture the major object of
each event or topic well (marked in orange)
in a daily summary. For example, the subject
of the ground-truth on 2003-04-28 is Apple
launches, and HeterTLS also generates the
same phrase as the subject. On 2009-06-29,
Steve Dowling announces and Steve Dowling
said serve as subjects in the ground-truth and

model-generated summary, respectively.

• Although HeterTLS generates timelines in an
extractive manner, the generated summaries
are short and accurate. Current extractive
methods always adopt greedy or beam search
to extract an uncertain number of sentences as
timelines, which greatly increases redundancy.
We use clustering-based constraints and intra-
class extraction to ensure that HeterTLS gen-
erates short but accurate sentences.

6 Conclusion

We addressed several fundamental problems con-
cerning TLS and proposed a joint learning model
called HeterTLS, which trains a HAN by utilizing
clustering structure learning-based event detection.
The proposed model facilitates node representa-
tions with information of different semantic units.
Meanwhile, the sentence representations with clus-
tering structure are rich in date- and semantic-level
features, which significantly reduce redundancy
and improve clustering accuracy. Experimental re-
sults, including those of the ablation studies of each
part of the overall architecture, demonstrated the
effectiveness of HeterTLS.
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Appendices

A Performance of HeterTLS on CovidTLS

Metrics CR1-F CR2-F AR1-F AR2-F Date-F

Full Oracle 0.471 0.199 0.388 0.192 0.968
CHIEU (2004) 0.203 0.021 0.008 0.001 0.176
TRAN (2013) 0.218 0.028 0.012 0.001 0.675
MARTS. (2018) 0.249 0.036 0.028 0.001 0.685
DATEWISE (2020) 0.318 0.038 0.036 0.005 0.697
DASG (2021) 0.224 0.030 0.014 0.001 0.621
SDF (2021) 0.439 0.076 0.062 0.011 0.689
HTLS-HAN 0.402 0.062 0.052 0.009 0.656
HTLS-Joint 0.388 0.058 0.048 0.006 0.648
HTLS+Pre-trained 0.447† 0.078† 0.068† 0.012† 0.722†

HeterTLS 0.430 0.072 0.060 0.011 0.704

Table 5: Concatenation- and alignment-based
ROUGE-1/2 F1-score for CovidTLS dataset. Best re-
sults among model-generated timelines are marked in
bold. Symbol † indicates that our results significantly
surpass all baselines using bootstrap test (Dror et al.,
2018) with p < 0.005.

The newly released CovidTLS dataset 1 de-
scribes the outbreak and evolution of the Covid-19
pandemic since the beginning of 2020. Because it
is undoubtedly one of the most important world-
wide events and affects all aspects of people’s lives
and work, it has been reported by an unprecedented
amount and variety of news articles. The whole cor-
pus was crawled from well-known English journals,
while it is annotated with a ground-truth timeline
retrieved from a public, authoritative website.

Table 5 shows the excellent performance of
HeterTLS on this new dataset. Since CovidTLS
is a large-scale dataset containing 26,376 docu-
ments and 791,280 sentences per topic, the pre-
trained node representations can escape from the
local optimal solution through massive iteration
processes and converge to its globally optimal
solution. We are convinced that the lightweight
HeterTLS is more effective for small-scale datasets
while HeterTLS initialized using pre-trained lan-
guage models attains better results on large-scale
datasets.

B Impact of parameters on T17, Crisis, and
CovidTLS Datasets

We selected several sets of λ and δ to test the per-
formance of HeterTLS and give a general overview
in Figure 6 as in Sec. 5.4. HeterTLS performed the

1https://github.com/MorenoLaQuatra/SDF-TLS

best when λ = 1.5 and δ = 0.6 on T17 dataset,
while λ ∈ [2.0, 2.5] and δ ∈ [0.5, 0.55] on Crisis
and CovidTLS datasets. Even though a larger δ cou-
pled with a smaller λ works better, HeterTLS sel-
dom failed to converge as the parameters changed.
Therefore, we reasonably believe that our proposed
model is not sensitive to parameters.

C Attach date labels for sentences

Since it is a difficult problem to correctly extract the
chronological order of events from time stamped-
free texts, we therefore attempt to only attach dates
to the sentences extracted from news articles. We
assume that the first date expression detected in a
sentence s is the date of the event mentioned in
s. We further craft simple rules to detect date ex-
pressions in sentences and resolve them to absolute
dates using the date of the article as a reference.
For example, with “today” parsed as the publica-
tion date of the article, “September” and “Sunday”
indicate the last September and Sunday before the
article date. In the case that no date expression is
detected in the entire sentences s, date(s) is taken
to be the publication date of the article containing
s. Although this assumption is frequently incor-
rect in document types such as biographies, literary
writings, or historical texts, we find it is reason-
able for news articles. News, by definition, reports
up-to-date events.

D Edge Initialization

We give a more detailed description of the edge
initialization in the main body. To leverage the
saliency of each word in different sentences and
dates, we propose using term frequency-inverse
sentence frequency (TF-ISF) and term frequency-
inverse date frequency (TF-IDATEF) weights to
initialize edges in Ew−s and Ed−w.

TF i,j =
ni,j∑
k nk,j

, (15)

ISF i = log
|S|

|{j : wi ∈ sj}|
, (16)

IDATEF i = log
|D|

|{j : wi ∈ dj}|
, (17)

where ni,j indicates the number of occurrences of
word wi in sentence sj (for edges in Ew−s) or date
dj (for edges in Ed−w), and the denominator of
Eq. 15 is the sum of the number of occurrences of
all words in sj or dj . In Eqs. 16 and 17, |S| and |D|
respectively denote the total number of sentences
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Figure 6: Impact of parameters on T17, Crisis, and CovidTLS datasets

and dates in the corpus, and |{j : wi ∈ sj}| and
|{j : wi ∈ dj}| are the numbers of sentences or
dates where term wi appears.

Intuitively, some words, e.g., articles such as
“the” and “a”, appear in many sentences and dates,
while other words, e.g., “Harry Potter”, are not so
frequent. Therefore, words with lower ISF/IDATEF
values are not so important and usually have no
specific meaning. Conversely, words with higher
ISF/IDATEF values might be important and indi-
cate salient information or the topic of the article.
This assumption allows HeterTLS to distinguish
key points from non-key points.
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