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Abstract

While numerous architectures for long-range
language models (LRLMs) have recently been
proposed, a meaningful evaluation of their
discourse-level language understanding capa-
bilities has not yet followed. To this end, we in-
troduce CHAPTERBREAK, a challenge dataset
that provides an LRLM with a long segment
from a narrative that ends at a chapter bound-
ary and asks it to distinguish the beginning of
the ground-truth next chapter from a set of neg-
ative segments sampled from the same narra-
tive. A fine-grained human annotation reveals
that our dataset contains many complex types
of chapter transitions (e.g., parallel narratives,
cliffhanger endings) that require processing
global context to comprehend. Experiments on
CHAPTERBREAK show that existing LRLMs
fail to effectively leverage long-range context,
substantially underperforming a segment-level
model trained directly for this task. We publicly
release our CHAPTERBREAK dataset to spur
more principled future research into LRLMs.1

1 Introduction

Research on long-range language models (LRLMs)
aims to process extremely long input sequences by
making the base Transformer architecture more ef-
ficient (e.g., through sparse attention, recurrence,
or cached memory). These modifications are
commonly validated by training LRLMs on PG-
19 (Rae et al., 2020), a long-document language
modeling dataset, and demonstrating small perplex-
ity decreases over shorter context models (Roy
et al., 2021; ?). However, recent analysis exper-
iments (Sun et al., 2021; Press et al., 2021) show
that modern LRLMs rely mostly on local context
(i.e., the immediately preceding 1-2K tokens) and
are insensitive to various perturbations applied to
more distant context.

1We make our code and data public at https://
github.com/SimengSun/ChapterBreak

... Billy Pilgrim has come unstuck in time... he has no control 
over where he is going... he first came unstuck in time in 1944, 
long before his trip to Tralfamadore... [6,608 words pass]
...Right outside the window was Billy’s own Cadillac El Dorado 
Coupe de Ville... The date on the license plate was1967, which 
would make Billy Pilgrim forty-four years old... [2,930 words 
pass, story shifts to World War II in 1944]
...locomotives began to move east... The war would end in May. 
German prisons everywhere were absolutely full... Billy Pilgrim's 
train... did not move for two days... [251 words pass, ch. 3 ends 
by shifting back to 1967]
...he traveled in time to 1967 again—to the night he was 
kidnapped by a flying saucer from Tralfamadore.

(➕ ) Billy Pilgrim could not sleep on his daughter's wedding 
night. He was forty-four... [ground-truth start of ch. 4]

(➖ ) Billy Pilgrim says that the Universe does not look like a lot 
of bright little dots to the creatures from Tralfamadore... 

(➖ ) All the trains were slow. The coaches stunk of coal smoke 
and rationed tobacco and rationed booze and the farts of people 
eating wartime food. 

Figure 1: An illustrative example of our suffix iden-
tification task from Kurt Vonnegut’s Slaughterhouse-
Five, in which an LRLM needs to make connec-
tive inferences across temporal and spatial shifts
in a long prefix of the narrative to correctly
disambiguate the (+) start of the next chapter from
(-) negative examples.

In this paper, we move beyond token-level per-
plexity by evaluating LRLMs on a task that requires
a rich understanding of long-range dependencies.
Our task is an instance of suffix identification, in
which a language model is given a long input se-
quence (or prefix) and asked to disambiguate the
next n-token segment from a set of hard negatives
sampled from the same narrative. To succeed at
this task, an LRLM should assign high probability
to the ground-truth next segment and low probabil-
ity to the negatives. To specifically test long-range
dependencies, we restrict our prefixes to end at
chapter breaks of a longer cohesive narrative (e.g.,
a novel).

We construct a challenge dataset, CHAPTER-
BREAK, by automatically detecting chapter bound-
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aries within both held-out PG-19 documents (in-
domain for pretrained LRLMs) and works of fan
fiction published on the Archive of Our Own (out
of domain).2 We perform a detailed analysis of the
types of chapter transitions in our dataset and dis-
cover a high frequency of narrative shifts in point-
of-view, location, and time, all of which require
global narrative understanding over long input se-
quences. For example, Figure 1 contains a complex
prefix in which the time-traveling Billy Pilgrim
moves between World War II, 1960s suburban life,
and an alien planet. Understanding the cliffhanger
ending, in which the narrative abruptly switches
from a wartime scene to a 1967 alien abduction,
requires an LRLM to make connective inferences
using details buried far back in the context (e.g.,
Billy’s age in 1967).

We evaluate three LRLMs on CHAPTERBREAK,
including BigBird (Zaheer et al., 2020), the Rout-
ing Transformer (Roy et al., 2021), and its local
attention variant, all pretrained or fine-tuned on
PG-19. Our experiments show that these LRLMs
perform poorly at selecting the ground-truth suffix,
regardless of the length of the input sequence. As
an upper bound, we train a small RoBERTa-based
segment-level language model on PG-19 and dis-
cover that it substantially outperforms all LRLMs
on CHAPTERBREAK, which suggests that LRLMs
have considerable room for improvement on this
suffix identification task. Finally, we perform an
analysis on the instances for which all models strug-
gle to choose the correct suffix, which shows that
shifts in location and events in focus are particu-
larly challenging to disambiguate. Taken together,
these results suggest that CHAPTERBREAK is a
useful benchmark for future research into LRLMs.

2 The CHAPTERBREAK dataset

Authors often break long-form narratives into a se-
quence of discrete chapters to impose “an order and
shape over events in time” (Stevick, 1970). Henry
Fielding writes in his novel Joseph Andrews that
the space between chapters is like “an Inn or Rest-
ing Place” for readers to reflect on the preceding
chapter (Fielding, 1779). Chapters come in many
flavors: for example, Murakami’s Kafka on the
Shore uses chapter breaks to alternate between par-
allel narratives focusing on the two protagonists,
while cliffhanger endings such as the one in Fig-
ure 1 add suspense. Making sense of the complex

2https://archiveofourown.org

narrative shifts associated with chapter transitions
(e.g., changes in point-of-view, time, location, and
theme) requires a deep understanding of the entire
text. To maintain global narrative coherence, My-
ers et al. (1994) show that human readers tend to
reactivate memory about “backgrounded” informa-
tion from the long-range context.

Task overview: Given that chapter transitions
requires global context understanding, how can we
turn this into a task to evaluate LRLMs? A simple
approach is to evaluate the token-level perplexity
of an LRLM only at chapter boundaries (i.e., on
the first n tokens of each chapter); however, the
vast majority of tokens can be predicted using just
local context (Sun et al., 2021) under the teacher-
forcing setup, which obscures an LRLM’s usage
of long-range context as we show in Section 3.
We instead turn to the task of suffix identification,
which closely resembles existing datasets such as
SWAG (Zellers et al., 2018).

Each instance of our task is defined by a triplet
(c, s+, s−i ∈ N), where c is a prefix sequence of
up to 8K tokens that ends at a chapter break, s+

is the gold suffix of length 128 tokens (i.e., the
beginning of the next chapter), and s−i is a neg-
ative 128-token-long suffix from a set N of five3

future chapter beginnings sampled from the same
narrative.4 All negatives are modified to begin with
the same chapter index (e.g., if the gold suffix be-
gins with “Chapter III”, the chapter indices of all
negatives is set to “Chapter III”) to eliminate the
effect found by Sun et al. (2021) of language mod-
els memorizing chapter indices in long contexts.
We then evaluate whether an LRLM assigns higher
probability to the gold suffix P (s+|c) than to all
negative suffixes P (s−i |c).

Dataset overview: Where do we get these
triplets from? We collect a dataset, CHAPTER-
BREAK, with two splits: CHAPTERBREAKPG19,
which contains 241 examples extracted from the
PG-19 validation set (Rae et al., 2020),5 and
CHAPTERBREAKAO3, which contains 7,355 ex-

3We use a small number of negatives because it is time-
consuming and resource-intensive to evaluate the probabilities
of long sequences with LRLMs.

4In Appendix F, we show that in-book negatives are much
harder than out-of-book negatives as they often contain the
same named entities and rare tokens as the gold suffix. Thus,
disambiguating the correct suffix requires a deep understand-
ing of the context.

5We only collect examples from validation set as two base-
line models in the later sections are trained on PG-19.
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Category Definition Pct.

Events
Previous event ends and new event starts 76%
Previous event continues into next chapter 24%

Actors Change of perspective or character in focus 36%
No change in POV or main character 64%

Locations Change of location 68%
No change in location 32%

Continuity

Discontinuous but chronological 29%
Continuous 62%
Analepsis 2%
Parallel 6%

Table 1: Our human annotation on 300 chapter tran-
sitions randomly sampled from CHAPTERBREAKAO3

shows the diversity and complexity of the dataset.

amples extracted from an online dump6 of fan-
fiction posted on Archive of Our Own (AO3).
We apply filtering to remove fanfiction works
that are too short or not rated for general au-
diences. Each work contains on average 42K
words and 21.5 chapters.7 Even though the
CHAPTERBREAKPG19 split is small, we include
it because many LRLMs are pretrained on PG-19;
the much larger CHAPTERBREAKAO3 split is out-
of-distribution for all models that we evaluate. To
extract chapters in PG-19, we match for lines begin-
ning with the string “chapter”, while AO3 stories
already have chapter-level metadata.

What are the different types of transitions in
CHAPTERBREAK and how often do they occur?
To get a better sense of our dataset, we perform a
fine-grained annotation of 300 randomly-selected
chapter transitions from CHAPTERBREAKAO3.
For each transition, we annotate any changes in the
following four aspects: events, actors (characters
in focus), locations, and continuity. To annotate
continuity, we follow a simplified version of the
scheme proposed by Ireland (1986),8 which con-
siders five categories: continuous (the next chapter
occurs within a day of the previous chapter), dis-
continuous (the next chapter occurs more than a
day after the previous chapter), analepsis (the next
chapter is a “flashback” to an earlier point in the
narrative), and parallel (the next chapter reverts
to the time of a previous chapter, switching the

6https://archive.org/download/AO3_
story_dump_continuing

7More preprocessing details and statistics can be found in
Appendix A.

8To validate our continuity annotations, we also annotate
every chapter in Pride and Prejudice and obtain almost the
same proportion of continuous transitions (67%) as the number
reported by the expert annotation of Ireland (1986) (72%).

#Params Seq Len PPLPG19 AccPG19 AccAO3

LT 516M 8K 76.8 25% 24%
RT 490M 8K 72.3 22% 24%
Bigbird 128M 4K 56.2 27% 26%

GPT-2 1.5B 1K 78.2 23% 24%
GPT-3 175B 2K - 36%∗ 28%∗

SuffixLM 87M 10K - 52% 41%

Table 2: Summary of LRLMs (top), Transformer LMs
(middle), and our SuffixLM (bottom). All models are
trained or fine-tuned on PG-19 except for GPT-2. The
third column shows the word-level perplexity of gold
suffix in the PG-19 split. The last two columns show
the suffix identification accuracy of each model on the
two CHAPTERBREAK splits when evaluated at maxi-
mum input length. ∗ indicates results are on a subset of
CHAPTERBREAK.
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Figure 2: Suffix identification accuracy on both splits
(PG-19 and AO3) of CHAPTERBREAK is much lower
for LRLMs than our SuffixLM upper bound.

character or event in focus).9 The results, shown in
Table 1, demonstrate that CHAPTERBREAK covers
a diverse array of transitions, including many that
require global narrative understanding.

3 Experiments

We evaluate three different long-range language
models on CHAPTERBREAK and compare their
results to those of standard Transformer language
models as well as an upper bound directly trained
for suffix prediction.

Language models: We evaluate three LRLMs
pretrained on PG-19: the Local Transformer (Roy
et al., 2021, LT), Routing Transformer (RT) (Roy
et al., 2021, RT), and BigBird (Zaheer et al., 2020).
The BigBird model is the decoder part of the re-
leased checkpoint fine-tuned with causal LM ob-
jective on 14k books of PG-19 for 100k steps. We
also evaluate two standard Transformer language
models, GPT-2 large (Radford et al., 2019) and
GPT-3 (Brown et al., 2020).10 We summarize these

9Appendix B contains more details about each category.
10Due to OpenAI’s API costs for GPT-3, we only evaluate

in total a subset of 200 examples instead of the full dataset.
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models in Table 2, more details about each model
are included in Appendix C.

An upper bound directly trained for suffix iden-
tification: As authors often write stories that are
intended to surprise readers, it is possible that many
examples in CHAPTERBREAK are ambiguous by
nature (i.e., the upper bound for suffix identification
accuracy may not be 100%). To obtain a reasonable
upper bound, we also train a model (SuffixLM) di-
rectly on the suffix identification task by scaling
up the sentence-level language model proposed
by Ippolito et al. (2020).11 We divide an input se-
quence into multiple segments, each of which is
embedded via the [CLS] vector of a small fine-
tuned RoBERTa network (Liu et al., 2019). Our
SuffixLM then performs “language modeling” atop
the dense [CLS] vectors, predicting the next seg-
ment representation given the representations of
previous segments via contrastive predictive cod-
ing (van den Oord et al., 2018).12 Formally, our
SuffixLM minimizes the following loss:

Li = − log
exp(ẑi

⊤z+i )∑
zi∈{z+i ,Z−

i } exp(ẑi
⊤zi)

where ẑi is the predicted representation by Suf-
fixLM, z+i is the gold suffix representation obtained
from a small encoder (RoBERTa), and Z−

i is the
set of dense representations of the negatives. More
details about our SuffixLM are included in Ap-
pendix D.

4 Results & Analysis

Overall, the results in Table 2 (rightmost two
columns) confirm that all of the language models
studied in this paper struggle on CHAPTERBREAK,
especially when compared to the SuffixLM upper
bound, which outperforms the best LM by ∼25%
absolute accuracy when evaluated on the entire PG-
19 split. We describe other interesting results and
analysis below:

Accuracy increases with longer prefixes: Fig-
ure 2 shows that as prefix sequence length in-
creases, some LRLMs (e.g., LT) barely improve,
while others show modest improvements (e.g.,

11Our SuffixLM can process up to 10K tokens, while the
model of Ippolito et al. (2020) supports only up to ten sen-
tences.

12Our SuffixLM is closely related to the model in Ainslie
et al. (2020), but differs crucially by predicting the representa-
tion of next segment instead of summaries.
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Figure 3: Left: Prefixes ending at chapter breaks benefit
more from long-range context than other types of dis-
course boundaries. Right: Word-level perplexity of the
gold suffix does not correlate to accuracy (e.g., GPT-2
has high perplexity but outperforms RT on suffix identi-
fication).

GPT-3 and fine-tuned BigBird). However, all
LRLMs significantly underperform our SuffixLM
upper bound, even when the SuffixLM is given pre-
fixes that are only 256 tokens long. Additionally,
SuffixLM’s accuracy increases far more than those
of LRLMs when increasing the prefix length (from
31% at prefix length of 256 to 46% at 8K on the
AO3 split13). This result suggests that the token-
level LRLMs evaluated in our work are not taking
full advantage of information in the long-range con-
text to solve CHAPTERBREAK.

Perplexity does not always correlate with accu-
racy: Previous LRLM efforts use validation per-
plexity (e.g., on PG-19) to compare against other
models. However, we show that perplexity is not by
itself a predictor of suffix identification accuracy:
As shown in Table 2, GPT-2 achieves higher accu-
racy than RT despite yielding a word-level perplex-
ity of 78.2 on gold suffixes, compared to 72.3 for
RT.14 We advocate that future research on LRLMs
includes evaluation on suffix identification tasks
like CHAPTERBREAK, as perplexity alone does not
reflect LRLMs’ capabilities to model long-range
dependencies.

Why chapter breaks over other discourse bound-
aries? Other discourse markers, including cause
and dialogue, also often prompt human readers to
reactivate memories of global context (Albrecht

13We collected 13,682 fan-fictions posted on AO3 and fine-
tuned our SuffixLM on subset of this dataset to be the model
SuffixLMAO3. More details about the filtered AO3 works are
included in Appendix A

14As these models use different tokenizers, we normalize
the subword-level perplexities to the word level as suggested
by Rae et al. (2020). More details about this can be found in
Appendix E.

3707



and Myers, 1995). We create suffix identifica-
tion datasets for these two discourse markers by
string matching over corresponding cue phrases
(‘because’, ‘due to’ for the cause subset and text
within quotation marks for dialogue).15 Figure 3
(left) shows that with prefixes of length 256 tokens,
our SuffixLM is able to successfully disambiguate
the correct suffixes for both discourse markers more
than 80% of the time, while the accuracy is much
lower at chapter boundaries. As the prefix length in-
creases, accuracy only slightly increases for cause
and dialogue, especially compared to the robust
improvement at chapter boundaries.16

Short-context Transformers are comparable to
LRLMs: Our results show that GPT-2, despite
its high perplexity on gold suffixes and short maxi-
mum sequence length (1024 tokens), achieves com-
parable performance to RT and LT on both splits.
Meanwhile, GPT-3 achieves much higher perfor-
mance on both CHAPTERBREAK at a sequence
length of 2,048 tokens, and the increasing GPT-
3 curve in Figure 2 is promising for future work
scaling LMs to longer sequence lengths.

Limitations of our work: While we have used
the SuffixLM as an upper bound in this paper
and demonstrated that it substantially outperforms
LRLMs on CHAPTERBREAK, a more compelling
comparison would include human performance on
our task at varying prefix lengths, especially since
some chapter transitions are specifically intended
by their authors to be unpredictable. However, ob-
taining reliable human performance numbers is
very difficult, as it requires in-depth comprehen-
sion of long narratives on the part of workers. Due
to the time-consuming nature of this task and its
high cognitive demand, it is not possible (within a
reasonable budget) to use crowdsourcing, as ensur-
ing that the annotators fully read the prefix instead
of skimming or ignoring it is a major challenge.
These issues also carry over to experiments per-
formed with in-person subjects. As such, we leave
a thorough human evaluation on CHAPTERBREAK

to future work.

5 Related Work

Our work depends heavily on recent advances in
efficient Transformers (Tay et al., 2020) that pro-

15Appendix A contains more details about data for these
two discourse markers.

16Appendix G shows similar trends on cause and dialogue
with other models.

cess long sequences (Rae et al., 2020; Beltagy
et al., 2020; Zaheer et al., 2020; Ainslie et al.,
2020; Roy et al., 2021). Sparse attention (Child
et al., 2019), relative position encoding (Shaw
et al., 2018; Raffel et al., 2020; Guo et al., 2021),
recurrence mechanism and memory (Dai et al.,
2019; Weston et al., 2015; Hutchins et al., 2022; ?)
and other tricks (Shen et al., 2020; Katharopoulos
et al., 2020; Gupta and Berant, 2020; Stock et al.,
2021; Yogatama et al., 2021; Borgeaud et al., 2021;
Hawthorne et al., 2022) are commonly adopted by
recent Transformer variants to make the operation
on long sequences more time/memory efficient.

Besides perplexity, many downstream extrin-
sic tasks for evaluating long-range language mod-
els were developed recently , such as long-form
QA (Fan et al., 2019; Pang et al., 2021), document-
level summarization (Kryściński et al., 2021;
Huang et al., 2021), and machine translation (Liu
and Zhang, 2020). More recently, Shaham et al.
(2022) introduce a new benchmark covering mul-
tiple domains and tasks, while Tay et al. (2021)
propose multimodal long sequence tasks.

6 Conclusion

We introduce CHAPTERBREAK, a suffix identifi-
cation dataset targeted at evaluating the discourse-
level understanding of long-range language models.
The dataset is extracted from long-form narratives
and covers a variety of complex chapter transitions,
such as shifts in location and events in focus. Exper-
iments show that existing LRLMs perform poorly
on CHAPTERBREAK and much worse than a Suf-
fixLM trained as an upper bound on this task. We
release the dataset to spur more principled develop-
ment of future LRLMs.
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For AO3, we apply multiple filters to obtain long
fanfiction stories rated as suitable for “General Au-
diences”. We refer readers to Appendix A for more
preprocessing details. More generally, this work fo-
cuses on long-range language models, which could
potentially be misused to generate offensive out-
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A Dataset statistics

We collected 13,682 fanfictions from an online
dump of stories posted on Archive of Our Own
(AO3) by filtering works written in English lan-
guage, rated General Audience by the author
and contains at least 10K words and more than
10 chapters. For each chapter, we remove
the text within the range of “**Notes for
the Chapter:**”, “**Summary for the
Chapter:**” and “**Author’s Note:**”.
The meta-comments inserted into the main text by
the authors are not removed. The statistics of this
long-fic dataset are included in Table 3. We do not
apply other profanity filters to the fictions, there-
fore there may still be inappropriate content for
general audience as the rating is self-labeled by
each author. Besides chapter breaks introduced in
the main text, we also collected two other discourse
boundaries, cause and dialogue, as comparisons to
the chapter boundary examples. We present the
statistics each type of examples in Table 4.

• Cause: The beginning of the suffix contains
words or phrases ‘because’, ‘due to’, ‘owing
to’. According to (Albrecht and Myers, 1995),
human readers reactivate memory of global
context for comprehending statements follow-
ing causes or goals.

• Dialogue: The gold suffix in this category
starts with a quotation mark. This often hap-
pens in dialogues where the continuation of
one interlocutor depends heavily on the im-
mediately preceding utterance. We conjecture
this is the type where the prediction relies
more on the local rather than the global con-
text.

mean min max

#chapters 21.5 11 589
#words 41,513.2 10,000 636,468

Table 3: Statistics of long fanfictions collected from
AO3 story dump.

B Annotation Scheme

We annotate each chapter transition from four as-
pects: events, actors (point-of-view or characters
in focus), location, and continuity in timeline.

AO3 PG19

Suffix Type #works #examples #works #examples

cause 965 8,133 45 506
dialogue 979 8,724 46 3,165
chapter breaks 1202 7,355 17 241

Table 4: Data statistics of CHAPTERBREAK as well as
another two discourse boundary examples.

Events We define two subcategories based on
whether (1) previous event ends in the previous
chapter and new event starts in the new chapter, (2)
old event does not end and continues into the next
chapter.

Actors We define two subcategories based on
whether there is a shift in POV or main character
in focus.

Location We define two subcategories based on
whether the location described in the prefix and in
the new chapter is different.

Continuity Following Ireland (1986)’s work, we
categorize the chapter transition by timeline conti-
nuity into four subcategories:

• Discontinuous but chronological: Reusing
the standard by Ireland (1986), discontinuous
represents a gap in time forward for more than
one night.

• Continuous: The time interval between chap-
ters lasts for no more than one night.

• Analepsis: Analepsis represents retrospective
evocation of an event, or “flashback” to an
earlier point in the narrative.

• Parallel: This includes timeline reverting
back to the time of any previous chapter, typi-
cally accompanied by switching character in
focus or description of a separate set of events
independent of the last chapter. This category
is a collapse of “alternate phase”, “parallel
phase” and “simultaneous phase” introduced
in (Ireland, 1986).

C Baselines

Bigbird (Zaheer et al., 2020) To reduce the
quadratic complexity of self-attention in the stan-
dard Transformer, the Bigbird model employs a
mixture of global, random and local attention mech-
anisms, which successfully reduce the complexity
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to linear. The idea is to insert each sequence O(1)
global tokens, which attend to all other tokens. The
rest tokens attend to their neighbor tokens, random
tokens in the sequence as well as the inserted global
tokens. A very similar idea is developed concur-
rently in the Longformer (Beltagy et al., 2020). The
Bigbird model we fine-tuned is the decoder part of
the released checkpoint. We fine-tune the model
with causal LM objective on 14K books of PG-19
with peak learning rate 0.0001 for 100K steps. We
set attention type to be “original_full” instead of
using “block_sparse” during fine-tuning. Training
is completed on a single RTX8000 GPU for around
6 days.

Local Transformer Rather than implementing
all three types of sparse attention in Bigbird, the
Local Transformer relies only on the local attention,
i.e., each token attends to neighbors within a local
window. The maximum attainable sequence length
scales linearly with the number of layers, e.g., with
window size k, the token representation at layer l
theoretically covers information in a range of k × l
tokens.

Routing Transformer (Roy et al., 2021) Dif-
ferent from previously described models which
use position-based sparse attention, the Routing
Transformer employs content-based sparse atten-
tion. Namely, each token are routed to clusters and
the attention is performed only within each clus-
ter. The clustering operation effectively reduces the
quadratic complexity in length L to O(L1.5). Both
the RT and LT checkpoint we used were trained on
PG-19 (Rae et al., 2020). For both RT and LT, we
evaluate on single RTX8000 GPU.

GPT-2/3 The GPT models have a lot shorter max-
imum input length than the rest models we eval-
uated. While GPT-2 model does not use sparse
attentions at all, GPT-3 model adopts alternated lay-
ers of sparse and dense self-attention. We use the
GPT-2 large model, which was pre-trained on data
scraped from the Internet. The GPT-3 model was
pre-trained on a mixture of filtered CommonCrawl,
WebText2, Books1, Books2, and Wikipedia.

D Finding the best SuffixLM

As there are no prior long-range segment-level LM
architectures that we can borrow from, we experi-
ment multiple design choices and report the result
of only the best performing one in the main text.
For all variants, we use RoBERTa-base (Liu et al.,
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Figure 4: Performance of each SuffixLM variant. De-
tailed information about each variant is included in Ap-
pendix D.

2019) as the encoder to obtain the encoded seg-
ment representation. This is done by extracting
the representation of the [CLS] token prepended at
the beginning of each sequence. We describe five
variants below.

• SuffixLM-A This variant contains a frozen
RoBERTa-base encoder and a SuffixLM using
a 6-layer Transformer as the base architecture.

• SuffixLM-B This variant contains a frozen
RoBERTa-base encoder and a SuffixLM us-
ing a 6-layer average-attention Transformer
as the backbone. The motivation of using uni-
form distribution for attention weights is to
encourage the model to get more information
from the distant context rather than rely too
much on local context.

• SuffixLM-C This variant is essentically
SuffixLM-A but during training we perform
“segdrop” – stochastically dropping prefix seg-
ments with probability 0.217 when performing
self-attention. When the local segments are
dropped, the model has to predict the next seg-
ments with only the distant context, which
also encourages learning better long-range
prefix representations.

• SuffixLM-D Instead of freezing the encoder,
this variant fine-tunes part of the encoder and
the rest is the same as SuffixLM-A. Due to
limited memory capacity, we only fine-tune
the last two layers of the RoBERTa-base.

• SuffixLM-E This model is the same as
SuffixLM-D except that we truncate the en-

17Tried {0.1, 0.2, 0.4}, 0.2 works the best.
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Figure 5: Evaluation results on both CHAPTERBREAKPG19 and CHAPTERBREAKAO3.

coder to just the two tunable layers and train
all parameters in the encoder including the
embedding parameters.

All SuffixLMs with frozen encoders are trained
with average sequence length of 10240 tokens for
up to 60k steps, and the one with trainable encoder
is trained for max 120k steps. The dimension of
the model is 768, hidden dimension 2048,attention
heads 8. The peak learning rate is 0.0001 with
warm up steps 4000. We train SuffixLM on entire
PG-19 dataset and evaluate the best checkpoint se-
lected by dev loss. We use segment size 128 in all
SuffixLMs we trained. Each segment starts from a
new sentence, if not reaching 128 tokens, we pad
with a special ‘<pad>’ token. For very long sen-
tences, the part exceeding 128 tokens overflows
to the next segment. We plot the suffix identifica-
tion accuracy of each variant on CHAPTERBREAK

while feeding in prefixes of increasing length. As
shown in Figure 4, SuffixLM-E outperforms all
other variants across various prefix lengths. There-
fore in the main text, all SuffixLM refers to the
SuffixLM-E variant. Note that one limitation of
SuffixLM is it exclusively models on segment-level,
which prohibits it from performing token-by-token
generation and thus impossible for us to evaluate
perplexity.

E Suffix perplexity

Although the task of CHAPTERBREAK is to iden-
tify gold suffix from negatives, we also present the
gold suffix perplexity of next-token prediction LMs.
Note that all models were trained or fine-tuned on
PG-19 except for GPT-2/3. As these models use dif-
ferent tokenizers, the 128-token suffix may cover
different number of words, to make the results com-
parable, we convert the subword-level perplexity
to word-level by multiplying a constant to the log
probability value of each model. For RT/LT, we
multiple by 1.248 as used in the official reposi-
tory. We multiply the value by 1.30 for GPT-2, and
1.22 for Bigbird. These values are estimated via
the subword/word ratio on validation set of PG-19.
Our fine-tuned Bigbird model achieves the low-
est perplexity on PG-19, even better than Routing
Transformer or Local Transformer. This implies
that context from long-range is not necessary for
achieving low perplexity since the maximum input
length of Bigbird is half that of RT/LT.

F In-book vs. Out-of-book

This section is better read after reading through § 3.
In this analysis experiment, we show why it is bet-
ter that the negatives are from the same narrative
as the gold suffix. We evaluate our upper bound
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Figure 6: Left: In-book vs. out-of-book. Right: Suf-
fixLM performance when evaluated with different suffix
length. The variation in suffix length does not explain
the large gap between SuffixLM and token-level LMs.

model SuffixLM on PG-19 set when the negatives
are out-of-book suffixes, and plot the suffix identifi-
cation accuracy in Figure 6. When evaluate against
out-of-book negatives, this suffix identification task
is almost solved by our SuffixLM, especially when
the out-of-book examples are from another split
in CHAPTERBREAK. The extremely high accu-
racy under out-of-book setup suggests the segment
representation from different books are easy for
SuffixLM to distinguish, thus we adopt a harder
setup where the negatives are from the same book.
Besides, in-book negatives may contain the same
re-occurring named entities or rare words, which
require solid understanding of the prefix to differ-
entiate the gold from the distractors.

G Various Discourse Relationships

In addition to chapter breaks, we also evaluate the
other two types of discourse boundary examples in-
troduced in Appendix A. As shown in Figure 5, for
all suffix types other than chapter breaks, the evalu-
ated models stop improving as the sequence length
grows to more than 2K tokens long. However, there
is a significant increasing trend in chapter breaks
for SuffixLM. For the rest models, the performance
is either flat or not improving. On the AO3 split,
the accuracy of SuffixLM improves for ∼ 15%
as the sequence length increases from 256 to 8K,
whereas the improvement of RT is only ∼ 1.4%.
This is in contrast with SuffixLM’s ∼ 1.5% and
RT’s ∼ 0.3% improvement for the ‘cause’ exam-
ples. We draw two conclusions from these observa-
tions: (1) the chapter breaks examples form a spe-
cial case where longer prefix is preferred in order to
pick the correct continuation. (2) By comparing the
relative improvement, the token-level LMs fall far
behind the SuffixLM, which is, besides the abso-
lute performance gap, another evidence that current

LRLMs do not effectively leverage long-range con-
text for sequence tasks requiring discourse-level
understanding.

H Tackle difference in Tokenizers

As the models we evaluated use different tokeniz-
ers, there are small variations in term of suffix
length, i.e., the 128-token suffix may cover dif-
ferent number of words. To understand how the
difference in length impacts validity of evaluation,
we evaluate SuffixLM with various suffix lengths.
Figure 6 (right) indicates even though there are
small variances when the suffixes are of different
lengths, the large gap between SuffixLM and Rout-
ing Transformer still remains, thus the difference
in suffix length does not explain the large perfor-
mance gap.

I Error analysis

Models struggle with location and event shifts:
Among the 300 examples we annotated in Sec-
tion 2, 89 examples were wrongly predicted by all
models we have evaluated. By breaking the in-
correctly predicted examples into category as pre-
sented in Table 1, we find that models tend to make
wrong prediction when there is a shift in location or
event, and when plots are continuous in timeline.18

Category Definition Ratio

Events
Previous event ends and new event starts 0.74
Previous event continues into next chapter 0.26

Actors Change of perspective or character in focus 0.43
No change in POV or main character 0.57

Locations Change of location 0.64
No change in location 0.36

Continuity

Discontinuous but chronological 0.24
Continuous 0.62
Analepsis 0.03
Parallel 0.11

Table 5: Human annotation on 89 examples sampled
from CHAPTERBREAKAO3where all models make the
wrong prediction. 74% errors come from the examples
where new event starts from the new chapter and 64%
errors from the change of location.

18Detailed numbers are included in Appendix I.
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