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Abstract

Combination therapies have become the stan-
dard of care for diseases such as cancer, tu-
berculosis, malaria and HIV. However, the
combinatorial set of available multi-drug treat-
ments creates a challenge in identifying effec-
tive combination therapies available in a situ-
ation. To assist medical professionals in iden-
tifying beneficial drug-combinations, we con-
struct an expert-annotated dataset for extract-
ing information about the efficacy of drug com-
binations from the scientific literature. Beyond
its practical utility, the dataset also presents a
unique NLP challenge, as the first relation ex-
traction dataset consisting of variable-length
relations. Furthermore, the relations in this
dataset predominantly require language under-
standing beyond the sentence level, adding
to the challenge of this task. We provide a
promising baseline model and identify clear ar-
eas for further improvement. We release our
dataset,1 code,2 and baseline models3 publicly
to encourage the NLP community to partici-
pate in this task.

1 Introduction

“So far, many monotherapies have been tested, but
have been shown to have limited efficacy against
COVID-19. By contrast, combinational therapies
are emerging as a useful tool to treat SARS-CoV-2
infection.” (Ianevski et al., 2021).

Indeed, combining two or more drugs together
has proven to be useful for treatments of various
medical conditions, including cancer (DeVita et al.,
1975; Carew et al., 2008; Shuhendler et al., 2010),
AIDS (Bartlett et al., 2006), malaria (Eastman and

* Equal contribution.
1https://huggingface.co/datasets/

allenai/drug-combo-extraction
2https://github.com/allenai/

drug-combo-extraction
3https://huggingface.co/allenai/

drug-combo-classifier-pubmedbert-dapt

Fidock, 2009), tuberculosis (Bhusal et al., 2005),
hypertension (Rochlani et al., 2017) and COVID-
19 (Ianevski et al., 2020).

In this work, we examine the clinically signifi-
cant and challenging NLP task of extracting known
drug combinations from the scientific literature.
We present an expert-annotated dataset and base-
line models for this new task. Our dataset contains
1600 manually annotated abstracts, each mention-
ing between 2 and 15 drugs. 840 of these abstracts
describe one or more positive drug combinations,
varying in size from 2 to 11 drugs. The remaining
760 abstracts either contain mentions of drugs not
used in combination, or discuss combinations of
drugs that do not give a combined positive effect.

For the clinical setting, solving the drug com-
bination identification task can help researchers
suggest and validate complex treatment plans. For
example, when searching for effective treatments
for cancer, knowing which drugs interact synergisti-
cally with a first line treatment allows researchers to
suggest new treatment plans that can subsequently
be validated in-vivo and become a standard proto-
col (Wasserman et al., 2001; Katzir et al., 2019;
Ianevski et al., 2020; Niezni et al., 2022).

From an NLP perspective, the drug combination
identification task and dataset pushes the bound-
aries of relation extraction (RE) research, by in-
troducing a relation extraction task with several
challenging characteristics:
Variable-length n-ary relations Most work on re-
lation extraction is centered on binary relations
(e.g. Li et al. (2016), see full listing in §5), or
on n-ary relations with a fixed n (e.g. Peng et al.
(2017)). In contrast, the drug combination task
involves variable-length n-ary relations: different
passages discuss combinations of different num-
bers of drugs. For each subset of drugs mentioned
in a passage, the model must predict if they are used
together in a combination therapy and whether this
drug combination is effective.
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“We tried adding Nifedipine , as Labetalol combined to Prazosin did not reduce blood pressure.
OTHER_COMB

POS_COMB

Indeed, the addition produced a marked decrease in blood pressure. No reduction of urinary NA
excretion was observed in our patient during the addition of the Nifedipine therapy, suggesting
that the decrease in blood pressure was not caused by suppression of NA release from pheochromo-
cytoma tissue.”

“In Thailand , artesunate and artemether are the mainly used antimalarials for treatment of

NO_COMB

severe or multidrug resistant falciparum malaria .”

Figure 1: Examples of our label scheme. The top example contains two relations: a binary OTHER_COMB
relation and a ternary POS_COMB relation. The evidence required to annotate the latter relation is found in a
different sentence (highlighted). In the bottom example, each drug is described as a separate treatment rather than
a combination therapy.

No type hints As noted by Rosenman et al. (2020)
and Sabo et al. (2021), in many relation extraction
benchmarks (Han et al., 2018; Sabo et al., 2021;
Zhang et al., 2017), the argument types serve as
an effective clue. However, argument types do not
apply naturally to the drug combination task, in
which all possible relation arguments are entities
of the same type (drugs) and we need to identify
specific subsets of them.
Long range dependencies The information de-
scribing the efficacy of a combination is often
spread-out across multiple sentences. Indeed, our
annotators reported that for 67% of the instances,
the label could not be determined based on a single
sentence, requiring reasoning with a larger textual
context. Interestingly, our experiments show that
our models are not helped by the availability of
longer context, showing the limitations of current
standard modeling approaches. This suggests our
dataset can be a test-bed for models that attempt to
incorporate longer context.
Challenging inferences As we show in our qualita-
tive analysis (§4.2), instances in this dataset require
processing a range of phenomena, including coordi-
nation, numerical reasoning, and world knowledge.

We hope that by releasing this dataset we will
encourage NLP researchers to engage in this impor-
tant clinical task, while also pushing the boundaries
of relation extraction.

2 The Drug Combinations Dataset

A set of drugs in a biomedical abstract are classi-
fied to one of the following labels:

Positive combination (POS_COMB): the sen-
tence indicates the drugs are used in combination,
and the passage suggests that the combination has
additive, synergistic, or otherwise beneficial effects
which warrant further study.

Non-positive combination (OTHER_COMB):
the sentence indicates the drugs are used in com-
bination, but there is no evidence in the passage
that the effect is positive (it is either negative or
undetermined).4

Not a combination (NO_COMB): the sentence
does not state that the given drugs are used in com-
bination, even if a combination is indicated some-
where else in the wider context. An example is
given in the lower half of Figure 1, where each of
the drugs Artesunate and Artemether is given in
isolation, and no combination is reported.

Our primary interest is to identify sets of drugs
that are positive combinations.

2.1 Relevant Context Size for Classifying
Drug Combinations

When formulating the extraction task and design-
ing our data collection methodology, we first an-
alyzed the locality of the phenomenon: to what
extent are drug combinations are expressed in a
single sentence, or is a larger context is needed?
We sampled 275 abstracts that contained known

4We also experimented with another label for combinations
that are discouraged (antagonistic, harmful or not effective).
The agreement for this label was low, leading us to keep it as
a subset of OTHER_COMB.
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drug combinations according to DrugComboDB.5

Analysis showed that 51% of these abstracts men-
tioned attempted drug combinations. In 97% of the
abstracts containing drug combinations, all partic-
ipating drugs in the attempted combination could
be located within a single sentence in the abstract
(for an example, see the OTHER_COMB relation
in Figure 1). However, establishing the efficacy
of the combination frequently required a larger
context (such as the context accompanying the
POS_COMB relation in Figure 1).

2.2 Task Definition
We define each instance in the Drug Combination
Extraction (DCE) task to consist of a sentence, drug
mentions within the sentence, and an enclosing
context (e.g. paragraph or abstract).

The output of the task is a set of relations, each
consisting of a set of participating drug spans and
a relation label (POS_COMB or OTHER_COMB).
Each subset of drug mentions not included in the
output set is implicitly considered to have relation
label NO_COMB.

More formally, DCE is the task of labeling an
instance X = {C, i,D} with a set of relation in-
stances R, where C = (S1, ...Sn) is an ordered list
of context sentences (e.g. all the sentences in an ab-
stract or paragraph), 1 ≤ i ≤ n is an index of a tar-
get sentence Si = (w1, ..., wn(i)) with n(i) words,
and D = {(d1start, d1end), ..., (dmstart, dmend)}
is a set of m >= 2 spans of drug mentions in
S. The output is a set R = {(ci, yi)} where
ci ∈ P(D) is a drug combination from P(D),
the set of all possible drug combinations, and
yi ∈ {POS_COMB,OTHER_COMB} is a com-
bination label.

2.3 Evaluation Metric
We consider two settings: “Exact Match”, a strict
version which considers identifying exact drug
combinations, and “Partial Match”, a more relaxed
version which assigns partial credits to correctly
identified subsets.

We use standard precision, recall and F1
metrics for both settings. For the partial-match
case, we replace the binary 0 or 1 score for
a given combination with a refined score:
shared_drugs/total_drugs. If there are multiple
partial matches with gold relations, we take the

5We used Syner&Antag_voting.csv taken from
http://drugcombdb.denglab.org/download/
and ranked according to the Voting metric.

one with maximum overlap. We compute recall as
identified_relations/all_gold_relations,
and precision as
correct_relations/identified_relations.

We consider two metrics, the averaged Pos-
itive Combination F1 score which compares
POS_COMB to the rest, and the averaged Any
Combination F1 score which counts correct predic-
tions for any combination label (POS or OTHER)
as opposed to NO_COMB. The latter is an easier
task, but still valuable for identifying drug combi-
nations irrespective of their efficacy.

2.4 Collecting Data for Annotation

To collect data for annotation we curated a list of
2411 drugs from DrugBank 6 and sampled from
PubMed a set of sentences which mention 2 or
more drugs. Analysis of the first 50 sentences from
this sample showed that only 8/50 of the sentences
included mentions of drug combinations. This
meant that annotating the full sample will be costly,
and will result in a dataset that’s highly skewed
toward relatively trivial NO_COMB instances.

We therefore repeated this experiment, sampling
sentences whose PubMed abstract included a trig-
ger phrase.7 48% of 50 sampled sentences included
mentions of drug combinations. Evaluating the
coverage of the trigger list against a new sample of
abstracts with known drug combinations showed
that 90% of these new abstracts included one of
the trigger words. This suggests our trigger list
is useful for fetching label-balanced data, without
prohibitively restricting coverage and diversity.

Accordingly, we collected the majority of in-
stances for annotation, 90%, using a basic search
for sentences that contain at least two different
drugs and whose abstract contains one of the trigger
phrases. To overcome the lexical restrictions im-
posed by our trigger list, we sample the remaining
10% of instances using distant supervision: fetch-

6Curation included downloading a premade drug list from
DrugBank’s website, while removing non pharmacological
intervention such as Vitamins and Supplements. The later we
got from the FDA orange book.

7Triggers were selected by manually identifying words
and phrases which frequently appear in abstracts mentioning
drug combinations. These are phrases like “combination”,
“followed by”, “prior to”, etc. (see full list in Appendix A.3).
The triggers are recall oriented, so while a presence of a trigger
increases the chances that an abstract mentions a drug combi-
nation, it is definitely not clearly indicative. Importantly, since
we’re dealing with a wide context, the presence of a trigger in
an abstract which includes multiple drugs does not mean the
trigger is related to the drugs.
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Figure 2: Illustration of the data construction process. First we construct the required knowledge resources. Then,
we collect data using SPIKE –an extractive search tool– over the PubMed database. The train and test sets were
annotated using Prodigy over the curated data. For test data, we collected two annotations for each sample, and
then had a domain expert resolve annotation disagreements.

ing sentences containing pairs of drugs known to be
synergistic according DrugComboDB, but whose
abstract does not include one of our trigger phrases.
All data collecting queries were performed using
the SPIKE Extractive Search tool (Shlain et al.,
2020; Taub-Tabib et al., 2020). The process is il-
lustrated at the top of Figure 2.

2.5 The Annotation Process

Seven graduate students in biomedical engineer-
ing took part in the annotation task. The students
all completed a course in combination therapies
for cancer and were supervised by a principled re-
searcher with expertise in this field.

We provided the participants with annotation
guidelines which specified how the annotation pro-
cess should be carried out (see Appendix A.1) and
conducted an initial meeting where we reviewed
the guidelines with the group and discussed some
of the examples together.

Each of the participants had access to a separate
instance of the Prodigy annotation tool (Montani
and Honnibal, 2018), pre-loaded with the candidate
annotation instances. Once a session starts, the
instances (containing of a sentence with marked
drug entities, and its context) appear in a sequential
manner, with no time limit. For each instance we
instructed the annotators to mark all subsets of
drugs that participated in a combination, and for
each subset to indicate its label (POS_COMB or

Metric Partial Match Exact Match
Avg. Any Combination F1 88.9 86.1

Avg. Positive Combination F1 83.4 79.6

Table 1: Agreement scores using our adaptation of F1
score to allow for partial-match.

OTHER_COMB). Moreover, we instructed them
to indicate whether the context was needed in order
to determine the positive efficacy of the relation.

Despite the considerable time required for expert
annotation, we collected annotations for 1634 pas-
sages. Among these, 272 were assigned to at least
two annotators. After further arbitration by the lead
researcher, these were used for the test set. The
process is illustrated in the bottom part of Figure 2.

2.6 Inter-annotator Agreement

During the course of the task we calculated inter-
annotator agreement multiple times to identify
cases of disagreement and provide feedback to an-
notators. Each time, a set of 25 instances were
randomly selected and assigned to all annotators.
Agreement was calculated based on a pairwise F1
measure (with some modifications as described in
§2.3) and averaged over all pairs of annotators (see
discussion of alternative metrics in Appendix A.2).

Final agreement numbers, in Table 1, are satis-
factory (Aroyo and Welty, 2013; Araki et al., 2018).
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Contextualized Embedding

"[...] of protein kinase C-alpha. This study evaluated the response rate of the combination therapy of 
<<m>>  aprinocarsen <</m>> , <<m>>  gemcitabine <</m>> , and <<m>>  carboplatin <</m>> in 
previously untreated patients with advanced non-small cell lung cancer…    [200 tokens later] … 
However, this combination resulted in severe thrombocytopenia in the majority of patients."

Feedforward OTHER_COMB

Figure 3: Our baseline architecture, adapted from the PURE model (Zhong and Chen, 2021)

2.7 Resulting Dataset
The dataset consists of 1634 annotated abstracts,8

split into 1362 train and 272 test instances. These
include 1248 relations; 838 are POS_COMB and
410 are OTHER_COMB (with the same label ratio
in the train and test sets). 591 sentences contain no
drug combination, 877 contain one relation (either
POS_COMB or OTHER_COMB), and 166 con-
tain two or more different combinations. Among
annotated relations, 900 are binary, 226 are 3-ary,
69 are 4-ary, and 53 are 5-ary or more.

For each instance in the resulting dataset we
include the context-required indication provided
by the annotators. In 835 out of 1248 relations the
annotator marked the context as needed which is
67% of the time, showing the importance of the
context in the DCE task.

3 Experiments

3.1 Baseline Model Architecture
We establish a baseline model to measure the diffi-
culty of our dataset and reveal areas for improve-
ment. For our underlying baseline model architec-
ture, we adopt the PURE architecture from Zhong
and Chen (2021), which is state-of-the-art on sev-
eral relation classification benchmarks, including
the SciERC binary scientific RE dataset (Luan
et al., 2018). The PURE architecture, designed
for 2-ary and 3-ary relation extraction, consists of
three components. First, special “entity marker"
tokens are inserted around all entities in a candidate
relation. Next, these marker tokens are encoded

8This is a similar size to existing human-labeled biomedi-
cal relation extraction datasets, such as BioCreative V CDR
(Li et al., 2016), which has 1500 abstracts annotated, BioCre-
ative VI (Krallinger et al., 2017), which has 2432 abstracts,
and DDI (Herrero-Zazo et al., 2013), which has 714 abstracts.

with a contextualized embedding model. Finally,
the entity marker embeddings are concatenated and
fed to a feedforward layer for prediction.

Unlike the original PURE architecture, we con-
sider the more challenging case of extracting rela-
tions of variable arity. To support this setting, we
average the entity marker tokens in a relation rather
than concatenate. The final baseline model architec-
ture is shown in Figure 3. For the contextual embed-
ding component of this architecture, we experiment
with four different pretrained scientific language
understanding models (SciBERT (Beltagy et al.,
2019), BlueBERT (Peng et al., 2019), Pubmed-
BERT (Gu et al., 2020), and BioBERT (Lee et al.,
2020)). During training, we only finetune the final
*BERT layer. We train each model architecture
for 10 epochs on a single NVIDIA Tesla T4 GPU
with 15GB of GPU memory, which takes roughly
7 hours to train for each model.

To our knowledge, there are no other models
designed for variable-length N -ary relation extrac-
tion, so we consider no other baselines.

3.2 Domain-Adaptive Pretraining

Our baseline model architecture relies heavily on
a pretrained contextual embedding model to pro-
vide discriminative features to the relation classifier.
Gururangan et al. (2020) showed that continued
domain-adaptive pretraining almost always leads
to significantly improved downstream task perfor-
mance. Following this paradigm, we performed
continued domain-adaptive pretraining (“DAPT”)
on our contextual embedding models.

We acquired in-domain pretraining data using
the same procedure used to collect data for anno-
tation: running a SPIKE query against PubMed
to find abstracts containing multiple drug names
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Model Positive Combination F1 Any Combination F1
Exact Match Partial Match Exact Match Partial Match

Human-Level 79.6 83.4 86.1 88.9

Rule-based 31.8 45.6 39.1 57.4

SciBERT 44.6 (± 4.6) 55.0 (± 5.9) 50.2 (± 1.9) 63.6 (± 2.7)
w/ DAPT 54.8 (± 3.2) 63.6 (± 2.0) 61.8 (± 2.7) 72.8 (± 2.1)

BlueBERT 41.2 (± 4.8) 51.7 (± 6.0) 47.3 (± 4.2) 59.9 (± 6.2)
w/ DAPT 56.6 (± 2.3) 63.5 (± 3.1) 64.2 (± 2.6) 74.7 (± 2.7)

PubmedBERT 50.7 (± 5.5) 59.6 (± 5.8) 55.9 (± 3.2) 66.7 (± 3.8)
w/ DAPT 61.8 (± 5.1) 67.7 (± 4.8) 69.4 (± 1.7) 77.5 (± 2.2)

BioBERT 45.4 (± 3.7) 55.8 (± 2.2) 46.7 (± 3.6) 58.3 (± 5.1)
w/ DAPT 56.0 (± 6.5) 63.5 (± 7.5) 65.6 (± 1.8) 75.7 (± 2.2)

Table 2: Comparing different foundation models (with and without continued domain-adaptive pretraining) on
Exact-Match and Partial-Match relation extraction metrics. Mean score from 4 different random seeds is reported,
and standard deviation is computed across seeds.

and a “trigger phrase" (from the list in Appendix
A.3). This query resulted in 190K unique ab-
stracts. We do not include any paragraphs from
our annotated dataset. We then perform domain-
adaptive training against this dataset using the
Hugging Face Transformers library. We
train for 10 epochs using a learning rate of 5e-4,
finetuning all *BERT layers and using the same
optimization parameters specified by Gururangan
et al. (2020). This pretraining took roughly 8 hours
using four 15GB NVIDIA Tesla T4 GPUs.

3.3 Relation Prediction

To apply the model to drug combination extraction,
we reduce the RE task to an RC task by consider-
ing all subsets of drug combinations in a sentence,
treating each one as a separate classification input,
and combining the predictions.

This poses two challenges: there may be a large
number of candidate relations for a given document,
and each relation is classified independently despite
the combinatorial structure. To handle these issues,
we use a greedy heuristic of choosing the smallest
set of disjoint relations whose union covers as many
drug entities as possible in the sentence. We do
this iteratively: at each step, we choose the largest
predicted relation that does not contain any drugs
found in the relations chosen at previous iterations.

This greedy heuristic favors large (high arity)
relations. Nonetheless, we empirically find this
method is helpful for extracting high-precision
drug combinations from our model architecture.

3.4 Rule-based baseline

To further validate that the trigger words do not in-
troduce bias to our task, we consider an additional

baseline based on the following rule: if a trigger
word is found in the same sentence with multiple
drugs, this set of drugs is tagged as POS_COMB.

4 Results

4.1 Effect of Pretrained LMs and
Domain-Adaptive Pretraining

We show results of our baseline model architec-
tures in Table 2. For each model, we report the
mean and standard deviation of each metric over
four identical models trained with different seeds.9

Among the four base scientific language under-
standing models in our experiments, we observe
PubmedBERT to be the strongest on every metric.
We additionally find that domain-adaptive pretrain-
ing provides significantly improvements for every
base model, consistently giving 5-10 points of im-
provement on Positive Combination F1 score. The
value of domain-adaptive pretraining supports our
observation that encoding domain knowledge is
critical to solving this new task.

The rule-based approach underperformed all
learned models (30 F1 points under our strongest
model, PubmedBERT-DAPT). This shows this task
cannot be reduced to keyword identification.

4.2 Qualitative Error Analysis
We identify classes of challenges that make this
task difficult, both in terms of human annotation
and machine prediction.

Coordination Ambiguity: A known linguistic
challenge is the ambiguity that stems from vague
coordination. In cases where explicit combination
words (e.g. combination, plus, together with, etc)

9Seeds used are 2021, 2022, 2023, and 2024
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Model Positive Combination F1 Any Combination F1
Exact Match Partial Match Exact Match Partial Match

No Extra-sentential Context 63.4 (± 0.6) 68.5 (± 1.1) 69.7 (± 1.3) 76.8 (± 1.7)
1 Sentence of Context 63.9 (± 2.3) 69.4 (± 3.5) 71.9 (± 1.1) 78.6 (± 1.8)
2 Sentences of Context 61.9 (± 9.0) 67.6 (± 9.2) 70.1 (± 2.3) 77.9 (± 1.3)
3 Sentences of Context 65.2 (± 2.3) 72.4 (± 1.3) 70.8 (± 1.7) 78.7 (± 1.2)

Table 3: The effect of extra-sentential context on model performance. n sentences are included on each side of the
relation-bearing sentence. Mean and standard deviation of each metric are reported over 4 different random seeds.

are not used, it may be unclear whether two drugs
are being used together or separately. For example
in “These findings may help clinicians identify pa-
tients for whom acamprosate and naltrexone may
be most beneficial” it is unclear if acamprosate and
naltrexone are being described in combination or
as independent treatments, leading to either a POS
label for the former or NO_COMB for the latter.

Numerical and Relative Reasoning: In some
cases, the effect of a treatment is described in rel-
ative or numerical terms, rather than an absolute
claim. Consider the example, “The infection rate
in the control group was 3.5% and in the treated
group 0.5%.”. Here, the reader must compare the
control vs experimental groups and deduce that the
experimental outcome is positive, because the treat-
ment yields a lower infection rate.

Domain Knowledge: Similarly, classifying rela-
tions in this dataset may require an understand-
ing of domain knowledge. In “Growth inhibition
and apoptosis were significantly higher in BxPC-3,
HPAC, and PANC-1 cells treated with celecoxib
and erlotinib than cells treated with either cele-
coxib or erlotinib”, one must understand that hav-
ing higher values of Growth inhibition and apopto-
sis in specific cells is a positive outcome, in order
to classify this combination as positive.

Context related Complications: The following
are kinds of complications found when the evi-
dence lies in the wider part of the context.

Coreference: Anaphoric or coreferential reasoning
is sometimes needed to understand the efficacy of
the combination e.g. “it was demonstrated that
they could be combined with acceptable toxicity.”.

Contradicting Evidence: the reader often must in-
fer a conclusion given opposing claims within a
given abstract. This can happen as combinations
can be referred as e.g. toxic but effective.

Long Distance: The target sentence can be far—up
to 41 sentences apart—from the evidence sentence,

making it difficult for even humans to process.

4.3 Quantitative Error Analysis

To probe this task, we analyze the performance
of our strongest model—the one using a Pubmed-
BERT base model tuned with domain-adaptive
pretraining—along different partitions of test data.
We trained with four random seeds and perform
comparisons using a paired multi-bootstrap hypoth-
esis test where bootstrap samples are generated by
sampling hierarchically over the four random seeds
and the subsets of the test set (Sellam et al., 2021).
We use 1000 bootstrap samples in each test.

4.3.1 Do models leverage context effectively?

Each relation in our dataset consists of entities con-
tained within a single sentence, but labeling the
relation frequently requires extra-sentential con-
text to make a decision. In our dataset, annota-
tors record whether or not each relation requires
paragraph-level context to label, reporting that 67%
of drug combinations required context to annotate.

To understand the extent that models make use
of paragraph-level context, we trained and evalu-
ated our PubmedBERT-based model using varying
amounts of extra-sentential context around the sen-
tence containing drug entities. In Table 3, we see
that adding context provides nearly identical perfor-
mance to training a model with no extra-sentential
context at all, with differences rarely exceeding one
standard deviation of F1 score.

However, we see increased variability in “Pos-
itive Combination F1” performance when extra-
sentential context is used. To explain this, recall
from §2.1 that determining the efficacy of a drug
combination often requires paragraph-level context
for annotators, while identifying any combination
usually requires no context. From qualitative analy-
sis of attention maps, we observed that our models
are not able to consistently identify the salient parts
of paragraph-level context, potentially causing in-
stability with larger inputs.
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Figure 4: Comparing models performance on binary
vs higher-order N -ary relations, averaged over 4 seeds
of the PubmedBERT-DAPT model. No consistent sig-
nificant differences were observed; p-values for these
comparisons are 0.456, 0.149, 0.240, and 0.276.
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Figure 5: Comparing relation extraction on test set drug
combinations that are observed in the training set or not,
using the PubmedBERT-DAPT model. Paired multi-
bootstrap test p-values for these four comparisons are
0.262, 0.025, 0.103, and 0.009, respectively.

These results suggest ample room for improve-
ment in extracting document-level evidence. This
makes our dataset a potentially useful benchmark
for document-level language understanding.

4.3.2 Binary vs. higher-arity relations
Given that our dataset is the first relation extrac-
tion dataset with variable-arity relations, do higher-
order relations pose a particular challenge for our
models? To answer this, we separate all predicted
and ground truth relations for the test set into bi-
nary relations and higher-arity relations. We then
report precision among each subset of predicted
relations and recall among each subset of ground
truth relations. We perform this experiment across
four different model seeds, and report results in
aggregate using a paired multi-bootstrap procedure.
In the results in Figure 4, we see no consistent sig-
nificant differences between models of different
arities, suggesting that our technique of computing
relation representations by averaging entity repre-
sentations scales well to higher-order relations.

4.3.3 Generalizing to new drug combinations
How well can relation extraction models classify
drug combinations not seen during training? Sim-

ilar to the setup in §4.3.2, we divide all predicted
and ground truth relations for the test set into the
set of drug combinations which are also annotated
in our training set, and the set that have not been. In
our dataset, over 80% of annotated test set relations
are not found in the training set.

In Figure 5, performance is consistently better
for relations observed in the training set than for
unseen relations, by a margin of 10-15 points. Re-
call, in particular, is significantly worse for rela-
tions unseen during training (at 95% confidence),
and precision is potentially also worse. Consider-
ing that unseen drug combinations are practically
more valuable than already-known combinations,
improving generalization to new combinations is a
critical area of improvement for this task.

5 Related Work

The DDI dataset (Herrero-Zazo et al., 2013) is the
only work to our knowledge that annotates drug
interactions for text mining. However, it funda-
mentally differs from our dataset in the type of
annotations provided: the DDI annotates the type
of discourse context in which a drug combination is
mentioned, without providing explicit information
about combination efficacy. In contrast, our dataset
is focused on semantically classifying the efficacy
of drug combinations as stated in text.

Other RE datasets exist in the biomedical field
(Peng et al., 2017; Li et al., 2016; Wu et al., 2019;
Krallinger et al., 2017), but do not focus on drug
combinations. Similarly, several RE datasets tackle
the N -arity problem in the scientific domain (Peng
et al., 2017; Jain et al., 2020; Kardas et al., 2020;
Hou et al., 2019), and in the non-scientific domain
(Akimoto et al., 2019; Nguyen et al., 2016), how-
ever, all of them consider a fixed choice of N .

6 Conclusions

We present a new resource for drug combination
and efficacy identification. We establish baseline
models that achieve promising results but reveal
clear areas for improvement. Beyond the imme-
diate, application-ready value of this task, this
task poses unique relation extraction challenges
as the first dataset containing variable-arity rela-
tions. We also highlight challenges with document-
level representation learning and incorporating do-
main knowledge. We encourage others to partici-
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pate in this task. Our processed dataset10 and best
baseline model11 are available on Hugging Face,
and our model training code is available to the
public at https://github.com/allenai/
drug-combo-extraction.
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A Appendices

A.1 Annotation Guidelines

Figure 6: Annotation instance in the Prodigy environment. The screen is constructed of the sentence where they
should mark relations, a button to show the full context and a selection per relation to indicate the necessity of the
context.

For this task we recruited 7 annotators all studying for advanced degrees in biomedical engineering. The
annotators were payed by their advisor, an amount that is standard for annotation projects in their country
of residence. All participating annotators were provided with annotation guidelines. The guidelines
specified how the annotation process should be carried out and provided definitions and examples for the
different labels used. As the task progressed, the guidelines were also expanded to include discussion of
frequently encountered issues.

For a given instance, such as presented in the top of Figure 6 the annotator needs to first recognize any
missing drugs and mark them, and then label any interactions they find among the drugs. In case they need
to consult a wider context they can press on a ‘show more context’ button and a text box with the wider
context will appear. This context can be again hidden by clicking the same button if needed. Lastly, in the
bottom of the sample page, we present a table with questions regarding the necessity of using the context.

Then the annotator should decide if they need to ignore the current sample or to complete the current
instance and accept it, by pressing the accept and ignore buttons.

The annotators are instructed as follows. They should read the sentence carefully, and try to answer a
two phase question to themselves. First, if the drugs are mentioned in any form of combination or they
should be given separately. Second, if indeed the annotator recognized the drugs as a combination can
they determine the efficacy of the combination by the sole sentence.

In case they can not determine the efficacy they are instructed to press on the ‘get more context’ button
and read the entire context in order to determine what is the correct efficacy. If after reading the context
they can still not determine the efficacy then the label of the interaction should be OTHER_COMB (aside
from negative label experimentation mentioned in Footnote 4). Otherwise it should be POS_COMB. In
case that they recognized that there is no combination between the drugs in the sentence then they should
not use any label and simply accept the current instance. Then they should answer the context related
questions for the POS_COMB label in order to signal if the context was needed.

While reading the sentence if the annotators find unmarked drugs they can mark them before continuing
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to the interaction-labeling phase and treat them the same as the other drugs, but, it is not required to mark
a word as drug in order to use it in an interaction. If a drug is marked in a wrong manner they should try
and fix it, e.g. the span of the drug is incorrect.

In order to achieve more consistent and accurate annotations, they are also instructed to annotate all the
interactions that they can find in a given sentence. They should always use the accept button even if there
are no interactions in the sentence. Only in cases where they want to skip a sentence (e.g. when there
is an inherent problem with it) or leave it for a future discussion they should use the ignore button. An
interaction can occur between more than two drugs, if so they should notice that they don’t need each
pair from this group to have a marked interaction, as long as they all connect to the same graph. e.g.
“Drugs A, B and C are synergistic.” connecting A to B and B to C is sufficient, no need to connect drug
A to drug C. Each interaction should be marked with a different tag (POS_COMB1, POS_COMB2...,
OTHER_COMB1, OTHER_COMB2...).

A.2 Evaluation Metric Discussion

For measuring the agreement, we chose to use our adaptation of F1 score and not other common metrics
such as Cohen’s Kappa (Cohen, 1960) or one of its variations (e.g. Feliss’s Kappa (Fleiss, 1971) and
Krippendorf’s Alpha (Hayes and Krippendorff, 2007)). These metrics expect a setup where the relation
candidates are already marked and the task is only to label them – a labeling task and not an extraction
task. This causes two problems, one is that they inherently do not need to handle a partial match. So if
for example there are three drugs in a sentence, the first annotator annotated a relation between drugs
A and B, while a second annotator annotated the same relation between drugs A, B and C. So we will
either underestimate or overestimate their agreement score if we considered this a mismatch or a match
respectively. Moreover, their calculations depend on the hypothetical agreement by chance normalization
factor, but this will not reflect the difficulty of random choosing in our setup as they ignore the size of the
combinatorial set of relation candidates we can possibly have.

A.3 Trigger List
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Figure 7: Abstracts percentage including each trigger word (1634 abstracts included; 44 words in the full word list;
Words <1% were neglected from the figure.
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In Figure 7 we show the triggers that we used in the Spike queries. We show the percentage of abstracts
that included each trigger (others under 1%: conjunction, two-drug, first choice, additivity, combinational,
synergetic, simultaneously with, supra-additive, five-drug, combinatory, over-additive, timed-sequential,
co-blister, super-additive, synergisms, synergic, synergistical, less-than-additive, greater-than-additive,
additivesynergistic, supraadditive, superadditive, overadditive, subadditive, first-choice, 2-drug, sub-
additive, more-than-additive, 3-drug).
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