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Abstract
Text style transfer (TST) without parallel data
has achieved some practical success. How-
ever, most of the existing unsupervised text
style transfer methods suffer from (i) requiring
massive amounts of non-parallel data to guide
transferring different text styles. (ii) colossal
performance degradation when fine-tuning the
model in new domains. In this work, we pro-
pose DAML-ATM (Domain Adaptive Meta-
Learning with Adversarial Transfer Model),
which consists of two parts: DAML and ATM.
DAML is a domain adaptive meta-learning
approach to learn general knowledge in mul-
tiple heterogeneous source domains, capable
of adapting to new unseen domains with a
small amount of data. Moreover, we pro-
pose a new unsupervised TST approach Ad-
versarial Transfer Model (ATM), composed of
a sequence-to-sequence pre-trained language
model and uses adversarial style training for
better content preservation and style transfer.
Results on multi-domain datasets demonstrate
that our approach generalizes well on unseen
low-resource domains, achieving state-of-the-
art results against ten strong baselines.

1 Introduction

Text style transfer (TST) aims to change the style
of the input text and keep its content unchanged,
which has been applied successfully to text formal-
ization (Jain et al., 2019) , text rewriting (Nikolov
and Hahnloser, 2018) , personalized dialogue gen-
eration (Niu and Bansal, 2018) and other stylized
text generation tasks (Gao et al., 2019; Cao et al.,
2020; Syed et al., 2020).

Text style transfer has been explored as a
sequence-to-sequence learning task using parallel
datasets (Jhamtani et al., 2017; Wang et al., 2020b;
Pryzant et al., 2020). However, parallel datasets are
difficult to obtain due to expensive manual annota-
tion. The recent surge of deep generative methods
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(Hu et al., 2017a; Zhao et al., 2017; Li et al., 2018)
has spurred progress in text style transfer without
parallel data. However, these methods typically re-
quire large amounts of non-parallel data and do not
perform well in low-resource domain scenarios.

One typical method is to resort to massive data
from different domains, which has been studied
as an effective solution to address the above data
insufficiency issue (Glorot et al., 2011; Wang et al.,
2017; Li et al., 2021b). However, directly leverag-
ing large amounts of data from other domains for
the TST task is problematic due to the differences
in data distribution over different domains, as dif-
ferent domains usually use their domain-specific
lexica (Li et al., 2019a). For instance, fine-tuning
a TST model trained on a high-resource movie-
related domain to a low-resource restaurant-related
domain can get us unreasonable sentences like "the
food is dramatic." The sentiment word "dramatic"
is suitable for commenting a movie but weird to
comment on the food.

In this work, we tackle the problem of domain
adaptation in the scenarios where the target domain
data is scarce and misaligned with the distribution
in the source domain. Recently, model-agnostic
meta-learning (MAML) has received resurgence
in the context of few-shot learning scenario (Lin
et al., 2019; Gu et al., 2018; Nooralahzadeh et al.,
2020). Inspired by the essence of MAML (Finn
et al., 2017), we propose a new meta-learning train-
ing strategy named domain adaptive meta-learning
(DAML). Unlike MAML, DAML adopts a do-
main adaptive approach to construct meta tasks
that would be more suitable to learn a robust and
generalized initialization for low-resource TST do-
main adaption.

To well preserve content and transfer style, one
typical strategy of a TST model is to decouple style
information from the semantics of a text, and it
tends to produce content loss during style transfer
(Hu et al., 2017b; Dai et al., 2019; Carlson et al.,
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2018). Here, we do not try to decouple content and
style, and propose a new Adversarial style Transfer
model ATM, which is composed of a sequence-
to-sequence pre-trained language model combined
with adversarial style training for style transfer. In
this way, our model can better preserve the content
information without disentangling content and style
in the latent space.

Combining DAML and ATM, in this paper, we
propose the method named DAML-ATM, which
extends traditional meta-learning to a domain adap-
tive method combined with a sequence-to-sequence
style transfer model. DAML contains two alter-
nating phases. During the meta-training phase, a
series of meta-tasks are constructed from a large
pool of source domains for balanced absorption of
general knowledge, resulting in a domain-specific
temporary model. In the meta validation stage, the
temporary model is evaluated on the meta valida-
tion set to minimize domain differences and realize
meta knowledge transfer across different domains.
In ATM, a pre-training language model based TST
model is used to improve text content retention.
Moreover, we propose a two-stage training algo-
rithm to combine the DAML training method and
ATM model better.

In summary, the main contributions in this paper
are three-fold: (i) We propose a new unsupervised
TST model, which achieves SOTA performance
without disentangling content and style latent rep-
resentations compared to other models. (ii) We
extend the traditional meta-learning strategy to the
domain adaptive meta transfer method, effectively
alleviating the domain adaption problem in TST.
(iii) We propose a two-stage training algorithm to
train DAML-ATM, achieving state-of-the-art per-
formance against multiple strong baselines.

2 Related Work

2.1 Text Style Transfer

Text style transfer based on deep learning has been
extensively studied in recent years. A typical pat-
tern is first to separate the latent space as content
and style features, then adjust the style-related fea-
tures and generate stylistic sentences through the
decoder. (Hu et al., 2017a; Fu et al., 2017; Li et al.,
2019a)assume that appropriate style regularization
can achieve the separation. Style regularization
may be implemented as an adversarial discrimi-
nator or style classifier in an automatic encoding
process. However, these style transfer paradigms

use large amounts of annotation data to train mod-
els for specific tasks. If we already have a model
for a similar task, it is unreasonable to need many
data still to train the model from scratch.

On the other hand, some of the previous work
learned to do TST without manipulating the style of
the generated sentence based on this learned latent
space. (Dai et al., 2019)use the transformer archi-
tecture language model to introduce attention mech-
anism, but they do not make full use of the prior
knowledge of sequence to sequence pre-trained
language model, such as Bart (Lewis et al., 2019)
and T5 (Raffel et al., 2019), which have made sig-
nificant progress in text generation tasks. In this
paper, we proposed the DAML training method to
solve the domain shift problem in TST and pro-
posed a new TST model architecture named ATM,
which makes no assumption about the latent repre-
sentation of source sentence and takes the proven
sequence-to-sequence pre-trained language model.

2.2 Domain adaptation
Domain adaptation has been studied in various nat-
ural language processing tasks (Glorot et al., 2011;
Qian and Yu, 2019; Wang et al., 2017; Li et al.,
2021a). However, there is no recent work about
domain adaptation for a TST, except DAST (Li
et al., 2019a). DAST is a semi-supervised learning
method that adapts domain vectors to adapt mod-
els learned from multiple source domains to a new
target domain via domain discriminator. Different
From DAST, we propose to combine meta-learning
and adversarial networks to achieve similar domain
adaption ability, and our model exceeds the per-
formance of DAST without domain discriminator.
Although there are some methods perform well in
few shot data transfer (Riley et al., 2021; Krishna
et al., 2021), these methods discuss completely new
text style transfer, while we focus on the domain
adaptation issue.

2.3 Model-Agnostic Meta-Learning
Model-agnostic meta-learning (MAML) (Finn
et al., 2017) provides a general method to adapt
to parameters in different domains. MAML solves
few-shot learning problems by learning a good pa-
rameter initialization. During testing, such initial-
ization can be fine-tuned through a few gradient
steps, using a limited number of training examples
in the target domain. Although there have been
some researches (Qian and Yu, 2019; Li et al., 2020;
Wu et al., 2020) on MAML in natural language
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processing, it is still scarce compared to computer
vision. Unlike the above research on classification
under few-shot learning, our research focuses on
text style transfer based on text generation. In this
paper, we seek a new meta-learning strategy com-
bined with adversarial networks, which is more
suitable for encouraging robust domain representa-
tion. As far as we know, we are the first to adopt
meta-learning in the domain adaptation problem of
text style transfer tasks.

3 Methodology

In this section, we first define the problem of do-
main adaptive learning for TST. Then we describe
our approach, DAML-ATM, in detail.

3.1 Task Definition

Let DS = {D1, ..., DN} be N source domains
in the training phase, where Dn(1 ≤ n ≤ N) is
the n-th source domain containing style-labelled
non-parallel data Dn = {(Xi, li)}Lni=1, where Ln is
the total number of sentences, Xi denotes the ith

source sentence, and li denotes the corresponding
style label, which belongs to a source style label
set: li ∈ LS (e.g., positive/negative). Likewise,
there are K target domains DT = {D1, ..., DK}
which are unseen in DS . Our task is to transfer
a sentence Xi with style li in the target domain
to another sentence Y

′
i sharing the same content

while having a different style l̃i from li and domain-
specific characteristics of the target domain.

We propose a two-stage algorithm for domain
adaptation in TST: pre-training learning strategy
and domain adaptive meta-learning strategy. In
pre-training learning, our objective is to make the
model more able to preserve content information
and distinguish between different text styles. In
domain adaptive meta-learning, our objective is to
learn a meta-knowledge learner for the sequence-
to-sequence model by leveraging sufficient source
data Ds. Given a new unseen domain from Dnew,
the new learning task of TST can be solved by fine-
tuning the learned sequence-to-sequence model
(domain-invariant parameters) with only a small
number of training samples.

3.2 DAML-ATM Approach

3.2.1 Overview of DAML
Model-agnostic meta-learning can utilize a few
training samples to train a model with good gen-
eralization ability. However, since it is based on

Figure 1: Comparison of meta-learning and domain
adaptive meta transfer learning (DAML). In DAML,
each meta task contains n sentences from the same do-
main. In MAML, the data in each meta task come from
different domains.

the assumption that the meta tasks are from the
same distribution (Figure 1, left), simply feeding
all the sources data into it might get sub-optimal re-
sults (Chen and Zhu, 2020). Therefore, we propose
a modified way to construct meta tasks (Figure 1,
right).

Different from MAML, for DAML, in one batch,
the data in each meta task comes from the same
source domain, and each meta task comes from a
different domain. In this way, we can guarantee
that DAML can learn generic representations from
different domains in a balanced way. During each
iteration, we randomly split all source domains into
a meta-training set Dtr and a meta-validation set
Dval, where DS = Dtr ∪Dval and Dtr ∩Dval =
∅. A meta-training task Ti is sampled from Dtr

and is composed of n instances from a specific
domain. Likewise, a meta-validation task Tj is
sampled from Dval. The validation errors on Dval

should be considered to improve the robustness of
the model. In short, with DAML, the parameters
learned by the model in the parameter space are
not biassed towards any one particular domain with
as little data as possible during model updating as
shown in Figure 1(right).

In the final evaluation phase, the meta-
knowledge learned by the sequence-to-sequence
model can be applied to new domains. Given a
new unseen domainDnew = (Ttr, Tte), the learned
sequence-to-sequence model and the discriminator
are fine-tuned on Ttr and finally tested on Tte.

3.2.2 ATM Model
In this section, we give a brief introduction to our
proposed model: ATM, which combines sequence-
to-sequence pre-trained model with adversarial
training. (1) For the content preservation, we train
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Figure 2: The basic structure of our TST model, ATM,
with the first stage training procedure. The green
dashed line represents the loss of style classification to
ensure that the style classifier can distinguish between
different text styles. The black dotted line rerents text
reconstruction loss to ensure the generated sentence has
a similar semantic meaning as the input sentence.

the sequence-to-sequence model θ to reconstruct
the original input sentenceX with the original style
label l. (2) For the style controlling, we train a
discriminator network γ to assist the sequence-to-
sequence model network in better controlling the
style of the generated sentence. The structure of
the model is shown in Figure 2.

S2S-model To ease the explanation, we start
with the sequence-to-sequence (S2S) model
here. Explicitly, for an input sentence X =
(x1, x2, ..., xn) of length n, X ∈ D, the
S2S encoder Enc(X; θE) maps inputs to a
sequence of continuous hidden representations
H = (h1, h2, ..., hn). Then, the S2S decoder
Dec(H; θD) estimates the conditional probability
for the output sentence Y = (y1, y2, ..., yn) by
auto-regressively factorized its as:

pθ(Y |X) =
n∏

t=1

pθ(yt|H, y1, ..., yt−1) (1)

At each time step t, the probability of the next token
is computed by a softmax classifier:

pθ(yt|H, y1, ...., yt−1)) = softmax(ot) (2)

where ot is logit vector outputted by decoder net-
work. The standard S2S model without discrimina-
tor makes the output sequence Y the same as the
input sequence X .

Discriminator Model By teacher forcing, S2S
tends to ignore the style labels and collapses to a
reconstruction model, which might copy the input
sentence, hence failing to transfer the style. There-
fore, to make the model learn meaningful style

Algorithm 1 ATM Pre-traing Learning
Input: sequence-to-sequence model fθ ,discriminator γ,and a
dataset Di with style li belong to Ls
Output: well-trained parameter θ, γ
1: Sample a batch of m sentences X1, X2, ...Xm from Di.
2: while in first stage and not convergence do
3: Use fθ to generate new sentence
4: Yi = fθ(Xi, li)
5: Compute Lcls(γ) for Yi by Eq. (4) ;
6: Compute Lrec(θ) for Yi by Eq. (3) ;

information, we apply a style discriminator γ for
the style regularization. In summary, we use a style
discriminator to provide the direction (gradient) for
TST to conform to the target style. Our discrim-
inator is a multi-layer perceptron with a sigmoid
activation function to predict style labels or guide
the direction of style transfer. Our model train-
ing involves a pre-training learning strategy and a
domain adaptive meta-learning strategy.

3.2.3 First Stage: Pre-training Learning
In the first stage, we train the discriminator model
to distinguish different text styles. In this stage,
the discriminator models are equivalent to a text
classifier. Inspired by (Lewis et al., 2019), we
feed the hidden states from the last layer of the
decoder into the classifier instead of the gumble-
softmax trick (Jang et al., 2017) for gradient back-
propagation, which is more stable and better than
gumble-softmax(See Table 5). The loss function
for the discriminator is simply the cross-entropy
loss of the classification problem:

Lcls(γ) = − E
Xi∼DS

[logP (li|Xi, li; θ, γ)] (3)

For the S2S model, we pre-train the S2S model
to allow the generation model to learn to copy an
input sentence X using teacher forcing. The loss
function of the sequence-to-sequence model min-
imizes the negative log-likelihood of the training
data:

Lrec(θ) = − E
Xi∼DS

[logP (Yi|Xi; θ)] (4)

In summary, we train the sequence model and the
style classification model separately on the source
domain to learn content preservation and style dis-
crimination in the first stage. The first stage train-
ing procedure of the ATM is summarized in Algo-
rithm 1.
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Figure 3: Overview of our proposed DAML-ATM with
second stage training strategy. In the meta-training
phase, a temporary model (θold, θnew) is learned from
Dtr. In the meta-validation phase, the base model is
updated by gradient descent with respect to the parame-
ters θ onDval. In the final evaluation phase, the learned
sequence encoder is fine-tuned on Ttr and tested on Tte
from a unseen domain Dnew.

3.2.4 Second Stage: Domain Adaptive Meta
Learning with Adversarial Training

After the first stage of training, the style classifier
has learned how to distinguish between different
text styles. For style controlling, we adopt a method
of adversarial training to avoid disentangling the
content and style in the latent space. The discrim-
inator model aims to minimize the negative log-
likelihood of opposite style l̃i when feeding to the
sequence model sentence Xi with the style label
li. In the second stage, we freeze the parameters of
the discriminator. Therefore, style loss only works
on the S2S model θ, which forces the S2S model θ
to generate opposite styles of sentences:

Lstyle(θ) = − E
Xi∼D

[logP (l̃i|Xi, li; θ, γ)] (5)

In the second stage, we use the DAML algorithm
for domain adaptive TST, so the text reconstruction
loss and the style discriminator loss are calculated
over the meta-training samples in task Ti from Dtr.
These two losses can be written as

LrecTi (θ) = − E
Xi∼Ti

[logP (Yi|Xi; θ)]

LstyleTi
(θ) = − E

Xi∼Ti
[logP (l̃i|Xi, li; θ, γ))

(6)

We add different prefixes to the input in the sec-
ond stage, which allows the S2S model to perceive

different TST tasks. The second stage of the al-
gorithm is called domain adaptive meta-strategy,
which consists of two core phases: a meta-training
phase and a meta-validation phase, as shown in
Figure 3.

Domain Adaptive Meta-Training
In the meta-training phase, our objective is to

learn different domain-specific temporary models
for each domain that are capable of learning the
general knowledge of each domain. Inspired by
feature-critic networks (Li et al., 2019b), we use
a similar manner to adapt the parameters of the
domain-specific temporary model:

θoldi = θi−1 − α∇θi−1LrecTi (θi−1, γi−1)

θnewi = θoldi−1 − α∇θi−1LstyleTi
(θi−1, γi−1)

(7)

where i is the adaptation step in the inner loop,
and α is the learning rate of the internal optimiza-
tion. At each adaptation step, the gradients are
calculated with respect to the parameters from the
previous step. For each domain of Dtr, it has dif-
ferent θold and θnew . The base model parameters
θ0 should not be changed in the inner loop.

Algorithm 2 The training procedure of DAML-
ATM
Input: D = {D1, ...,DK}, α, β
Output: optimal meta-learned model θ
1: Initialize the base sequence-to-sequence model θ and dis-

criminator model γ by algorithm 1
2: while not converge do
3: Randomly splitD = Dtr∪Dval andDtr∩Dval = ∅
4: Meta-training:
5: for j in meta batches do //Outer loop
6: Sample a task Tj from Dval
7: for i in adaptation steps do //Inner loop
8: Sample a task Ti from Dtr
9: Compute meta-training rec loss LrecTi

10: Compute meta-training style loss LstyleTj

11: Compute adapted parameters with gradient
descent for θi−1

12: θoldi = θi−1 − α∇θi−1LtrTi
(θi−1, γi−1)

13: θnewi = θoldi−1 − α∇θi−1LstyleTi
(θi−1, γi−1)

14: Meta-validation:
15: Compute meta-validation loss on Tj : LvalTj

16: Meta-optimization:
17: Perform gradient step w.r.t. θ
18: θ0 = θ0 − β∇θ0ETjLvalTj

(θoldi , θnewi , γ)

Domain Adaptive Meta-Validation
After meta-training phase, DAML-ATM has al-

ready learned a temporary model(θoldi , θnewi ) in the
meta-training domains Dtr. The meta-validation
phase tries to minimize the distribution divergence
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between the source domains Dtr and simulated
target domains Dval using the learned temporary
model. In the meta-validation phase, each tem-
porary model is calculated on the meta-validation
domain Dval to get meta validation losses.

LvalTj = LrecTj (θoldi , γ0) + LstyleTj
(θnewi , γ0) (8)

Thus, the base model θ is updated by gradient de-
scent

θ0 = θ0 − β∇θ0LvalTj (9)

where β is the meta-learning rate. Unlike the ordi-
nary gradient descent process, the update mecha-
nism of Eq. (9) involves updating one gradient by
another gradient (w.r.t. the parameters of the tempo-
rary model). This process requires a second-order
optimization partial derivative.

3.2.5 Final Evaluation Phase of DAML-ATM
In the final evaluation phase, we first initialize the
model with the parameters learned during the above
algorithm 2. Then, the model takes input as a new
adaptation task T , which consists of a small in-
domain data Str for fine-tuning the model and a test
set Ste for testing. The procedure is summarized
in Algorithm 3. (Note that the discriminator is not
needed for inference.)

Algorithm 3 The Final Evaluation Procedure of
DAML-ATM
Input: θ, γ learned from Algorithm 2, low resource training
set Str and test set Ste of an unseen domain Dnew
Output: Performance on Ste
1: while not convergence do
2: Serialize a task Ttr from the unseen domain Str
3: Update θ = θ − β∇θ

∑
Ttr

(LrecTtr
(θ) + LstyleTtr

(θ))

4: return optimal θ∗ for Ste
5: Style accuracy, bleu, domain accuracy = fTte(θ)

Dataset Domain Train Dev Test Human Reference

Yelp Restaurant 444k 4k 1k 1k

Amazon Product 554k 2k 1k 1k

IMDB Movie 341k 2k 1k No

Yahoo! Q & A 5k 1k 1k No

Table 1: Statistics of source and target datasets(non-
parallel data). The style label set is {negative, posi-
tive}.

4 Experiment

In this section, we first detail the experimental se-
tups. Then, we present our experimental results
over multiple target domains.

4.1 Datasets and Experimental Setups

In this experiment, we use the following four
datasets from different domains: (i) IMDB movie
review corpus (Diao et al., 2014). (ii) Yelp restau-
rant review dataset (Li et al., 2018). (iii) Ama-
zon product review dataset (Li et al., 2018). (iv)
YAHOO! Answers dataset (Li et al., 2019a), the
amazon and yelp test sets each have 1k human
annotations.The statistics of these corpora are sum-
marized in Table 1.

For the S2S model, we take the T5 base
model (Raffel et al., 2019) (220MB) for our experi-
ments. For style discriminator, we use 4-layer fully
connected neural networks. We train our frame-
work using the Adam optimizer (Kingma and Ba,
2014)with the initial learning rate 1e-5. The epoch
is set to 50 for both stage 1 and stage 2. The inner
learning rate α is 0.0001, and the outer learning
rate β is 0.001. Following (Shankar et al., 2018; Li
et al., 2020), we use the leave-one-out evaluation
method by picking a domain as the target domain
Dnew for the final evaluation. For each iteration
of the training phase, two source domains are ran-
domly selected as the meta-training domain Dtr

and the remaining domains as the meta-validation
domain Dval.

In order to evaluate the model performance, we
use three famous and widely adopted automatic
metrics following previous work (Li et al., 2019a;
Fu et al., 2017; Hu et al., 2017a) and a human
metric. BLEU verifies whether the generated sen-
tences retain the original content (Papineni et al.,
2002). While IMDB and Amazon have no manual
references, we compute the BLEU scores w.r.t the
input sentences. Style Control (S-Acc) measures
the style accuracy of the transferred sentences with
a style classifier that is pre-trained on the datasets.
Domain Control (D-Acc) verifies whether the
generated sentences have the characteristics of
the target domain with a pre-trained domain
classifier to measure the percentage of generated
sentences belonging to the target domain. Human
Evaluation Following (Madotto et al., 2019), We
randomly sampled 100 sentences generated on the
target domain and distributed a questionnaire at
Amazon Mechanical Turk asking each worker to
rank the content retention (0 to 5), style transfer(0
to 5 ) and fluency(0 to 5): human score =
Average(

∑
scorestyle +

∑
scorecontent +∑

scorefluency), human score ∈ [0, 100] . Five
workers were recruited for human evaluation.
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Restaurant(1% target domain data) Restaurant(100% target domain data)

Model/Training method S-Acc BLEU G-score Human D-Acc S-Acc BLEU G-score Human D-Acc

CrossAlign 78.4 4.5 18.7 14.6 76.8 88.3 5.6 22.2 70.3 83.5
ControlGen 80.1 6.7 23.2 15.4 80.4 90.6 25.5 22.5 78.9 87.9

FGIM 83.1 4.6 19.6 16.4 82.0 90.4 24.6 48.6 69.4 85.2
DAST 88.3 17.5 39.3 19.5 90.5 91.2 26.5 49.2 79.4 92.6
CatGen 85.4 18.5 39.7 29.4 80.5 88.4 27.9 49.7 65.7 86.0

ATM(ours) 89.6 20.1 42.4 30.1 89.2 93.3 30.3 53.2 85.2 93.4
In-Domain 87.4 9.7 29.1 16.4 87.3 94.5 20.4 43.9 78.4 93.6

Joint-Training 82.3 8.4 26.2 18.7 84.6 85.4 21.6 42.9 73.6 93.4
Fine-Tuning 65.2 2.8 13.5 12.6 79.8 92.8 24.2 47.3 73.7 93.7

D-Shift 79.3 10.4 28.7 15.4 79.8 91.2 23.4 46.1 73.7 93.7
MAML 88.2 18.6 40.5 24.8 74.5 90.4 20.1 42.6 70.4 92.1

DAML(ours) 90.0 21.4 43.8 25.1 89.9 96.7 32.1 55.7 80.2 94.7

DAML-ATM(ours) 94.5 25.4 48.9 34.2 92.9 97.8 35.5 58.9 83.1 96.4

Table 2: Evaluation results on restaurant domain(Yelp). The restaurant domain is used as the target domain and
the other three domains as the source domain. G-score is the geometric mean of S-Acc and BLEU.

Yelp(negative-to-positive) Yelp(positive-to-negative)
Input there chips are ok , but their salsa is really bland. love their food and their passion.

Joint-Training there are good , but their food is really good, . laughable their food and bad food.
Fine-Tuning there chips act very well. their food is hard to use.

D-Shift there are usually dramatic exhibits. my husband and toilet smelled.
MAML there chips are bad,but there salsa is really good. hate their food and their passion

DAML-ATM(ours) there chips are surprised, and their salsa is really nice. hard to swallow food and serious discrespect.

Table 3: Transferred sentences on Yelp(few shot), where red denotes successful style transfers, blue denotes content
losses, violet denotes domain errors and green denotes grammar errors, better looked in color. More examples are
in the appendix.

The results of the other metrics are shown in the
appendix.

4.2 Baselines

Movie In-Domain Fine-Tuning D-Shift MAML DAML

S-Acc 70.4 59.3 74.4 79.8 81.5

BLEU 23.1 25.4 27.4 26.9 31.2

D-Acc 87.3 75.2 72.2 74.5 92.3

Product In-Domain Fine-Tuning D-Shift MAML DAML

S-Acc 84.1 80.2 83.5 84.6 87.0

BLEU 14.0 14.5 17.8 18.1 19.9

D-Acc 80.5 75.4 73.5 79.4 84.1

Q & A In-Domain Fine-Tuning D-Shift MAML DAML

S-Acc 94.1 90.1 92.1 89.6 95.5

BLEU 12.8 13.7 14.5 18.7 20.5

D-Acc 80.6 70.0 72.5 76.5 86.7

Table 4: Results on each of the remaining domains
treated as target domain,every target domains using 1%
data for fine-tuning, base model is AMT.

In our experiments, for ATM model, we adopt
five state-of-the-art TST models for comparison:
CrossAlign (Shen et al., 2017), ControlGen (Hu
et al., 2017a), DAST (Li et al., 2019a), Cat-
Gen (Wang et al., 2020a) and FGIM (Wang et al.,
2019). They are jointly trained on the source do-
mains and fine-tuned on the target domain.

To well analyze our training method DAML, fol-
lowing (Li et al., 2020), we also use five simple
and effective domain adaptation settings with Con-
trolGen (Hu et al., 2017a) structure as DAML: (1)
In-Domain method is trained on the training set
of the target domain; (2) Joint-Training method
combines all the training sets of the source and
target domains and performs a joint-training on
these datasets; (3) Fine-Tuning method is trained
on the training sets of the source domains and then
fine-tuned on the training set of the target domain;
(4) D-Shift This is trained on the combination of
training sets from all source domains. Then, the
evaluation is conducted on the test set of a tar-
get domain using the direct domain shift strategy;
(5) MAML method uses classical model agnostic
meta-learning algorithm (Finn et al., 2017).

4.3 Results and Analysis

For DAML-ATM, we first choose restaurant as the
target domain and the other three as the source do-
mains for observation. Table 2 reports the results
of different methods and models under both the
full-data and few-shot settings. From this table,
we can see that DAML-ATM outperforms all base-
lines in terms of S-Acc, BLEU, D-Acc and human
evaluation. We attribute this to the fact that DAML-
ATM explicitly simulates the domain shift during
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Figure 4: The system performance on amazon im-
proves when the size of the target data increases. Even
the one-shot learning achieves decent performance.

Figure 5: The t-sne plots of source domain sen-
tences and generated target domain sentence in differ-
ent DAML training epochs. The labels 0 and 1 rep-
resent the source domain sentence embedding and the
generated target domain sentence embedding.

training via DAML, which helps adapt to the new
target domain. We can also see that in the case
of a few-shot setting, the results of Fine-tuning
and Joint training are even worse than In-domain
and DAML. The reason may be that the data size
of the source domain is much larger than the tar-
get domain so that the model tends to remember
the characteristics of the source domain. MAML
achieves good performance in most metrics. How-
ever, it does not balance meta-tasks across different
source domains, performing poorly on D-acc.

Further, to verify the robustness of our method
under the low-resource setting, we separately select
the other three domains as the target domain. As
shown in Table 4, our approach has achieved good
performance on different target domains.

We also provide some examples in Table 3. From
the example, we can see intuitively that D-shift

and Fine-tuning will lead to the misuse of domain-
specific words due to lack of target domain infor-
mation. In addition, compared with Joint-training,
the sentences generated by DAML-ATM are more
consistent with the human reference. Compared to
MAML, DAML generates sentences that are more
diverse and vivid due to the more balanced absorp-
tion of information from multiple domains. Fig-
ure 4 shows the system performance positively cor-
relates with the amount of training data available in
the target domain. To visualize how well DAML-
ATM performs on the new unseen domain, we use
t-SNE (Van der Maaten and Hinton, 2008) plots to
analyze the degree of separation between the source
domain sentences and the generated target domain
sentences. Figure 5 shows that as the training epoch
increases, the sentences generated by DAML-ATM
in the target domain are completely separated from
the source domain in the latent space.

4.4 Ablation Study
To study the impact of different components on
the overall performance, we further did an ablation
study for our model, and the results are shown in
Table 5. After we disabled the reconstruction loss,
our model failed to learn meaningful outputs and
only learned to generate a word for any combina-
tion of input sentences and styles. Then, when the
discriminator loss is not used, the model degrades
rapidly, simply copying the original sentence with-
out any style modification. After not using the
pre-training language model weights, the model’s
performance is reduced in the metric of content
preservation. When using gumble-softmax instead
of hidden states for gradient descent, the model
performs poorly in style accuracy because of the
instability of gumble-softmax. In summary, each
factor plays an essential role in the DAML-ATM
training stage.

Model S-Acc BLEU D-Acc

DAML-ATM 94.5 25.4 92.9

w/o reconstruction loss 50.0 0 50.0
w/o discriminator loss 2.1 21.6 92.4

w/o language model weights 87.4 17.3 90.3
w/ gumble-softmax 85.6 18.3 91.0

Table 5: Model ablation study results on Yelp dataset.
The size of adaptation training data is 1 %.

5 Conclusion

In this paper, we propose DAML-ATM, a novel
training strategy combined with a new TST model
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for domain adaptation, which can be easily adapted
to new domains with few shot data. On four pop-
ular TST benchmarks, we found significant im-
provements against multiple baselines, verifying
the effectiveness of our method. We explore ex-
tending this approach for other low resource NLP
tasks in future work.
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A Appendix

A.1 More Details on Experiment Setups
Our model is initialized from T5 and Bart (Liu
et al., 2020; Raffel et al., 2019). Specifically, the
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encoder and decoder are all 12-layer transformers
with 16 attention heads, hidden size 1,024 and feed-
forward filter size 4,096, which amounts to 406M
trainable parameters. We train our framework using
the Adam optimizer (Kingma and Ba, 2014)with
the initial learning rate 1e-5, and we employ a lin-
ear schedule for the learning rate, all models are
trained on 8 RTX 3090 GPUs.

A.2 Details on Human Evaluation

For the results generated by each method, follow-
ing (Krishna et al., 2020), we randomly selected
100 sentences to be placed in the Amazon Mechan-
ical Turk1 questionnaire. We pay our workers 5
cents per sentence. As shown in Figure 6, the ques-
tionnaire asked to judge the generated sentences on
three dimensions: strength of style transfer, degree
of content retention, and text fluency. To minimize
the impact of spamming, we require each worker
to be a native English speaker with a 95% or higher
approval rate and a minimum of 1,000 hits.

A.3 More Ablation Study and Metrics

To verify that the general S2S models work well
with our algorithm, we use bart (Lewis et al., 2019)
as the S2S base model. For the robustness of the
experiment, we add a new metric J-(a,c,f) (Krishna
et al., 2020) to measure our results, which is a
sentence-level aggregation strategy evaluate style
transfer models.

Domain S-Acc BLEU G-score D-Acc J-(a,c,f)

Restaurant(T5-base) 94.5 25.4 48.9 89.2 46.4
Restaurant(Bart-base) 94.7 24.1 47.8 88.4 40.2
Movie(T5-base) 81.5 31.2 50.4 92.3 42.8
Movie(Bart-base) 84.5 34.7 54.1 90.1 43.5
Product(T5-base) 87.0 19.9 41.6 84.1 34.5
Product(Bart-base) 84.3 20.4 41.4 86.4 34.7
Q & A(T5-base) 95.5 20.5 44.25 86.7 39.5
Q & A(Bart-Base) 92.5 17.7 40.46 79.8 34.1

Table 6: Results on each of the remaining domains
treated as target domain, every target domain using 1%
data for fine-tuning, base models are BART and T5.

As can be seen from Table 6, our approach can be
combined with other general pre-trained language
models and performs well, proving our method’s
generality. Furthermore, as we can visually see
from Table 7, our model also performs well on
the J-(a,c,f) metric, which indicates that our model
generates sentences in a specific style while having
the right target style, preserving content, and being
fluent.

1https://www.mturk.com/

A.4 More Generation Examples
To demonstrate more examples of generation to
verify the effectiveness of the model, we selected
10 generated sentences from amazon and yelp each,
as shown in Table 8 and Table 9.

Restaurant(1% target domain data) Restaurant(100% target domain data)

Model/Training Method J-(a,c,f) J-(a,c,f)

CrossAlign 18.4 22.9
ControlGen 19.2 24.5

FGIM 25.6 28.7
DAST 24.5 32.3

Cat-Gen 20.3 31.2
ATM(ours) 30.4 39.5

In-Domain 32.5 35.2
Joint-Training 32.3 35.4
Fine-Tuning 28.2 37.8

D-Shift 25.5 34.1
MAML 38.8 44.1

DAML(ours) 44.8 47.6

DAML-ATM(ours) 46.4 50.8

Table 7: Evaluation results on restaurant domain(Yelp).
The restaurant domain is used as the target domain and
the other three domains as the source domain. G-score
is the geometric mean of S-Acc and BLEU.The evalua-
tion metrics is J-(a,c,f)
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Figure 6: Human evaluation questionnaire. We randomly sampled 100 sentences generated on the target domain
and distributed a questionnaire at Amazon Mechanical Turk asking each worker to rank the content retention (0 to
5), style transfer(0 to 5 ), and fluency(0 to 5).

Amazon (negative-to-positive) or (positive-to-negative)
Input anker, don’t like it.
DAML-ATM anker is a great product, i like it.
Human Ref. anker is a fine product though i d never heard of it.
Input but the back side looks terrible as well.
DAML-ATM but the back side looks great as well.
Human Ref. but the back side looks nice as well .
Input the hot dogs come out bad
DAML-ATM the hot dogs come out great.
Human Ref. we often cook sausages , hot dogs and hamburgers in it as well .
Input i will buy hamilton beach products again .
DAML-ATM i will not buy hamilton beach products again.
Human Ref. i will never buy hamilton beach products again .
Input synching is not too hard , with no passwords or codes required
DAML-ATM synching is easy, with no passwords or codes required.
Human Ref. synching is simple , with no passwords or codes required .
Input they were flimsy
DAML-ATM they were a bit flimsy, but they were ok.
Human Ref. was concerned for the price that these measuring cups would be flimsy .
Input it does not move much air.
DAML-ATM it moves air very fast.
Human Ref. it moves plenty of air , oscillating between two rooms .
Input very ugly unit, hard to assemble and difficult to operate.
DAML-ATM very nice unit, easy to assemble and operate.
Human Ref. very nice unit , easy to assemble and operate .
Input i would recommend this money case
DAML-ATM i would not recommend this money case to anyone.
Human Ref. i would never recommend this terrible waste of money case.
Input And this is not what you would need.
DAML-ATM and this is what you would need.
Human Ref. and that would be what you would need .

Table 8: More Transferred sentences on Amazon(few shot setting).
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Yelp (negative-to-positive) or (positive-to-negative)
Input Ever since joes has changed hands it’s gotten better and better.
DAML-ATM ever since joes has changed hands it’s gotten worse and worse.
Human Ref. ever since joes has changed hands it ’s just gotten worse and worse .
Input There is so much room in that part of the venue
DAML-ATM there is not enough room in that part of the venue.
Human Ref. there is definitely not enough room in that part of the venue .
Input It didn’t taste watered down at all.
DAML-ATM it tasted watered down.
Human Ref. so basically tasted watered down .
Input This pharmacy is really considerate.
DAML-ATM this pharmacy is really a shithole.
Human Ref. i ca n’t believe how inconsiderate this pharmacy is .
Input definitely not disappointed that i could use my birthday gift !
DAML-ATM definitely disappointed that i could not use my birthday gift!
Human Ref. definitely disappointed that i could not use my birthday gift !
Input but it probably doesn’t suck too !
DAML-ATM but it probably does suck too!
Human Ref. but it probably sucks too !
Input the service was quick and responsive
DAML-ATM the service was slow and not responsive.
Human Ref. we sit down and we got some really slow and lazy service .
Input they said we could sit at the table with no hesitation
DAML-ATM they said we could not sit at the table.
Human Ref. said we could n’t sit at the table if we were n’t ordering dinner .
Input the wine was above average and the food was even better
DAML-ATM the wine was average and the food was even wore.
Human Ref. the wine was very average and the food was even less .
Input i would not visit this place again
DAML-ATM i would definitely visit this place again.
Human Ref. one of my favorite chinese place to eat !

Table 9: More Transferred sentences on Yelp(few shot setting).
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