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Abstract

In this paper, we ask the research question of
whether all the datasets in the benchmark are
necessary. We approach this by first charac-
terizing the distinguishability of datasets when
comparing different systems. Experiments on
9 datasets and 36 systems show that several
existing benchmark datasets contribute little to
discriminating top-scoring systems, while those
less used datasets exhibit impressive discrimi-
native power. We further, taking the text clas-
sification task as a case study, investigate the
possibility of predicting dataset discrimination
based on its properties (e.g., average sentence
length). Our preliminary experiments promis-
ingly show that given a sufficient number of
training experimental records, a meaningful
predictor can be learned to estimate dataset dis-
crimination over unseen datasets. We released
all datasets with features explored in this work
on DataLab. 1

1 Introduction

In natural language processing (NLP) tasks, there
are often datasets that we use as benchmarks
against which to evaluate machine learning models,
either explicitly defined such as GLUE (Wang et al.,
2018) and XTREME (Hu et al., 2020) or implicitly
bound to the task (e.g., DPedia (Zhang et al., 2015)
has become a default dataset for evaluating of text
classification systems). Given this mission, one im-
portant feature of a good benchmark dataset is the
ability to statistically differentiate diverse systems
(Bowman and Dahl, 2021). With large pre-trained
models consistently improving state-of-the-art per-
formance on NLP tasks (Devlin et al., 2018; Lewis
et al., 2019), the performances of many of them
have reached a plateau (Zhong et al., 2020; Fu et al.,
2020). In other words, it is challenging to discrimi-
nate a better model using existing datasets (Wang
et al., 2019). In this context, we ask the question:
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Figure 1: Illustrate different datasets’ distinguishing
ability w.r.t top-scoring systems characterized by our
measure log(λsva) on text classification and their corre-
sponding citations.

are all benchmark’s datasets necessary? We use
the text classification task as a case study and try
to answer the following two sub-questions:

RQ1: How can we quantify the distinguishing
ability of benchmark datasets? To answer this
question, we first design measures with varying
calculation difficulties (§4) to judge datasets’ dis-
crimination ability based on top-scoring systems’
performances. By exploring correlations among
different measures, we then evaluate how reliable
a dataset’s discrimination is when discrimination
is calculated solely based on overall results that
top-scoring systems have achieved and generalize
this measure to other NLP tasks. Fig. 1 illustrates
how different text classification datasets are ranked
(the bottom one) based on measures devised in
this work (a smaller value suggests lower discrim-
ination) and the corresponding citations of these
datasets (the upper one). One can observe that: (i)
The highly-cited dataset DBpedia (Zhang et al.,
2015) (more than 3,000 times since 2015) shows
the worst discriminative power. (ii) By contrast,
dataset like ADE (Gurulingappa et al., 2012) (less
than 200 times since 2012) does better in distin-
guishing top-scoring systems, suggesting that some
of the relatively neglected datasets are actually valu-
able in distinguishing models. This phenomenon
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shows the significance of quantifying the discrim-
inative ability of datasets: it can not only help us
to eliminate those with lower discrimination from
commonly-used datasets (e.g., DBpedia), but also
help us to recognize the missing pearl in seldom
used datasets (e.g., ADE and ATIS (Hemphill et al.,
1990)).

RQ2: Can we try to predict the discriminative
power of the dataset? Given a dataset, we investi-
gate if we can judge its ability to distinguish models
based on its characteristics (e.g., average sentence
length), which is motivated by the scenario where
a new dataset has just been constructed without
sufficient top-scoring systems to calculate discrim-
ination defined in RQ1. To answer this question,
inspired by recent literature on performance pre-
diction (Domhan et al., 2015; Turchi et al., 2008;
Birch et al., 2008; Xia et al., 2020; Ye et al., 2021),
we conceptualize this problem as a discrimination
regression task. We define 11 diverse features to
characterize a text classification dataset and regress
its discrimination scores using different parame-
terized models. Preliminary experiments (§5.4)
indicate that a meaningful regressor can be learned
to estimate the discrimination of unseen datasets
without actual training using top-scoring systems.

We brief takeaways in this work based on our
observations:

(1) Not all datasets in benchmark are necessary
in terms of model selection2: empirical results
show that following datasets struggle at discrim-
inating current top-scoring systems: STS-B and
SST-2 from GLUE (Wang et al., 2018); BUCC and
PAWX-X from XTREME, which is consistent with
the concurrent work (Ruder et al., 2021) (§4.3.2).

(2) In regard to single-task benchmark datasets,
for Chinese Word Segmentation task, there are
multiple datasets (MSR, CityU, CTB) (Tseng
et al., 2005; Jin and Chen, 2008) that exhibit much
worse discriminative ability, suggesting that: fu-
ture works on this task are encouraged to either
(i) adopt other datasets to evaluate their systems
or (ii) at least make significant test 3 if using these
datasets. Similar observations happen in the dataset
CoNLL-2003 (Sang and De Meulder, 2003) from
Named Entity Recognition task and MultiNLI

2Caveat: Annotated datasets are always valuable, because
the supervision signals provided there can not only help us
directly train a system for specific use case, but also provide
good supervised transfer for related tasks (Sanh et al., 2021).

3We randomly select 10 recently published papers (from
ACL/EMNLP) that utilized these datasets and found only 2 of
them perform significant test.

(Williams et al., 2017) from natural language infer-
ence task (§4.3.2).

(3) Some seldom used datasets such as ADE from
text classification are actually better at distinguish-
ing top-performing systems, which highlights an
interesting and necessary future direction: how to
identify infrequently-used but valuable (better dis-
crimination) datasets for NLP tasks, especially in
the age of dataset’s proliferation?4 (§4.2)

(4) Quantifying a dataset’s discrimination (w.r.t
top-scoring systems) by calculating the statistical
measures (defined in §4.1.2) from leaderboard’s
results is a straightforward and effective way. But
for those datasets without rich leaderboard results,5

predicting the discrimination based on datasets’
characteristics would be an promising direction
(§4.3.1).

Our contributions can be summarized as:
(1) We try to quantify the discrimination abil-

ity for datasets by designing two variance-based
measures. (2) We systematically investigate 4 text
classification models on 9 datasets, providing the
newest baseline performance for those seldom used
datasets. All datasets and their features are released
on DataLab (Xiao et al., 2022). (3) We study sev-
eral popular NLP benchmarks, including GLUE,
XTREME, NLI, and so on. Some valuable sugges-
tions and observations will make research easier.

2 Related Work

Benchmarks for NLP In order to conve-
niently keep themselves updated with the research
progress, researchers recently are actively build-
ing evaluation benchmarks for diverse tasks so
that they could make a comprehensive compari-
son of systems, and use a leaderboard to record the
evolving process of the systems of different NLP
tasks, such as SQuAD (Rajpurkar et al., 2016),
GLUE (Wang et al., 2018), XTREME (Hu et al.,
2020), GEM (Gehrmann et al., 2021) and GE-
NIE (Khashabi et al., 2021). Despite their utility,
more recently, Bowman and Dahl (2021) highlight
that unreliable and biased systems score so highly
on standard benchmarks that there is little room for
researchers who develop better systems to demon-
strate their improvements. In this paper, we make
a pilot study on meta-evaluating benchmark evalu-

4https://paperswithcode.com/datasets
5The measure can keeps updated as the top-scoring sys-

tems of the leaderboard evolves, which can broaden its practi-
cal applicability
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ation datasets and quantitatively characterize their
discrimination in different top-scoring systems.

Performance Prediction Performance predic-
tion is the task of estimating a system’s perfor-
mance without the actual training process. With
the recent booming of the number of machine learn-
ing models (Goodfellow et al., 2016) and datasets,
the technique of performance prediction become
rather important when applied to different scenar-
ios ranging from early stopping training iteration
(Kolachina et al., 2012), architecture searching
(Domhan et al., 2015), and attribution analysis
(Birch et al., 2008; Turchi et al., 2008). In this
work, we aim to calculate a dataset’s discrimina-
tion without actual training top-scoring systems
on it, which can be formulated as a performance
prediction problem.

3 Preliminaries

3.1 Task and Dataset
Text classification aims to assign a label defined
beforehand to a given input document. In the exper-
iment, we choose nine datasets, and their statistics
can be found in the Appendix A.

• IMDB (Maas et al., 2011) consists of movie
reviews with binary classes.

• Yelp (Zhang et al., 2015) is a part of the Yelp
Dataset Challenge 2015 data.

• CR (Hu and Liu, 2004) is a product review
dataset with binary classes.

• MR (Pang and Lee, 2005) is a movie review
dataset collected from Rotten Tomatoes.

• SST1 (Socher et al., 2013) is collected from
HTML files of Rotten Tomatoes reviews with
fully labeled parse trees.

• DBpedia14 (Zhang et al., 2015) is a dataset for
ontology classification collected from DBpedia.

• ATIS (Hemphill et al., 1990) is an intent detec-
tion dataset that contains audio recordings of
flight reservations.

• QC (Li and Roth, 2002) is a question classifica-
tion dataset.

• ADE (Gurulingappa et al., 2012) is a subset of
“Adverse Drug Reaction Data”.

3.2 Model
We re-implement 4 top-scoring systems with typ-
ical neural architectures for each dataset. 6 The

6We mainly focus on neural network-based models, since
most top-scoring systems in the leaderboard are based on deep
learning.

brief introduction of the four models is as follows.

• LSTM (Hochreiter and Schmidhuber, 1997) is
a widely used sentence encoder. Here, we adopt
the bidirectional LSTM.

• LSTMAtt is proposed by Lin et al. (2017) that
designed the self-attention mechanism to extract
different aspects of features for a sentence.

• BERT (Devlin et al., 2018) was utilized to fine-
tuning on our text classification datasets.

• CNN is a CNN-based text classification model
(Kim, 2014) was expolred in our work.

Except for BERT, the other three models (e.g.
LSTM) are initialized by GloVe (Pennington et al.,
2014) or Word2Vec (Mikolov et al., 2013) pre-
trained word embeddings. When the performance
on the dev set doesn’t improve within 20 epochs,
the training will be stopped, and the best perform-
ing model will be kept. More detailed model pa-
rameter settings can be found in the Appendix B.

4 How to Characterize Discrimination?

To achieve this goal, we design measures based on
the performance of different models for a dataset.

4.1 Measures

We design several measures to judge dataset’s
distinguishing ability based on the performances
that top-performing systems have achieved on it.7

Specifically, given a dataset D together with k top-
scoring model performance list v = [v1, · · · , vk],
we define the following measures.

4.1.1 Performance Variance

We use the standard deviation to quantify the de-
gree of variation or dispersion of a set of perfor-
mance values. A larger value of λvar suggests that
the discrimination of the given dataset is more sig-
nificant. λvar can be defined as:

λvar = Std(v), (1)

where Std(·) is the function to compute the stan-
dard deviation. Assume that the performance list
(k = 3) on dataset D is v = [88, 92, 93], we can
get λvar = 2.65.

7A dataset’s discrimination is defined w.r.t top-scoring
models from a leaderboard, keeping itself updated with sys-
tems’ evolution.
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4.1.2 Scaled Performance Variance
For the above measure, it can only reflect the vari-
ances of the performance of different models, with-
out considering whether the model’s performance
is close to the upper limit (e.g., 100% accuracy)
on a given data set. To address this problem, we
defined a modified variance by scaling λvar with
the difference between the upper limit performance
u and average performance Avg(v) of v.

λsva = λvar(u−Avg(v)). (2)

In practice, u can be defined flexibly based on tasks’
metrics. For example, in text classification task, u
could be 100% (w.r.t F1 or accuracy), while in
summarization task, u could be the results of or-
acle sentences (w.r.t ROUGE). Intuitively, given
a performance list on text classification dataset:
v = [88, 92, 93], we can obtain the λsva = 23.81.

4.1.3 Hit Rate
The previous two measures quantify dataset’s dis-
criminative ability w.r.t k top-performing systems
in an indirect way (i.g, solely based on the overall
results of different models). However, sometimes,
small variance does not necessarily mean that the
dataset fail to distinguish models, as long as the dif-
ference between models is statistically significant.
To overcome this problem, we borrow the idea of
bootstrap-based significant test (Koehn, 2004) and
define the measure hit rate, which quantify the de-
gree to which a given dataset could successfully
differentiate k top-scoring systems.

Specifically, we take all
(
k
2

)
pairs of systems

(mi and mj) and compare their performances on
a subset of test samples Dt that is generated using
paired bootstrap re-sampling. Let vi(D) > vj(D)
be the performance of m1 and m2 on the full
test set, we define P (mi,mj) as the frequency of
vi(Dt) > vj(Dt) over all T times of re-sampling
(t = 1, · · · , T ). 8 Then we have

λhit =
1(
k
2

)
∑

P (mi,mj) (3)

Metric Comparison The first two metrics, per-
formance variance and scaled performance vari-
ance, are relative easily to obtain since they only re-
quire holistic performances of different top-scoring
models on a given dataset, which can be conve-
niently collected from existing leaderboards. By

8For example, given a test set with 1000 samples, we
sample 80% subset from it and repeat this process T times.

contrast, although the metric hit rate can directly
reflect dataset’s ability in discriminating diverse
systems, its calculation not only require more fine-
grained information of system prediction but also
complicated bootstrap re-sampling process.

4.2 Exp-I: Exploring Correlation Between
Variance and Hit Rate

The goal of this experiment is to investigate the re-
liability of the variance-based discrimination mea-
sures (e.g., λsva), which are easier to obtain, by cal-
culating its correlation with significant test-based
measure λhit, which is costly to get. Since the im-
plementation of λhit relies on the bootstrap-based
significant test, we choose text classification as
the tested and re-implement 4 classification mod-
els (defined in Sec. 3.2) on 9 datasets. The per-
formance and the distinction degree on the 9 text
classification dataset are shown in Tab. 1. λvar and
λsva measures are designed based on performance
variance, even if BERT always achieves the best
performance on the same dataset, it will not affect
the observed results from our experiments.

Correlation measure Here, we adopt the Spear-
man rank correlation coefficient (Zar, 1972) to de-
scribe the correlation between our variance-based
measures and the hit rate measure λhit.

Sλ = Spearman(q, λhit), (4)

where the q can be λvar or λsva.

Result (1) λvar and λsva are strong correlative
(Sλ>0.6) with λhit respectively, which suggests that
variance-based metrics could be a considerably re-
liable alternatives of significant test-based metric.
(2) Spearman(λvar, λhit) > Spearman(λsva, λhit),
which indicate that comparing with λsva, dataset
discrimination characterized by λvar is more accept-
able for λhit. The reason can be attributed to that
the designing of the measure λhit does not consider
the upper limit of the model’s performance.
(3) DPdedia and Yelp are commonly used text
classification datasets, while they have the worst
ability to discriminate the top-scoring models since
they get the lowest value of λvar and λsva. By
contrast, these two seldom used datasets ADE and
ATIS show the better discriminative ability.

4.3 Exp-II: Evaluation of Other Benchmarks
4.3.1 Popular Benchmark Datasets
We also investigate how benchmark datasets from
other NLP task perform using two devised mea-
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Method BERT LSTMAttr LSTM CNN λhit λvar λsva

SST1 54.12 43.80 47.60 44.80 0.88 4.65 243.56
CR 91.75 83.25 82.50 84.25 0.91 4.27 62.17
MR 85.55 79.92 79.80 82.00 0.86 2.69 48.83
QC 97.19 90.36 89.96 92.17 0.92 3.32 25.18
IMDB 93.34 89.45 89.65 87.81 0.87 2.33 23.18
ADE 93.48 92.90 92.65 89.54 0.78 1.77 13.90
ATIS 97.64 97.42 97.31 94.62 0.78 1.42 4.63
Yelp 97.52 96.60 96.60 95.46 0.81 0.84 2.91
DPedia 99.27 99.01 99.05 98.75 0.68 0.22 0.21

Spearman 0.83 0.73

Table 1: Illustration the 4 models’ performance and discrimination degree (characterized by λhit, λvar, and λsva) on
9 text classification datasets. The two correlation coefficients pass the significance test (p < 0.05 ). λvar and λsva
measures are designed based on performance variance.

sures. Specifically, we collected three single-task
and two multitask benchmarks. For the single-task
benchmarks, we collect the top-performing models
in a specific period for each dataset, provided by
Paperswithcode. 9 For the multitask benchmarks,
here, the GLUE 10 and XTREME 11 are consid-
ered in this work. Since Paperswithcode provided
5 models for each dataset in most case, for fairness
and uniformity, we keep top-5 models for both
single-task and multitask benchmark datasets.
Named Entity Recognition (NER) aims to iden-
tify named entities of an input text, for which we
choose 5 top-scoring systems on 6 datasets and
collect results from Paperswithcode.
Chinese Word Segmentation (CWS) aims to de-
tect the boundaries of Chinese words in a sentence.
We select 5 top-scoring systems on 8 datasets and
collect results from Paperswithcode.
Natural Language Inference (NLI) targets at pre-
dicting whether a premise sentence can infer the
hypothesis sentence. We select 5 top-performing
models on 4 datasets from Paperswithcode.
GLUE (Wang et al., 2018) covers 9 sentence- or
sentence-pair tasks with different dataset sizes, text
genres, and degrees of difficulty. Fig. 2-(a) shows
the tasks/datasets that are considered in GLUE.
XTREME (Hu et al., 2020) is the first benchmark
that evaluates models across a wide variety of lan-
guages and tasks. The tasks/datasets that are cov-
ered by XTREME are shown in Fig. 2-(b).

4.3.2 Results and Analysis
Fig. 2 shows the results of dataset quality measure
by λvar and λsva. We detail several main observa-
tions:

9https://paperswithcode.com/
10https://gluebenchmark.com/
11https://sites.research.google/xtreme

• λvar and λsva have consistent evaluation results
for both single-task (CWS, NER, NLI) and mul-
titask (GLUE, XTREME) benchmarks.

• For the XTREME benchmark, BUCC and
PAWSX have lowest λvar and λsva, which sug-
gest that they are hardly to discriminate the top-
performing systems. Moreover, these two data
sets will be removed from the new version of
the XTREME leaderboard called XTREME-R
(Ruder et al., 2021). This consistent observation
also shows the effectiveness of our measure.

• For GLUE benchmark, CoLA, QQP, and RTE
have the excellent ability to distinguish different
top-scoring models (with higher λvar and λsva),
while the SST-2 and STS-B perform worse.

• For CWS benchmarks, there is a larger gap be-
tween the value of λvar and λsva, which indicate
that the performance of top-scoring models con-
sidered are close to 100%. Furthermore, MSR,
CityU and CTB are not suitable as benchmarks
since they have poor discrimination ability with
λsva < 0. So as MultiNLI for NLI task.

• CoNLL 2003 is a widely used NER dataset, but
it is the lowest quality dataset under our dataset
quality measure. The reason can be attributed to
contain much annotation errors (Fu et al., 2020)
in the CoNLL 2003 dataset, which makes its
performance reach the bottleneck.

5 Can we Predict Discrimination?

Although metrics λvar, λsva ease the burden for us
to calculate the datasets’ discrimination, one major
limitation is: given a new dataset without results
from leaderboards, we need to train multiple top-
scoring systems and calculate corresponding results
on it, which is computationally expensive. To alle-
viate this problem, in this section, we focus on text
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Figure 2: The dataset discrimination characterized by log(λvar) (the logarithm for better visualization) (blue) and
log(λsva) (pink) on five popular NLP benchmarks.

classification task and investigate the possibility of
estimating datasets’ discrimination solely based on
their characteristics without actual training systems
on them.

5.1 Task Formulation

5.1.1 Regression-based Task Formulation
We formulate it as a performance prediction prob-
lem (Birch et al., 2008; Xia et al., 2020; Ye et al.,
2021). Formally, we refer to M, Dtr , Dte, S
as the machine learning system, training data, test
data and training strategy respectively. The goal of
performance prediction is to estimate actual perfor-
mance y without actual training by using features
of M, Dtr, Dte, and S .

ŷ = f̂(ΦM,ΦDtr ,ΦDte ,ΦS ; Θ̂) (5)

where ŷ denotes estimated prediction and Φ(·)
is a feature extractor. Following Xia et al. 2020, we
only use the features of the datasets as variables and
adapt it to our discriminative prediction scenario,
we can obtain:

λ̂ = f̂(ΦDtr ,ΦDte ; Θ̂), (6)

where λ̂ denotes predicted variance defined in
§4.1.2 such as λvar or λsva.

5.1.2 Ranking-based Task Formulation
Instead of only regressing one dataset’s quality,
we also care about the quality ranking of dif-
ferent datasets w.r.t discriminating systems in a
task. Therefore, we also formulate it as a listwise

LTR(learning to rank) task where a model takes
individual lists as instances, to predict the rank of
element among the list (Liu, 2011). Given a set
of n datasets d = {d1, d2, · · · , dn} (d ∈ D =
{Dtr, Dte}), different d construct the dataset of
LTR task, the target of the ranker is to predict the
dataset quality ranking for each dataset in d ac-
cording to the datasets’ features. The estimated
rankings λ = {λ1, λ2, · · · , λn} ∈ [1, n] for set d
can be defined as:

λ = f(Φ(d); Θ), (7)

where Φ(·) is the dataset feature extractor, f is the
ranking model. λ ∈ [1, n] is the estimated rankings
of the variance ( λvar or λsva) for datasets in set d.

5.2 Characterization of Datasets

In this section, we will introduce three aspects that
characterize datasets: Inherent Feature, Lexical
Feature, and Semantic Feature. Due to space limita-
tions, we move a more detailed feature introduction
to the Appendix C.

5.2.1 Inherent Feature

Average length (ϕlen): The average sentence
length on a dataset, where the number of tokens on
a sentence is considered as the sentence length. La-
bel number (ϕlab): The number of labeled classes
in a dataset. Label balance (ϕbal): The label bal-
ance metric measures the variance between the
ideal and the true label distribution.

2935



5.2.2 Lexical Feature
Basic English Words Ratio (ϕbasic): The pro-
portion of words belonging to the 1000 basic En-
glish 12 words in the whole dataset. Type-Token
Ratio (ϕttr): We measure the text lexical richness
by the type-token ratio (Richards, 1987) based on
the lexical richness tool. 13 Language Mixed-
ness Ratio (ϕlmix): To detect the ratio of other
languages mixed in the text, we utilize the models
proposed by Joulin et al. (2016b) for language iden-
tification from fastText (Joulin et al., 2016a) which
can recognize 176 languages. Pointwise Mutual
Information (ϕpmi): PMI 14 is a measurement to
calculate the correlation between variables.

5.2.3 Semantic Feature
Perplexity (ϕppl): We calculate the perplexity 15

based on GPT2 (Radford et al., 2019) to evaluate
the quality of the text. Grammar Errors Ratio
(ϕgerr): We adopt the detection tool 16 to recognize
words with grammatical errors, and then calculate
the ratio of grammatical errors. Flesch Reading
Ease 17 (ϕfre): To describe the readability of a text,
we introduce the ϕfre achieving by textstat. 18

For feature ϕlen, ϕttr,ϕlmix, ϕgerr, ϕpmi, ϕfre,
and ϕrfre , we individually compute ϕ() on the train-
ing, test set, as well as their interaction. Take aver-
age length (ϕlen) as an example, we compute the
average length on training set ϕtr,len, test set ϕte,len,
and their interaction ((ϕtr,len − ϕte,len)/ϕtr,len)

2.

5.3 Parameterized Models

The dataset discrimination prediction (ranking)
model takes a series of dataset features as the in-
put and then predicts discrimination(rank) based
on f̂(·) (f(·)) defined in Eq. 6 (Eq. 7). We explore
the effectiveness of four variations of regression
methods and two ranking frameworks.
Regression Models: LightGBM (Ke et al., 2017)
is a gradient boosting framework with faster train-

12https://simple.wikipedia.org/wiki/
Wikipedia:List_of_1000_basic_words

13https://github.com/LSYS/
lexicalrichness

14https://en.wikipedia.org/wiki/
Pointwise_mutual_information

15https://en.wikipedia.org/wiki/
Perplexity

16https://github.com/jxmorris12/
language_tool_python

17https://en.wikipedia.org/wiki/Flesch%
E2%80%93Kincaid_readability_tests

18https://github.com/shivam5992/
textstat

ing and better performance than XGBoost. K-
nearest Neighbor (KNN) (Peterson, 2009) is a
non-parametric model that makes the prediction
by exploring the k neighbors. Support Vector
Machine (SVM) (Suykens and Vandewalle, 1999)
uses kernel trick to solve both linear and non-linear
problems. Decision Tree (DT) (Quinlan, 1990) is
a tree-based algorithm that gives an understandable
interpretation of predictions.
Ranking Frameworks: LightGBM with Gradient
Boosting Decision Tree (Friedman, 2001) boost-
ing strategy was selected as our ranking model.
XGBoost (Chen and Guestrin, 2016) with gb-
tree(Hastie et al., 2009) boosting strategy was an-
other ranking model.

5.4 Experiments

5.4.1 Data Construction
To construct a collection with large amount of
discriminative datasets, we randomly select three
dataset features (e.g. average sentence length ϕlen)
to divide the original dataset into several non-
overlapping sub-datasets. As a result, we collect
987 sub-datasets. Then, we train four text classifi-
cation models (CNN, LSTM, LSTMAtt, BERT) on
these sub-dastasets. Next, we calculate the dataset
features ϕ (defined in Sec. 5.2) and dataset discrim-
ination ability λsva and λvar on these sub-datasets.
Regression Task Settings ϕ and λsva (λvar) will be
the input and target of the regression models, as
defined by Eq. 6. For the experiment setting, we
randomly select 287 (ϕ, λsva (λvar)) pairs as the test
set and the rest as the training set (700). Ranking
Task Settings We construct datasets for ranking
task from the dataset used in regression task. Here,
we explored the value of n (defined in §5.1.2) to be
5, 7 and 9 to randomly choose samples from Dtr

(or Dte) to construct the datasets for the ranking
task, and kept 4200, 600, 1200 samples for training,
development and testing set respectively.

5.4.2 Evaluation Metric
Regression Task We use RMSE (Chai and
Draxler, 2014) and Spearman rank correlation co-
efficient (Zar, 1972) to evaluate how well the re-
gression model predicts the discriminative ability
for datasets. The Spearman rank correlation coeffi-
cient is used for the correlation between the output
of a regression model and the ground truth.

Ranking Task NDCG (Järvelin and Kekäläinen,
2000) and MAP (Yue et al., 2007) are the evalua-
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tion metric of our ranking task. For NDCG, it con-
siders the rank of a set of discriminative abilities.
In our setting, every dataset has its own real dis-
criminative ability. Here, We transfer the predicted
discriminative ability to the rank of the dataset in
the NDCG metric, so we can use NDCG to evalu-
ate the model’s predicted effect. For MAP, it likes
how NDCG works, but it considers a set of binary
values. Here, we set a threshold value of λvar = 3
(λsva = 28) for λvar (λsva) to distinguish the dataset
discrimination ability from good (relevant) to bad
(irrelevant).

Method

RMSE Spearman

λvar λsva
λvar λsva

corr p corr p

KNN 2.42 51.21 0.77 9.75E-40 0.87 1.62E-63
LightGBM 1.53 32.74 0.72 2.23E-33 0.87 7.01E-61
DT 1.73 43.33 0.64 9.25E-25 0.84 1.33E-53
SVM 2.83 62.44 0.68 1.14E-28 0.77 7.26E-40

Table 2: The performance of regressing dataset discrim-
ination for the text classification. “corr” denotes the
“correlation”.

Model n NDCG MAP

λvar λsvar λvar λsvar

LightGBM
9 98.20 98.85 97.50 98.27
7 97.76 98.73 97.01 99.05
5 96.73 97.08 96.56 98.15

XGBoost
9 96.66 97.13 92.91 93.62
7 96.74 97.65 94.77 96.11
5 95.93 97.10 95.49 98.25

Table 3: The performance of ranking dataset discrimi-
nation for the text classification task. n is the number of
datasets in d defined in §5.1.2

.

5.4.3 Results and Analysis
Tab. 2 and Tab. 3 show the results of four regression
models and two ranking models that characterize
the dataset discrimination ability, respectively. We
can observe that: Both the regression models and
the ranking models can well describe the discrimi-
nation ability of different datasets. For these four
regression models, the prediction is highly corre-
lated with the ground truth (with a correlation value
larger than 0.6), passing the significance testing
(p < 0.05). This suggests that the dataset discrimi-
nation can be successfully predicted. For these two
ranking models, their performance on NDCG and
MAP is greater than 95%, which indicates that the

discriminative ability of the data set can be easily
ranked.
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Figure 3: Feature importance for the text classification
measured by LGBoost with the target of λsva.

Feature Importance Analysis Fig. 3 illustrates
the feature importance characterized by LightGBM.
For a given feature, the number of times that is
chosen as the splitting feature in the node of the de-
cision trees is defined as its importance degree. We
observe that: (1) The most influential features are
ϕpmi, ϕlen, and ϕfre, which come from the lexical,
inherent, and semantic features, respectively. This
indicated that the LightGBM can extract features
from different aspects to make predictions. (2) In
the perspective of feature groups, the semantic fea-
tures are more influential than the inherent features
and lexical features.

6 Discussion & Implications

Discussion Given a leaderboard of a dataset, met-
rics explored in this paper can be easily used to
calculate its discrimination, while some limitations
still exist. We make some discussion below to en-
courage more explorations on new measures: (a)
Interpretability: current metrics can only identify
which datasets are of lower indiscriminability while
don’t present more explanation why it is the case.
(b) Functionality: a dataset with lower discrimina-
tion doesn’t mean it’s useless since the supervision
signals provided there can not only help us directly
train a system for the specific use case but also
provide good supervised transfer for related tasks.
Metrics designed in this work focus on the role of
discriminating models.

Calls Based on observations obtained from this
paper, we make the following calls for future re-
search: (1) Datasets’ discrimination ability w.r.t
top-scoring systems could be included in the
dataset schema (such as dataset statement (Ben-
der and Friedman, 2018)), which would allow re-
searchers to gain a saturated understanding of the
dataset. (2) Leaderboard constructors could also
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report the discriminative ability of the datasets
they aim to include. (3) Seldom used datasets are
also valuable for model selection, and a more fair
dataset searching system should be investigated, for
example, relevance- and scientifically meaningful
first, instead of other biases, like popularity.
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A Statistics of Datasets

Tab. 4 shows the statistical information of the nine
datasets of text classification task used in our work.
For those datasets without explicit the development
set, we randomly selected 12.5% samples from the
training set as the development set.

Dataset Train Test Development

IMDB 25,000 25,000 -
Yelp 560,000 38,000 -
QC 5,452 500 -
DPedia 560,000 70,000 -
CR 3,594 400 -
ATIS 4,978 893 -
SST1 8,544 2,210 1,101
MR 9,596 1,066 -
ADE 23,516 - -

Table 4: Statistics of datasets.

B Parameter Settings for Text
Classification Model

In this section, we will introduce the parameter set-
tings of the neural network-based models explored
in Section 3.2. The optimizer is AdamW for the
four mdoels. The settings of other parameters are
shown in Tab. 5.

Parameter BERT CNN LSTM LSTMAtt

learning rate 2*e-5 1*e-4 1*e-3 1*e-3
batch size 4 4 32 32
word emb - Word2vec GloVe GloVe
word emb size - 300 300 300
hidden size 768 120 256 256
max sent len 512 - - -
filter size - 1,3,5 - -

Table 5: the parameters of four models.

C Characterization of Datasets

C.1 Inherent Feature

Label balance (ϕbal): The label balance metric
measures the variance between the ideal and the
true label distribution: ϕbal = (ct − cs)/cs, where
the ct and cs are the true and ideal label information
entropy (Shannon, 1948), respectively.

C.2 Lexical Feature

Type-Token Ratio (ϕttr): TTR (Richards, 1987)
is a way to measure the documents lexical richness:
ϕttr = ntype/ntoken, where the ntype is the number

of unique words, and ntoken is the number of to-
kens. We use lexical richness 19 to calculate the
TTR for each sentence and then average them.
Language Mixedness Ratio (ϕlmix): The propor-
tion of sentence that contains other languages in
the whole dataset. To detect the mixed other lan-
guages, we utilize the models proposed by Joulin
et al. (2016b) for language identification from fast-
Text (Joulin et al., 2016a) which can recognize 176
languages.
Pointwise Mutual Information (ϕpmi): is a mea-
surement to calculate the correlation between
variables. Specifically, for a word in one class
ϕpmi(c,w) = log( p(c,w)

p(c)p(w)), where p(c) is the pro-
portion of the tokens belonging to label c, p(w) is
the proportion of the word w, and p(c, w) is the
proportion of the word w which belongs to class
c. For every class, all the ϕpmi(c,w), larger than
zero, are added to get the sum, which serve as the
dataset’s pmi. Finally,ϕpmi is calculated by divid-
ing the sum by the numbers of pairs(c,w) of the
train dataset. We pick up the top-ten words sorted
by ϕpmi(c,w) in all classes, then the ration related to
the class-related word(ϕrpmi) is calculated by divid-
ing the number of samples who contain the top-ten
words by the total samples in the train set.

C.3 Semantic Feature
Grammar errors ratio (ϕgerr): The proportion
of words with grammatical errors in the whole
dataset. We adopt the detection tool 20 to recognize
words with grammatical errors. We first compute
the grammar errors ratio for each sentence: n/m,
where the n and m denote the number of words with
grammatical errors and the number of the token for
a sentence, averaging them.
Flesch Reading Ease (ϕfre): Flesch Reading Ease
21 calculated by textstat 22 is a way to describe the
simplicity of a reader who can read a text. First,
we calculate the ϕfre for each sample, and then
average them as the dataset’s feature. Then we
pick out the samples whose score below 60, then
the ration related to the low score samples(ϕrfre)
is calculated by dividing the number of the picked
samples by the total samples in the train set.

19https://github.com/LSYS/
lexicalrichness

20https://github.com/jxmorris12/
language_tool_python

21https://en.wikipedia.org/wiki/Flesch%
E2%80%93Kincaid_readability_tests

22https://github.com/shivam5992/
textstat
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