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Abstract

Distributional models learn representations of
words from text, but are criticized for their lack
of grounding, or the linking of text to the non-
linguistic world. Grounded language models
have had success in learning to connect con-
crete categories like nouns and adjectives to
the world via images and videos, but can strug-
gle to isolate the meaning of the verbs them-
selves from the context in which they typically
occur. In this paper, we investigate the extent
to which trajectories (i.e. the position and ro-
tation of objects over time) naturally encode
verb semantics. We build a procedurally gen-
erated agent-object-interaction dataset, obtain
human annotations for the verbs that occur in
this data, and compare several methods for rep-
resentation learning given the trajectories. We
find that trajectories correlate as-is with some
verbs (e.g., fall), and that additional abstrac-
tion via self-supervised pretraining can further
capture nuanced differences in verb meaning
(e.g., roll vs. slide).

1 Introduction

While large distributional language models such
as BERT (Devlin et al., 2019) and GPT (Radford,
2020; Brown et al., 2020) have had empirical suc-
cess in deriving representations of words and sen-
tences from large text corpora, most of these mod-
els lack grounding, or a connection between the
words and their real-world referents. Grounding,
in addition to being necessary for multimodal tasks
like video recognition, has been argued to lie at the
core of language understanding (Bender and Koller,
2020). Work on grounded language learning asso-
ciates language with the non-linguistic world, typ-
ically by learning from large-scale image (Bruni
et al., 2011) or video (Sun et al., 2019) datasets.

Much prior work on language grounding has fo-
cused on concrete nouns (objects) and adjectives
(attributes), which are captured well by patterns of
pixels. Verbs, however, have received less attention,

despite being essential for building models that
can interact in realistic 3D environments (Shridhar
et al., 2020a; Bisk et al., 2020). Verbs are espe-
cially challenging to model, given that they take
place over time. Image and video data alone is in-
sufficient to fully capture verb semantics, as demon-
strated by prior work (Yatskar et al., 2016), in many
cases failing to isolate the meaning of the verb from
context in which it typically occurs. For example,
Chao et al. 2018 show that an image of a person
laying in the snow next to a snowboard is labeled
“standing on a snowboard". Moreover, recent work
has introduced datasets and benchmarks based on
situated 3D environments (Gan et al., 2020; Deitke
et al., 2020; Ebert and Pavlick, 2020; Shridhar et al.,
2020a) that demonstrate the challenges of learning
task-oriented behavior, which demands a combina-
tion of object and verb grounding.

In this paper, we test the hypothesis that the se-
mantics of (concrete) verbs are grounded in the
3D trajectories of objects: i.e., the absolute and
relative paths objects take through 3D space. We
investigate if and when verb meanings appear to be
a product of raw perception of objects in 3D space,
and when differentiating verb meanings requires
additional abstraction and representation beyond
what is available via direct perception. To study
this, we collect a clean dataset of 3D object trajec-
tories in simulation. We collect human descriptions
of these perceived world dynamics, i.e., to deter-
mine whether or not a given event constitutes a fall
or a tumble. We then propose a self-supervised pre-
training approach, whereby we train a time-series
prediction model to obtain representations of trajec-
tories in a 3D environment without any linguistic
input. We evaluate the learned representations on
how well they encode verb semantics for specific
verbs. We show that the pretrained model learns to
represent events in a way that aligns well with the
meaning of English verbs, e.g. differentiating slide
from roll. In summary, our primary contributions
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are:

1. We introduce a new, clean dataset of 3D ob-
ject trajectories paired with human judgments
about whether or not each trajectory falls
within the extension of each of 24 different
verbs. To the best of our knowledge, this is
the first dataset of its kind, and provides a
valuable resource for empirical studies of lex-
ical semantics. Our data is available at https:
//github.com/dylanebert/simulated.

2. We compare several representation learning
methods in terms of their ability to capture
verb semantics without any linguistic signal
during training. In particular, we investigate
the roll of abstraction (via self-supervised pre-
training) compared to raw perception in cap-
ture verb meanings. To our knowledge, this
is the first work to apply neural networks and
(pre-linguistic) concept learning to the study
of verb semantics.

2 Related Work

Grounded Language with Deep Learning.
Our contributions add to a large body of work on
grounded representation learning. Much of this
work augments language modeling objectives with
images (Silberer and Lapata, 2012; Lazaridou et al.,
2015; Kiela et al., 2017) and videos (Sun et al.,
2019). In this work, we focus on representations
that encode verb semantics. Prior work on verb
learning has been conducted in the computer vi-
sion community, typically described as “human-
object interactions" (Regneri et al., 2013; Chao
et al., 2018; Sun et al., 2018; Ji et al., 2019). Most
closely related to our approach, which focuses on
trajectory data, is work on learning affordances for
human-robot communication. For example, Kalkan
et al. (2014); Ugur et al. (2009) learn affordance
representations based on the state changes of ob-
jects, but do not encode the full trajectory between
states. Also related is work in grounded language
in text-only models which investigates models abil-
ity to reason about objects through space and time
(Aroca-Ouellette et al., 2021).

Outside of NLP, models have been trained on
trajectory data for applications like human motion
path forecasting (Giuliari et al., 2021) and human
activity recognition (Wang et al., 2018). Our work
lies at the intersection of grounded language learn-
ing and spatiotemporal machine learning, using

representations of trajectory data to study verb se-
mantics.

Grounding and Lexical Semantics. Prior work
in formal semantics attempts to build feature-based
representations of verb meaning in terms of the
3D trajectories and state transitions entailed by
those verbs (Pustejovsky and Krishnaswamy, 2014;
Siskind, 2001; Steedman, 2002). Such work is
related more generally to the idea of mental sim-
ulation as a means for representing and reasoning
about linguistic concepts (Feldman, 2008; Bergen
et al., 2007; Bergen, 2012). We view our contribu-
tion as consistent with and complementary to this
formal semantics program. While the prior work
has sought to codify the precise truth conditions
of motion verbs, we investigate whether such rep-
resentations could emerge organically from data-
driven processes.

While we focus on concrete verbs in this paper,
other work has argued that motor processing and
mental simulation plays a more general role in lan-
guage processing. For example, Gärdenfors (2019)
makes a case for grounded distributional “concep-
tual spaces” as the foundation for modeling lin-
guistic concepts. Dorr and Olsen (2018) discusses
the role of metaphor in modeling abstract uses of
words like push. Borghi and Riggio (2009) argues
for the notion of a "motor prototype" as a key com-
ponent of recognizing and processing objects, and
Mazzuca et al. (2021) presents evidence that the
sensorimotor system (in particular the interactive
aspects) drive acquisition of abstract concepts.

3 Dataset

3.1 Overview

To carry out the proposed study, we require a
dataset that contains continuous 3D recordings of
an agent interacting with an object. While our rep-
resentation learning methods will not use linguistic
supervision, we require verb labels in order to eval-
uate our models. Thus, in our data, we require that
each recording is annotated with verbs describing
the motion of the object. For example, if the agent
throws a bouncy ball across a room, we’d expect
the recording to be annotated with a verb sequence
such as be thrown, fall, bounce, bounce, bounce,
roll, stop.

To produce such data, we build a simple Marko-
vian agent which interacts with a variety of objects
in a 3D virtual environment. We record the result-
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Figure 1: The Simulated Spatial Dataset consists of procedurally generated motion data of a virtual agent interact-
ing with an object. In this sequence the agent (red sphere) pushes the object (blue sphere). At t=0 and t=1, the
agent approaches the ball. Then, in t=2 and t=3, the agent pushes to ball. Finally, at t=4, the ball is rolling away
from the agent.

ing trajectory of the object and then, using crowd-
sourcing, ask humans to determine which verbs
could accurately describe which portions of the ob-
ject’s movement. An example sequence from the
dataset is shown in Figure 1.

3.2 Data Generation and Terminology

In this section we provide details on how we gener-
ate the data, and introduce terminology that will be
used throughout the rest of the paper.

Environment. The dataset is generated in Unity,
a game engine seeing increased use by researchers
(Deitke et al., 2020; Gan et al., 2020) for its acces-
sible rendering and physics simulation via the un-
derlying Nvidia PhysX physics engine. The dataset
and simulation source code are publicly available.1

Trajectory data. We define trajectory data as the
position and rotation of entities in space, repre-
sented with three-dimensional XY Z coordinates
and four-dimensional XY ZW quaternions respec-
tively. We choose to focus on only these features,
ignoring other possibilities like object shape or
identity, in order to focus on learning generaliz-
able aspects of verb semantics that are independent
of the object.

Sessions. The dataset is generated in 3-minute
continuous segments we refer to as sessions.
Within each session, several parameters are ran-
domized, including object shape, mass, drag, fric-
tion, and bounciness.

Action Primitives. The data generation is driven
by a Markov Chain with a set of randomly pa-
rameterized action primitives. In this Markov
Chain, the States are whether the object is Held, On-
Counter and OnGround. The transitions between

1https://github.com/dylanebert/
simulated

Figure 2: Crowd annotation task. Crowdworkers make
binary judgments on whether the verb applies to the
clip. In this example, the worker is asked Does the ob-
ject bounce? about the 1.5s video clip on the left.

these states are action primitives like PickUp, Put-
Down, or Throw. For example, when the object
is in the state OnCounter, the agent may execute
a PickUp, after which the object is Held. These
action primitives, combined with the physics of the
objects (e.g., their shape, mass, friction, bounci-
ness, etc) are intended to produce a wide range of
object motions corresponding to a range of verbs,
and we do not expect that the primitives will map
directly to the verbs that one would use to describe
the resulting object behavior. For example, when
we simulate a Throw primitive, the result might be
that the object flies across the room, hits the wall,
falls to the floor, and bounces until it comes to a
rest. We parameterize the execution of each action
with action-specific parameters, e.g. the force of
a throw. The combination of session- and action-
level parameters can result in a wide variety of
object motion from each primitive action. A full
description of the parameters for each action can
be found in Appendix A.
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Verbs. We highlight a distinction between action
primitives and the high-level actions or verbs that
emerge from them. For example, if the object is
pushed, it may then slide, bounce, roll, tumble, or
any combination thereof. We refer to all of these as
verbs, though only push is an action primitive. We
highlight this distinction because we are most in-
terested in studying the nuanced verbs that emerge
from the simulation, rather than the action primi-
tives that drive it explicitly.

Frames. Our atomic unit is frames, also referred
to as timesteps, which represent a single point in
time. Our dataset is collected at 60 fps, or 10,800
frames per session. For each frame, we record the
position and rotation of the object, as well as the po-
sition of the agent. This is sufficient to reconstruct
and render the scene from an arbitrary perspective
as needed. We choose this high framerate because
it’s relatively fast and inexpensive to rapidly pro-
duce trajectory data, which can be subsampled as
needed for rendering or modeling.

3.3 Crowdsourced Annotation
We collect labels for which verbs occur in the data,
and when they occur. To do this, we extract short
clips from the dataset, and ask crowdworkers to
provide binary judgments on whether the clip falls
in the extension of the verb.

Clips. We extract short clips from the dataset us-
ing Hierarchical Dynamic Clustering with Motion
energy-based pooling (Zhang et al., 2018), a self-
supervised action segmentation framework that can
be summarized as follows:

1. The 3D space is divided into clusters using
the provided trajectory data. The framework
uses Hierarchical Dynamic Clustering, which
is similar to k-means but shown to outperform
it on human motion parsing tasks.

2. A sliding window is applied to the cluster la-
bels for a given positional sequence. The num-
ber of transitions between clusters in a win-
dow are defined as its motion energy.

3. The subsequent motion energy curve is
smoothed using a Gaussian kernel with a
tuned smoothing factor.

4. The peaks of the motion energy curve are con-
sidered motion segments, with lengths varying
with respect to the width of the peak.

This algorithm is shown to perform well on hu-
man motion parsing, which we find transfers well

to our dataset when applied to object position. This
yields easily identifiable patterns of motion, e.g.
from the time the object is thrown to when it slows
to a stop. We find that, in contrast to a random
sliding window, this approach avoids cutting clips
in the middle of salient patterns of motion.

In our case, a disadvantage of this approach is
that the extracted segments are variable-length. To
simplify our pipeline, we filter to only segments of
length 72 to 96, then crop the segment to length 90,
or 1.5 seconds. We call each 1.5s segment a clip.
We choose this length to make the clip as short
as possible to avoid crowdworker fatigue, but give
sufficient time for a human observer to recognize
what’s happening.

Verbs. We produce 24 queries, each correspond-
ing to a verb, e.g. Does the object bounce? To do
this, the authors curate a list of 24 verbs2 of interest
which are likely to occur in the simulated data and
range from general descriptions (e.g., fall) to more
subtle descriptions of object motion (e.g., tumble).
When asking annotators whether a verb applies to a
clip, we always frame the question with the object
as the subject. That is, when a carry event occurs,
annotators are asked “is the object carried”.

We then consider every possible (clip, query)
pair a potential crowdsourcing task. We apply con-
servative heuristics to filter out (clip, query) pairs
that are guaranteed to have a negative label. For ex-
ample, if the Held state was never present in a clip,
we don’t ask if the object is carried. This results in
approximately 110k tasks, from which we sample
100 tasks per query, for a total 2400 crowdsourcing
tasks, such as the one shown in Figure 2.

Labels. For each crowdsourcing task, we obtain
responses from five workers, then take the major-
ity response as the label for that clip. The same
clip is shown for all applicable queries, resulting
in a supervised dataset of 24-dimensional vectors,
representing binary verb labels for each clip.3 The
dataset and all unaggregated annotations are avail-
able for download.4

2fall, carry, fall off, fall over, bounce, drop, pick up, push,
topple, bump, tumble, roll, put down, hit, throw, flip, toss, tip,
stop, spin, slap, slide, start, turn

3Labels are only yes or no. Unsure was not the majority
label for any task. Tasks that were filtered out during crowd-
sourcing are assigned a mask value that is ignored during
training and validation.

4https://lunar.cs.brown.edu/simulated/
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Figure 3: Crowd annotation agreement by verb. Workers agree most on when verbs of gravity occur, such as fall,
drop, bounce, and least on when verbs of rotation occur, i.e. turn, spin, tip.

4 Dataset Analysis

In this section, we analyze trends in the dataset
annotations, including worker agreement, and com-
parisons between semantically related verbs.

4.1 Agreement

Annotation agreement on a clip is the proportion
of responses that match the majority label for that
clip. Figure 3 shows annotation agreement by verb.
A noticeable trend is that agreement is higher for
particular semantic categories. Specifically, verbs
that involve gravity, i.e. fall, fall off, drop, and
bounce have higher agreement. On the other hand,
verbs of rotation, i.e. turn, spin, tip, flip have lower
agreement, alongside abstract verbs start and stop.
For start in particular, we even received feedback
from crowdworkers that they weren’t sure whether
the object started moving during the clip or not.

4.2 Co-occurrence

Figure 4 shows co-occurrence: specifically, given
that a clip is labeled by at least one worker as verb
v1, how often is it labeled by other workers as verb
v2? Co-occurrence allows us to answer questions
like how often is a toss considered a throw? and
vice-versa. We highlight some interesting verb
relationships.

General co-occurrence. Verb co-occurrence is
high in general. The average number of verbs used
to describe a given clip is 4 (where a verb is con-
sidered “used” if at least three workers use it). This
highlights the challenge of verb learning, as op-
posed to more concrete nouns and adjectives. Verbs

are applicable to a wide variety of behavior, even
if it isn’t a prototypical instance of that verb.

Lexical entailments. All dogs are animals but
not all animals are dogs. These types of semantic
containment relationships are also ascribed to verbs.
Analyzing our collected data, in some cases, we
observe the opposite of what’s expected. For exam-
ple, according to WordNet (Fellbaum, 2010), toss
is a type of throw. However, using the majority la-
bels, we find throws to be annotated as tosses more
often tosses than are annotated as throws. That is,
p(toss|throw) = .67 < p(throw|toss) = .75.

Frequent co-occurrences. Hit, push, and bump
stand out as the most frequently co-occurring verbs,
having over 90% co-occurrence with each other.
These likewise occur when many other verbs do,
but not reciprocally. For example, most slaps are
hits, but only 41% of hits are slaps. In many cases,
this can be explained by other verbs being imme-
diately preceded by the agent making contact with
the object, which gets labeled hit, push, and bump.

Fine-grained distinctions. Workers distinguish
roll from slide - only 50% of rolls are also con-
sidered slides, and vice-versa. This validates that
verbs with similar trajectories, which may be chal-
lenging for models, are indeed differentiated by
humans. Additionally, verbs with similar but nu-
anced meanings are differentiated. For example,
tip, tumble, fall over, and topple tend to co-occur
around 70-80% of the time. These also fall into
“verbs of rotation" category, which have the lowest
annotator agreement. It isn’t clear the extent to
which these are nuanced distinctions, or annotation
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Figure 4: Co-occurrence of different verbs for the same clip. Specifically, given that at least one worker labeled a
clip as v1 (row), how many times did other workers label the clip as v2 (column).

noise.

5 Experiments

Our hypothesis is that representation learning in
the 3D visuospatial world (without language super-
vision) can yield concept representations that align
to English verb semantics–i.e. can the represen-
tations capture nuanced distinctions like throw vs.
toss or slide vs. roll? To test this, we pretrain a
self-supervised model on a time-series prediction
task, and then use a perceptron classifier to evaluate
its learned representations.

We evaluate four approaches, described in de-
tail below. First, we train a simple perceptron to
evaluate the representational capacity of the trajec-
tory data as-is, as a comparative baseline. Second,
we train a fully supervised model to determine a
soft upper bound on the task without pretraining.
Third, we evaluate our self-supervised model. And
finally, we fine-tune the self-supervised model to
determine an upper bound with pretraining.

5.1 Experimental Setup

For all approaches, we evaluate representation qual-
ity with a multi-way verb classification task. Specif-

ically, we predict the verb labels for the 1.5s clips
gathered through the crowdsourcing task described
in Section 3.3.

Each input sample Xt1..90 is a 90x10 matrix of
position and rotation data, corresponding to 90
frames per clip and 10 spatial features5 per frame.
The output Y is a 24-dimensional multi-hot vector
indicating the whether each of our 24 verb classes
apply to the clip.

5.2 Approaches

Perceptron. We wish to evaluate the representa-
tional capacity of the raw trajectory data itself. To
do so, we train a single 24-dimensional dense layer
with sigmoid activation, equivalent to a perceptron
for each class. While very simple, this approach
gives an idea of how well trajectory data represents
verbs as-is, and provides a naive comparative base-
line against which to evaluate our more complex
pretraining techniques.

Fully Supervised. The fully supervised ap-
proach is similar to the perceptron, but adds a dense
layer and LSTM layer in-between. This is equiv-

5Object Position XYZ, Hand Position XYZ, and Object
Rotation XYZW.
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Figure 5: Our pretraining setup. During pretraining, the model learns to encode and represent input timesteps
for time-series prediction. To evaluate these learned representations, a perceptron probe is trained on the LSTM
outputs, without propagating gradients to the pretrained model.

alent to the model shown in Figure 5, but trained
end-to-end without pretraining. The purpose of
this approach is to provide an upper bound to the
experimental setup without pretraining.

Self-supervised Pretraining. To evaluate the ca-
pacity of self-supervised models to represent tra-
jectory data, we pretrain a time-series prediction
model on a large unlabeled dataset of 400k sessions.
That is, given n input frames Xt1..n , the model is
trained to predict k output frames Ytn+1..n+k

. The
model consists of a dense layer followed by an
LSTM layer unrolled k timesteps, as shown in Fig-
ure 5. We use a discounted mean squared error loss
as shown in Equation 1, which discounts loss by
how far it is into the future by factor γ.

γMSE =
n+k∑

t=n

γt(yt − ŷt)2 (1)

We tune discount factor γ, output length k, model
width, and batch size using a grid search on valida-
tion performance, resulting in values of 0.85, 60,
128, and 1024, respectively. Input length n is fixed
at 90 to match the length of clips.

We consider the concatenated LSTM outputs
as the representation of a clip. To evaluate this
representation compared to raw trajectory data, we
freeze the weights of the pretrained model and, as
when evaluating the raw trajectory data, train a
perceptron for each class.

Approach mAP (%)
Random Stratified 41.4
Perceptron 65.3
Fully Supervised 72.2
Pretraining + Probe 76.3
Pretraining + Finetuning 77.4

Table 1: Mean Average Precision (mAP) for each ap-
proach. The pretrained approaches outperform others
on verb classification.

Fine-tuning. To provide an upper bound for our
experimental setup with pretraining, we fine-tune
the self-supervised model. This is the same as the
previous approach, but allows the gradients in the
perceptron step to pass through the entire model.

6 Results

We report Mean Average Precision on unseen test
data for each approach in Table 1. We compare
these to random stratified predictions that are based
on the class distribution of the training data.

Perceptron. The perceptron approach evaluates
the representational capacity of raw trajectory data
as-is, with a lower bound of random stratified and
soft upper bound of fully supervised. The percep-
tron performs relatively well for its simplicity, be-
ing only 7 points below the fully supervised upper
bound. This suggests that the trajectory data itself
encodes a significant amount of verb meaning, but
leaves plenty of room for improvement.
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Figure 6: Comparison of each approach by verb. As we are primarily interested in the effect of pretraining,
all bars are shown relative to the performance of the fully supervised model. I.e., the fully supervised model
(which represents a soft upper bound on how well one can do given raw state information without any pretraining)
is visualized as 0, and all other models are visualized relative to that. Human performance is inner-annotator
agreement (% of workers who agree on the majority label).

Self-supervised pretraining. The pretraining +
probe approach evaluates the ability of self-
supervised models to encode verb meaning from
trajectory data. This is equivalent to the perceptron
approach, but with learned hidden representations
as input rather than raw trajectory data. The pre-
trained model does outperform the perceptron, as
well as the fully supervised approach. Fine-tuning
only improves on this slightly, highlighting that
self-supervised pretraining can yield representa-
tions that successfully encode verb meaning.

Breakdown by verb. Figure 6 shows a compari-
son of average precision for each verb. There are
some patterns worth highlighting. In particular, we
can categorize verbs into three main groups: trivial,
tractable, and hard.

Trivial verbs are verbs that can are well-
represented by trajectory data as-is, i.e. those with
high performance with the perceptron approach.
These include fall, fall off, fall over and pick up.6.
Many of these have high agreement, and may be
explained by the object’s change in height.

Tractable verbs are those that see significant ben-
efit from pretraining, including slide, roll, throw,

6We exclude hit, push, and bump from trivial verbs, as
these have high average precision with random stratified, show-
ing that they are very positively skewed, not necessarily well-
represented.

toss, put down, turn, flip, and stop. An intuition
behind this is that these verbs involve manner dis-
tinctions, and in particular, rotations of the object
relative to itself. Such information doesn’t fall di-
rectly out of raw state descriptions, but is likely
to be well modeled by a pretraining objective that
tries to predict the object’s future position.

Hard verbs are those with low performance that
don’t benefit much from pretraining. These include
bounce, drop, tip, topple, and spin. Many of these
are verbs which have lower agreement. Bounce,
slap and spin appear to benefit a bit from both pre-
training and fine-tuning, suggesting that they may
be tractable with similar but more robust pretrain-
ing. Tip and topple have fairly high performance,
and may almost be categorized as trivial, perhaps
being explained by the object’s change in rotation.
However, they are noticeably lower than other triv-
ial verbs, despite seeing no benefit from pretraining,
suggesting that there is nuance to their meaning in
the dataset, which isn’t captured by any approach.
Finally, drop is a great example of a hard verb,
as it is similar to trivial verbs like fall. However,
drop involves interaction between the agent and
object that is highly agreed upon by annotators, but
doesn’t appear to be captured by our approaches,
despite the model receiving both object and agent
data. More challenging examples may be able to
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unveil a similar story for other verbs of interaction
like pick up and put down.

7 Discussion and Conclusion

We test the hypothesis that verb meanings can be
grounded in 3D trajectories, i.e., the position of
objects over time. Specifically, we investigate the
extent to which representations of object trajec-
tories, learned without any linguistic supervision,
naturally encode concepts that align to English
verb semantics. Our primary contributions are
twofold. First, we build a procedurally generated
agent-object-interaction dataset for which we col-
lect crowdsourced annotations. This is the first
dataset of its kind, and provides a rich inventory
of human judgments about the extensions of 24
verbs of motion. Second, we compare a variety
of representation learning approaches, specifically
contrasting approaches which operate directly on
perceptual inputs to approaches which learn ab-
stractions over the raw perception (via pretraining).
We find that some verbs meanings (e.g., fall and
push) are captured easily by the raw state infor-
mation, while others (e.g., roll and turn) require
additional processing to be represented well.

This work is a first step toward exploring ways to
capture fine-grained distinctions in grounded verb
semantics that are trivial for humans, but challeng-
ing for models. Recent benchmarks at the inter-
section of NLP, vision and robotics (Deitke et al.,
2020; Shridhar et al., 2020b) illuminate unsolved
challenges in AI that demand a more robust under-
standing of verb semantics and spatial reasoning.
As these benchmarks continue to be developed,
and rich multimodal datasets from technologies
like virtual reality become increasingly abundant,
we envision that future work in this vein will be
especially relevant.

In the future, we plan to explore more sophisti-
cated models for self-supervised pretraining, and
evaluate how well these models transfer to more
naturalistic language learning settings (Ebert and
Pavlick, 2020). Beyond this, there is a large body
of related research questions to be explored. For
example, can representations of trajectory data be
fused with visually-grounded representations to
yield better encodings of verb semantics? Collabo-
rative efforts will be key to addressing these next
milestones in natural language understanding.

Acknowledgments

This work was supported by the DARPA GAILA
program. Thank you to George Konidaris, Carsten
Eickhoff, Roman Feiman, Jack Merullo, Charles
Lovering, Gabor Brody, and the members of the
Brown LUNAR lab for helpful discussion and feed-
back.

References
Stéphane Aroca-Ouellette, Cory Paik, Alessandro Ron-

cone, and Katharina Kann. 2021. Prost: Physical
reasoning of objects through space and time. arXiv
preprint arXiv:2106.03634.

Emily M. Bender and Alexander Koller. 2020. Climb-
ing towards NLU: On meaning, form, and under-
standing in the age of data. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 5185–5198, Online. As-
sociation for Computational Linguistics.

Benjamin K Bergen. 2012. Louder than words: The
new science of how the mind makes meaning. Basic
Books.

Benjamin K Bergen, Shane Lindsay, Teenie Matlock,
and Srini Narayanan. 2007. Spatial and linguistic as-
pects of visual imagery in sentence comprehension.
Cognitive science, 31(5):733–764.

Yonatan Bisk, Ari Holtzman, Jesse Thomason, Jacob
Andreas, Yoshua Bengio, Joyce Chai, Mirella Lap-
ata, Angeliki Lazaridou, Jonathan May, Aleksandr
Nisnevich, Nicolas Pinto, and Joseph Turian. 2020.
Experience grounds language. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 8718–8735,
Online. Association for Computational Linguistics.

Anna M Borghi and Lucia Riggio. 2009. Sentence
comprehension and simulation of object temporary,
canonical and stable affordances. Brain Research,
1253:117–128.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers. CoRR, abs/2005.14165.

Elia Bruni, Giang Binh Tran, and Marco Baroni. 2011.
Distributional semantics from text and images. In
Proceedings of the GEMS 2011 Workshop on GE-
ometrical Models of Natural Language Semantics,

2868

https://doi.org/10.18653/v1/2020.acl-main.463
https://doi.org/10.18653/v1/2020.acl-main.463
https://doi.org/10.18653/v1/2020.acl-main.463
https://doi.org/10.18653/v1/2020.emnlp-main.703
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2005.14165
https://www.aclweb.org/anthology/W11-2503


pages 22–32, Edinburgh, UK. Association for Com-
putational Linguistics.

Yu-Wei Chao, Yunfan Liu, Xieyang Liu, Huayi Zeng,
and Jia Deng. 2018. Learning to detect human-
object interactions.

Matt Deitke, Winson Han, Alvaro Herrasti, Anirud-
dha Kembhavi, Eric Kolve, Roozbeh Mottaghi, Jordi
Salvador, Dustin Schwenk, Eli VanderBilt, Matthew
Wallingford, et al. 2020. Robothor: An open
simulation-to-real embodied ai platform. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 3164–3174.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Bonnie Dorr and Mari Broman Olsen. 2018. Lexical
conceptual structure of literal and metaphorical spa-
tial language: A case study of “push”. In Proceed-
ings of the First International Workshop on Spatial
Language Understanding, pages 31–40.

Dylan Ebert and Ellie Pavlick. 2020. A visuospatial
dataset for naturalistic verb learning. In Proceedings
of the Ninth Joint Conference on Lexical and Com-
putational Semantics, pages 143–153, Barcelona,
Spain (Online). Association for Computational Lin-
guistics.

Jerome Feldman. 2008. From molecule to metaphor: A
neural theory of language. MIT press.

Christiane Fellbaum. 2010. Wordnet. In Theory and
applications of ontology: computer applications,
pages 231–243. Springer.

Chuang Gan, Jeremy Schwartz, Seth Alter, Martin
Schrimpf, James Traer, Julian De Freitas, Jonas Ku-
bilius, Abhishek Bhandwaldar, Nick Haber, Megumi
Sano, et al. 2020. Threedworld: A platform for
interactive multi-modal physical simulation. arXiv
preprint arXiv:2007.04954.

Peter Gärdenfors. 2019. Using event representations
to generate robot semantics. ACM Transactions on
Human-Robot Interaction (THRI), 8(4):1–21.

Francesco Giuliari, Irtiza Hasan, Marco Cristani, and
Fabio Galasso. 2021. Transformer networks for
trajectory forecasting. In 2020 25th International
Conference on Pattern Recognition (ICPR), pages
10335–10342. IEEE.

Jingwei Ji, Ranjay Krishna, Li Fei-Fei, and Juan Carlos
Niebles. 2019. Action genome: Actions as composi-
tion of spatio-temporal scene graphs.

Sinan Kalkan, Nilgün Dag, Onur Yürüten, Anna M
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A Dataset parameters

The following tables describe the session-level and action-level parameters for our procedural data
generation protocol described in Section 3.2.

Parameter Description Random Values
Start Location Initial agent location random from waypoint set
Start Rotation Initial agent rotation in degrees (0, 360)

Target Mesh Shape of the object cube/sphere/capsule/cylinder
Target Position Initial object location random location on counter
Target Rotation Initial object rotation in degrees (0, 360)

Target Mass Mass in kg of the object (0.1, 10)

Target Drag Hinders object motion (0, 2)

Target Angular Drag Hinders object angular motion (0.1, 1)

Dynamic Friction Friction when object is moving (0, 1)

Static Friction7 Friction when object is not moving (0, 1)

Bounciness Energy retained on bounce (0, 1)

Table 2: Session-level parameters, which add variety between 3-minute sessions.

Parameter Description Values
Pick Speed Hand velocity for Pick motion (1, 3)

Put Speed Hand velocity for Put motion (1, 3)

Push Speed Hand velocity for Push motion (1, 3)

Throw Force Object force for Throw motion (25, 125)

Hit Force Object force for Hit motion (25, 125)

Table 3: Action-level parameters, which add variety in the execution of each action primitive in the dataset.
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