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Abstract

This paper introduces TRUncated ReinForcement
Learning for Language (TrufLL), an original
approach to train conditional language models
without a supervised learning phase, by only us-
ing reinforcement learning (RL). As RL methods
unsuccessfully scale to large action spaces, we
dynamically truncate the vocabulary space using
a generic language model. TrufLL thus enables to
train a language agent by solely interacting with
its environment without any task-specific prior
knowledge; it is only guided with a task-agnostic
language model. Interestingly, this approach
avoids the dependency to labelled datasets and
inherently reduces pretrained policy flaws such as
language or exposure biases. We evaluate TrufLL
on two visual question generation tasks, for
which we report positive results over performance
and language metrics, which we then corroborate
with a human evaluation. To our knowledge, it
is the first approach that successfully learns a
language generation policy without pre-training,
using only reinforcement learning. 1

1 Introduction

Since the development of generic language models
trained on massive unlabelled text corpora (Radford
et al., 2019; Brown et al., 2020), state-of-the art
language processing systems rely on sequential
transfer learning (Ruder, 2019). The pretrained
Language Model (LM) is fine-tuned on the down-
stream task using a standard supervised learning (SL)

1Code is available at https://github.com/
AMDonati/RL-NLP
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Figure 1: (left) In a conditional language generation task as
VQG, TrufLL truncates the vocabulary space by using a language
model. Here, ’run,’ and ’the’ are syntactically incorrect and thus
truncated. Yet, ’car’ is not trimmed as the LM is not visually
grounded. (right) In a VQG training loop, the agent generates a
question given an image-answer pair, which is then fed to a VQA
model predicting an expected answer. If both answers match,
the agent is rewarded.

objective (Wu et al., 2019; Peters et al., 2019). Yet,
such an approach suffers from several issues (Chen
et al., 2020): (i) catastrophic forgetting when a model
forgets previously learned knowledge and overfits
to target domains, (ii) computational inefficiency
from fine-tuning billion-parameters networks, and
(iii) the need of supervised datasets. Moreover,
task-specific language models learned with SL suffer
from well-studied text degeneration issues (Holtzman
et al., 2019), such as the exposure bias (Bengio et al.,
2015), language biases (Saleh et al., 2020; Jaques
et al., 2020), or a lack of diversity (Li et al., 2015).

On the other hand, text generation can be naturally
framed as a sequential decision making problem, with
the sequence of words seen as successive actions over
a vocabulary. Thus, some researchers have recently
focused on learning language models using instead
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Reinforcement Learning (RL) (Strub et al., 2017; Das
et al., 2017; Narasimhan et al., 2015). RL methods
allow acquiring language through interactions within
rich and diverse environments (Luketina et al., 2019),
help understanding language acquisition and language
pragmatics (Lazaridou et al., 2016; Bisk et al., 2020).
"Reward is enough" (Silver et al., 2021) highlights
the necessity of using RL for AI systems to acquire
language in its full richness. Indeed, (i) language may
be intertwined with other modalities of action and ob-
servation, (ii) the utility of language varies according
to situations and behaviours, (iii) it is consequential
and purposeful, and (iv) some linguistic problems
are better solved dynamically, through experience
(such as using a diplomatic tone in a speech.) In
addition, RL allows optimizing a non-differentiable
learning signal, hence handles more diverse objective
functions, and also avoids some of the text degener-
ation issues previously mentioned. So far, RL-based
text-generation tasks have relied on a pre-training
phase to ease learning: the policy language model
is trained with SL on the task dataset, before being
fine-tuned with policy gradient methods (Sutton et al.,
1999) on the task at hand. Those approaches often
require human-labelled datasets. Besides, combining
pre-training and fine-tuning phases either barely
change the policy distribution, or induces language
drift (Lazaridou et al., 2020; Lu et al., 2020b), i.e the
generated language drifts semantically or syntactically
from natural language.

In this paper, we aim at learning a conditional
language model using RL without a pre-training
phase, so that (i) we get free from datasets with human
annotations, and (ii) we avoid the text generation
flaws induced by the common methods. While
appealing, such an approach requires overcoming
the hurdle of the combinatorial language action space,
a vocabulary usually containing more than 10,000
words. Yet, while large and discrete, a language
action space contains a specific structure, made of
all the syntactical and semantics rules of a given
language. TrufLL leverages such structure to drive the
exploration of the RL-based language agent during
training. At each time step of the text generation
process, TrufLL truncates its effective action space
to a small subset of words provided by a pretrained
task-agnostic language model. Such an approach
injects a generic prior linguistic knowledge into the
RL algorithm, is usable on tasks lacking in-domain
labeled data, and can be easily transferred to new
RL-based text generation tasks. Thus, TrufLL can

be applied to any language generation task given a
generic LM and a reward. We here evaluate it on two
Visual Question Generation (VQG) tasks, the syn-
thetic CLEVR dataset (Johnson et al., 2017), and the
natural language VQAv2 dataset (Goyal et al., 2017).
Unlike alternative RL without pre-training approaches,
TrufLL manages to ask meaningful and valid ques-
tions on large vocabularies, exhibiting success rate
and language metrics close to pretrain models with
labeled data, while producing more original language.

2 Background

Language Generation as an RL Problem. We
cast the word-based text generation task as a Markov
Decision Process to apply RL methods (Sutton et al.,
1998). In this setting, a language model agent gen-
erates a sequence of words w<t=(w0,w1,...,wt−1)
drawn from a vocabulary V, given an initial context
c associated with a reward rt. Translation, text sum-
marization or image captioning are examples of such
tasks respectively using a source sentence, a text arti-
cle, or an image as a context (c). During this process,
the agent may be rewarded with language scores (Ran-
zato et al., 2016), human preferences (Stiennon et al.,
2020) or task completion scores (Strub et al., 2017).

Formally, a language generation agent is defined
by a policy πθ (a distribution over V) parametrized by
θ, first initialized with the context c. At each time step
t, the agent samples a new word wt from its policy
πθ(wt|w<t, c). It moves to a new state (w<t+1, c)
and receives a reward rt=r(w<t,c,wt), where r is a
reward function relative to the language task. The RL
language agent aims to learn a policy that maximizes
Eπθ [

∑T
t=0 rt],

2 while generating the sequence of
words w<T , where Eπθ is the expectation under πθ,
and T the maximal length of the words sequence.

Policy Gradient This optimization process
may be performed through Policy Gradient (PG)
algorithms (Sutton et al., 1999). In the language
literature, REINFORCE (Williams, 1992) has been
used as a simple Monte Carlo approximation of this
gradient (Strub et al., 2017; Li et al., 2016).Yet, in
this paper, we use a Proximal Policy Optimization
approach (PPO) (Schulman et al., 2017) to have a
lower variance and better convergence rate; PPO clips
the gradient estimate to have smooth policy updates.
For all 0≤t≤T , let st=(w<t,c) and at=wt be the
state and action at time t. Policy gradient methods

2We cast the language modelling as an episodic problem with
γ=1 and omit the discount factor in the paper for clarity.

13



minimize the objective:

Lpg(θ)=Eπθ

[
T∑

t=0

logπθ(at|st)Ât

]
,

where Ât is an estimator of the advantage func-
tion, here defined as Ât =

∑T
u=t ru − Vϕ(st)

with Vϕ(s) an estimator of the value function
Vπθ(s) = Eπθ [

∑T
u=t r(su, au)|st = s]. PPO then

keeps track of the previous policy πθold before the PG
update to compute the training objective:

Lppo(θ)=Eπθold

[
T∑

t=0

ρθt Ât∧clip(1−ϵ,ρθt ,1+ϵ)Ât

]
,

where for all real numbers a, b, a∧ b = min(a,b),
ρθt = πθ(at|st)/πθold(at|st), ϵ is a hyper-parameter
controlling the magnitude of the policy updates, and
clip(a,x,b) is the function that clips x in interval [a,b].
The expectation is estimated in practice using a Monte
Carlo approach, with an empirical average over a
finite batch of episodes, i.e a succession of transitions(
st,at∼πθold(.|st),rt

)
from an initial state s0 to a ter-

minal state sT . Finally, the training loss is completed
first with a value-based loss to learn the baseline Vϕ
that reduces the gradient variance; it computes for
each timestep t of an episode the mean squared error
|∑T

u=tru−Vϕ(st)|2.3 Secondly, the loss is completed
with an entropy term to soften the policy distribution,
which computes for each timestep t of an episode
H(πθ(at|st)), where H is the entropy function.

3 TrufLL

We here aim at making RL methods feasible in the
language setting by dynamically reducing the action
space, i.e., by restricting the language agent to select
a word within a subset of the vocabulary at each time
step. We detail below the action space’s truncation
model and the associated RL algorithm to learn the
language agent.

3.1 Dynamic Vocabulary Truncation

TrufLL combines two distinct language models,
which share the same vocabulary V: a RL language
agent πθ and a pretrained language model fLM . At
each timestep t, TrufLL restricts the vocabulary space
of the RL language agent with:

V−
t ={w|w∈V,gtrunc(w|w<t)=1},

3Note that other TD-based losses are applicable (Sutton et al.,
1998; Schulman et al., 2016; Espeholt et al., 2018).

where gtrunc is a truncation function based on fLM
which either associates 0 or 1 with each word in
the vocabulary given the past words w<t. From a
language modelling perspective, the vocabulary space
of the language agent is reduced from V to V− where
|V−|≪|V|, with |·| the cardinal of a finite set. From a
RL perspective, the RL agent follows a truncated pol-
icy π−

θ which only samples actions over the subsetV−.
In practice, such a policy is computed using a masked
softmax function over the truncated vocabulary V−

t :
π−
θ (.|w<t,c)=softmax(m∗logitsπθ(w<t,c)) where

m=1 when gtrunc(w|w<t)=1 otherwise m=−∞.

3.2 Truncation Functions
We here list the different truncation functions gtrunc
explored through the paper.

Top-k words: This function selects the k words
with the highest probability given by fLM(.|w<t):

gtop(k)(wt|w<t;k)=1wt∈top(k)(fLM(.|w<t)).

Probability threshold (α): This function only
keeps words having a probability fLM(.|w<t) greater
than α:

gpth(α)(wt|w<t;α)=1fLM(wt|w<t)>α.

Top-p: This function is based on nucleus sam-
pling (Holtzman et al., 2019), and it keeps the most
likely words contained in a probability mass p of
fLM(.|w<t). Formally, we define Vp

t as:

Vp
t = argmin

|Vt|,Vt⊂V
{w|w∈Vt,

∑

w∈Vt
fLM(w|w<t)>p},

and readily, gtop(p)(wt|w<t;p)=1wt∈Vp
t
.

Sample (k): This function randomly samples k
words from the language model with replacement to
directly build the truncated vocabulary:

gsample(k)(wt|w<t;k)=1wt∈{wi∼fLM(.|w<t)i∈J1,...,kK}.

Only top(k) provides a fixed number of words at
each time step. pth(α), top(p), and sample(k) have
a dynamic truncation, whose size at t depends on the
language model entropy.

3.3 Task-Specific vs. Generic LM
We benchmark two types of language models for trun-
cation. On the one hand, we use an external language
model pretrained on a large task-agnostic language cor-
pora. Such a model provides a generic linguistic prior
to the RL agent exploration process, solely encoding
syntactic and semantic information. On the other hand,
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we use a task-related language model pretrained on
the supervised dataset associated with the task. Such
a model provides a task-specific linguistic prior to the
RL language agent, and captures language pragmatics.
We emphasize that this paper aims at leveraging task-
agnostic language models as they discard the need for
task-specific data. For the sake of completeness, we
also study the truncation with the task-related LM as
an additional benchmark to assess our approach.

4 Experimental Setting

We here list the experimental setting and detail the
network and hyperparameters in Appendix A.4.

4.1 Visual Question Generation

We showcase TrufLL on the task of Visual Question
Generation (VQG) (Mostafazadeh et al., 2016), which
is a form of Visual Jeopardy! ™ (Ferrucci, 2012).
There, the language agent observes an image-answer
pair and has to generate a question that results in a
similar answer, as illustrated in Figure 1. Such a task
presents multiple advantages. First, by combining vi-
sion, scene understanding and language generation, it
requires high-level reasoning and exhibits a large spec-
trum of language difficulties. Secondly, the success
criterion is naturally non-differentiable, hence a natu-
ral fit for RL methods. Such a criterion, unlike metrics
based on ground-truth sentences, allows generating di-
verse grounded questions given an image-answer pair.

Formally, the initial context c is composed of
the image-answer pair (I,A). The RL agent then
generates a sequence of words w<t of maximum
length T . We then provide the generated question to
a pretrained VQA model. This model takes as inputs
the image I, the generated question w<t and outputs
a predicted answer Â. Finally, the agent receives a
reward r(wt,w<t,c) based on A and Â.

4.2 Datasets

We evaluate TrufLL on the CLEVR and VQAv2
datasets to simulate large-scale VQG datasets. The
two datasets have been originally created for the
task of Visual Question Answering (VQA), i.e. for
multi-modal classification algorithms predicting an
answer given an image-question pair.

CLEVR The CLEVR VQA dataset (Johnson et al.,
2017) is made of template questions on synthetic im-
ages, which contain simple objects with four distinct
properties (shape, material, color, size). The vocab-
ulary contains 86 words and 28 potential answers,
making it a valuable proof of concept for assessing

TrufLL. Both language models are single-layer
LSTMs (Hochreiter and Schmidhuber, 1997) with
512 units, and 512 word embedding dimension. The
task-specific LM is trained over the full train dataset
of CLEVR questions. The external language model
is trained on the mixture of CLOSURE (Bahdanau
et al., 2019) and CLEVR-Dialog (Kottur et al., 2019)
datasets. Although those two datasets share the
CLEVR vocabulary, their language distribution differs
from vanilla CLEVR. Finally, we use a pretrained
GT-Vector-NMN (Bahdanau et al., 2019) to compute
the reward r(wt,w<t,c)=1A=Â,t=T−1, where 1 is
the indicator function.

VQAv2 The VQAv2 dataset (Goyal et al., 2017) is
made of natural language and open-formed questions
on images from the MS-Coco Dataset (Lin et al.,
2014). It has a vocabulary of 14,810 words and
3,149 answers. The task-specific language model is
a one-layer LSTM with 512 units and a 512 word em-
bedding dimension, pretrained over the full training
dataset of VQAv2 questions. The External Language
Model is Open-AI’s GPT-2 (Radford et al., 2019). The
original language model outputs a probability distribu-
tion over 50,257 tokens, but we use a masked softmax
function to restrict the probability distribution to the
14,810 tokens of the VQAv2 dataset. Unlike most
NLP tasks relying on pretrained generic language
models, we do not fine-tune it on the task dataset.
Instead, we leverage the few-shot generalization
capabilities of GPT-2, by feeding the language model
with the prompt "Here are a few examples:" followed
by 100 random questions q<100 from the dataset. The
truncation is then based on the probability distribution
fgpt2LM (.|q<100,w<t). Finally, we used a pretrained Vil-
BERT to compute the reward (Lu et al., 2020a). Given
the large number of answers, we use as reward a de-
creasing function of the rank of the reference answer
rk(A): r(wt,w<t,c)=1rk(A)≤10,t=T−1e

−rk(A)/2, as
further explained in Appendix A.5.

In these two settings, we acknowledge that the task
dataset is still used to train the VQA models. Please
note that the VQA modules are only used to model
the environment, i.e. to provide a positive/negative
feedback to the agent. In other settings, TrufLL
would still work if we replace the VQA model
by any language interface: text-game (e.g. Zork),
expert-systems, or humans. Here, we only use the
VQG framework as a proof of concept that natural
language can be learned through pure interaction
given any task reward. Other language generation
applications are discussed in Section 5.3.
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4.3 Baselines
In this paper, we aim to show that a RL language
agent can be trained from scratch, i.e. without the
usual pre-training phase by solely interacting with
another language system, the VQA model, when
supported by truncation methods. The truncation
with the task-related LM is referred to as TrufLL
(Task-LM), while the one with the External LM is
referred as TrufLL (Ext-LM). We first emphasize the
difficulty of training an RL language agent without
a supervised pre-training phase through two baselines.
We trained a simple on-policy PPO algorithm
without any action space pruning, and refer to it as
scratch. Then, we added a Kullback-Leibler (KL)
regularization term to the loss, λKLKL(πθ||fLM),
with λKL > 0, to incorporate language prior to
the agent as in (Jaques et al., 2017, 2019). We
refer to it as scratch + KL-task when distilling
the task-specific language model, and scratch +
KL-ext with the external language model. Finally,
we include two baselines with a pre-training phase.
We trained a language agent on the task-dataset with
a log-likelihood objective, and refer to it as pretrain.
Then, we fine-tune the pretrained language agent with
PPO without truncation, and refer to it as pretrain +
RL fine-tune. These two baselines should be viewed
as gold standards as they rely on task-related data;
additionally, pretrain + RL fine-tune is today the
state-of-the-art method for learning RL-based LM.

4.4 Metrics and Evaluation Methods
Evaluating text generation is an open-research
problem in language literature. We decompose
automatic language evaluation into three categories
to assess different facets of language, and perform
as well a human evaluation study.

Performance metrics. We measure the task-
completion score or recall @ 1 which states whether
the target answer A is the top answer of the VQA
models, and the recall @ 5 (R@5), which assesses
whether A is in the 5 top answers. These scores
measure the task-solving abilities of the agent, but
they are also conditioned by the VQA model abilities.

Language Metrics. First, we used n-grams metrics,
BLEU (Papineni et al., 2002), METEOR (Banerjee
and Lavie, 2005) and CIDEr (Vedantam et al., 2015),
to measure the similarity between the generated
question and the reference questions in the evaluation
set. While those scores can capture syntactic and
semantic properties of language, they also fall short
when dealing with open-form language, e.g. an

identical answer may arise from two non-overlapping
but syntactically correct questions. Thus, we also com-
pute two metrics assessing the quality of the language
independently of reference questions, the perplexity
of the question given an external LM (ppl-e), and its
perplexity given the task-related LM (ppl-t).

Diversity Metrics. We here estimate a self-BLEU
(sBLEU) score (Zhang et al., 2017) over 10 questions
generated on the same image-answer pair. Although
such score detects potential mode collapse, i.e., when
the language utters identical sequences of words, it
also values babbling, i.e., outputting random words.
We thus also measure the probability mass of the ten
most frequent words (Choshen et al., 2020), and refer
to it as peakiness (peak).

Human Evaluation. On the VQAv2 task, we also
performed human evaluation by surveying 53 partic-
ipants on the first 50 questions produced by some of
the models at test time. The study (further detailed
in Appendix C) is based on pairwise comparison of
question samples produced by the concurrent algo-
rithms according to four criteria. First, we evaluated
the language quality of the question samples, by
asking the participants to select the most syntactically
and semantically correct question among the two
samples of the questions pair. Secondly, we evaluated
language grounding, i.e adequacy of the sample to the
image-answer pair, by asking the participants to select
the question most suitable given the two elements.
Thirdly, we evaluated the language originality and
diversity, by asking participants to select the question
the most different from the dataset reference question.
Finally, we evaluated the number of syntax errors
by asking participants to tick the question if it is
grammatically incorrect. Examples of questions asked
during the study are included in the Appendix C.

4.5 Sampling methods for text generation

When generating text from a trained language model,
the quality and diversity of samples depend on
the decoding algorithm (Zhang et al., 2020). We
consider three text generation methods. greedy uses
the argmax of the policy, while sampling uses the
multinomial distribution. Finally, we sampled ten
text sequences from the policy, and selected the one
with the lowest perplexity according to the external
language model, and refer to it as lm-ranking. This
process has been used recently in Text-to-Image
Generation tasks (Ramesh et al., 2021).
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Method Score R@5 BLEU Meteor CIDEr ppl-t (↓) ppl-e (↓) sBLEU (↓) peak.(↓)

Pretrain 0.30 0.71 0.19 0.38 0.83 3.1 31 0.44 0.96
Pretrain + RL fine-tune 0.44 0.86 0.17 0.34 0.70 4.0 35 0.46 0.95

Scratch 0.17 0.47 0.05 0.08 0.10 109 106 0.14 0.26
Scratch + KL-task 0.14 0.38 0.15 0.30 0.53 92 102 0.34 0.94
Scratch + KL-ext 0.17 0.44 0.14 0.27 0.43 104 28 0.37 0.95

TrufLL (Task-LM) 0.56 0.90 0.17 0.32 0.66 3.4 23 0.95 1.00
TrufLL (Ext-LM) 0.48 0.93 0.08 0.18 0.34(±0.10) 103 3.0 0.95 1.00

Table 1: CLEVR metrics on 5k test episodes with 50k train episodes on 20k Images. Scores are averaged over the three decoding
procedures mentioned in Section 4.5 and over 5 seeds; standard deviations are displayed when greater than 0.01 for accuracy metrics.
We here report the models with the highest task-success:, i.e. the scratch+KL baselines with λKL=0.1, and the truncation model
with a probability threshold, pth(α=0.05). Best values are underlined, best values without task-data (from scratch) are in bold.

Human There is a blue thing that is the same shape as the big cyan metallic object ; what is its size? A:Small

pretrain There is a red metallic object that is the same size as the yellow rubber block ; what is its size?
pretrain + RL What size is the thing that is the same color as the matte cube ? □✓
scratch size sphere small blue or a yellow green large else in cylinders cubes color and how matte objects cube
scratch+KL-task How big is the shiny cylinder ?
scratch+KL-ext How many other objects in the are of same color as that shiny object ?

TrufLL (Task-LM) How big is the thing that is to the right of the big matte thing ? □✓
TrufLL (Ext-LM) What is the size of the thing that is right of the big cyan thing and is the same shape? □✓

Human What color is the cat A:Black

pretrain What color is the cat’s collar? □✓
pretrain + RL What color is the cat? □✓
scratch AmazingAmazingAmazingAmazingAmazingAmazingAmazing
scratch+KL-task What color is their hat of the fingers of this?
scratch+KL-ext The the first time is a bit of the way

TrufLL (Task-LM) What color is her outfit? □✓
TrufLL (Ext-LM) What color can these cats look like in real life? □✓

Figure 2: Samples on CLEVR and VQA: the checkbox indicates that the question generates the correct answer.

5 Results

5.1 CLEVR results

Quantitative performance: In Table 1, vanilla
RL from scratch fails to have a decent performance
even with synthetic language. Besides, adding a KL
regularisation term does kick-start the learning pro-
cess. Yet, as soon as we apply the dynamic truncation,
TrufLL matches the pretrained baselines performance
when using the external LM, and even outperforms
them with the task-specific LM. In this synthetic VQG
setting, TrufLL seems to be a viable and promising
procedure to learn a RL language agent without a
supervised training phase. Pretrained baselines have
high language scores when assessed with dataset-
based metrics, e.g BLEU or task-perplexity. Yet, they
also remain close to the original dataset distribution
with a medium external perplexity. Noticeably,
TrufLL with the task-specific LM follows the same
pattern. On the other hand, TrufLL with the external
LM reports poor dataset-based language scores, while
maintaining a low external perplexity. Therefore,
TrufLL seems to correctly capture the language distri-
bution of the initial LM. As the performance score is
high when using an external LM, it suggests that our
approach can learn a policy on a language task with-

out the need of a task-related dataset. Less positively,
TrufLL diversity metrics suggest potential mode
collapse, with a high peakiness and self-BLEU score.

Qualitative performance: We display qualitative
samples in Figure 2 and Appendix D. On the one hand,
the pretrained baselines generate either a question in-
consistent with the visual context, or which fails to an-
swer the expected answer. They inaccurately capture
the pragmatics of the task. On the other hand, TrufLL
generate adequate questions, resulting in the expected
answer. Interestingly, they are often grounded with
different objects of the image. It is remarkable that
TrufLL with a generic LM still manages to capture the
necessary subtleties of VQG, without any prior task
knowledge. Despite a peaky distribution, TrufLL has
moderate repetitions across images, and is mostly over-
confident. As for the scratch+KL samples, they are ei-
ther not grounded, or showcase degenerated language.

Truncation function in CLEVR: In Table 2, we
evaluate the different truncation functions defined in
Section 3. While all truncation methods report similar
task performance, the dynamic truncation functions,
i.e. pth(α), top(p) and sample(k), outperform the
top(k) regarding language metrics. Interestingly, the
sample(k) one, which generates a stochastic truncated

17



Trunc. Score BLEU CIDEr ppl-e(↓) sBLEU(↓)

TrufLL (Task-LM)
top(k) 0.50 0.12 0.32 100 0.93
pth(α) 0.54 0.17 0.65 24 0.95
top(p) 0.51 0.17 0.69 12 0.96
sample(k) 0.50 0.18 0.73 16 0.89

TrufLL (Ext-LM)
top(k) 0.52 0.06 0.15 151 0.94
pth(α) 0.48 0.08 0.34(±0.10) 3.0 0.95
top(p) 0.45 0.10 0.40(±0.17) 3.3 0.92
sample(k) 0.41 0.13 0.46(±0.16) 2.7 0.92

Table 2: CLEVR task: Truncation functions with parameters:
top(k=10), pth(α=0.05) top(p=0.85), sample(k=20).
Best values are underlined, best values for each TrufLL
algorithms are in bold.

action space, while having a lower performance, yields
to the most correct and diverse language, with higher
language scores and a lower self-BLEU. A stochastic
action space might be harder to explore efficiently
for reaching good task-solving abilities, but might
strengthen the agent language generation properties.

5.2 VQAv2 task

In CLEVR, we observe that TrufLL seems a promis-
ing approach to learn a language policy without a
supervised training phase, by solely interacting with
another language system. We scale our approach to
natural language with large vocabulary (15k tokens)
through the VQAv2 dataset.

Quantitative performance: Table 3 reports the
VQAv2 results, for which TrufLL and the baselines
present a similar trend than on CLEVR. First, the
scratch baselines keep failing to learn a valuable
policy, with performance scores and n-grams metrics
close to zero. Although TrufLL does not outperform
the performance of the pretrained baselines anymore,
it still leads to similar performances, and satisfactory
language scores. The similarity between TrufLL
(Task-LM) and TrufLL (Ext-LM) results suggests
that the truncation approach is viable when using a
generic LM whose original vocabulary distribution
differs from the task. Interestingly, TrufLL displays
a self-BLEU score similar to the pretrained baselines.
This suggests that the poor diversity behavior
observed on CLEVR is likely attributable to the small
vocabulary and synthetic language distribution.

Qualitative performance: In Figure 2 and Ap-
pendix D, we display question samples for all models.
TrufLL and the pretrained baselines successfully
generate a question giving the expected answer
("Black"), while the RL from scratch baselines fail,
and even showcase degenerated language. Pretrained
baselines tend to output a question closer to the
reference question whereas TrufLL outputs original

questions which differs from the VQA distribution,
yet consistent with the context.

Human Evaluation: Figure 3 details the Human
Evaluation results. Among the RL from scratch
baselines, we selected scratch+KL-task as the only
model producing sometimes meaningful questions.
Yet, it fails to generate correct and grounded language;
it is thus not a viable approach despite its diverse
output. In line with the automatic metrics, the
supervised baselines produce the best language,
while being accurately grounded. Yet, they exhibit
significantly less diversity with the reference lan-
guage; this suggests in particular that pretrain+RL
fails to go beyond the initial task-data distribution.
Finally, unlike TrufLL (Task-LM) which suffers
from syntactic errors, TrufLL (Ext-LM) produces
language that qualitatively competes with pretrain
models (53%), with a similar ratio of syntactic
uncorrect samples. Although its questions are less
grounded, they are diverse, which suggests that they
follow a different distribution from the initial VQA
dataset. It confirms that TrufLL (Ext-LM) could be
an alternative approach as it has an excellent trade-off
between language quality, diversity, and grounding.

Decoding procedure: In Table 4, we evaluate the
text sampling procedures described in Section 4.5.
While greedy decoding produces the best outcome for
pretrained models, lm-ranking provides an excellent
trade-off between task performance and language
quality with RL-based methods. As PG solely
optimizes the task success ratio, this may reduce
overall language quality, the re-ranking thus retrieves
the best syntactically sentences a posteriori.

5.3 Discussion

Removing the truncation at evaluation with off-
policy RL. So far, TrufLL directly learns the trun-
cated policy over the truncated vocabulary V−

t in an
on-policy scheme. Hence, the algorithm requires the
truncation, and a fortiori the language model, at test
time. In this section, we investigate if we can directly
learn a policy over the full vocabulary, and thus remov-
ing the truncation at test time. In such a setting, we
adopt an off-policy training scheme, where the trajec-
tories used to learn the behavior πθ at training time are
sampled under a different policy, the truncated policy
π−
θ . Thus, we need to unbiased the PG by using an

importance sampling term between the exploratory
policy π−

θ and the behavior policy πθ (Degris et al.,
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Method Score R@5 BLEU Meteor CIDEr ppl-t (↓) ppl-e (↓) sBLEU (↓) peak.(↓)

Pretrain 0.38 0.59 0.30 0.40 0.93 12 24 0.80 0.99
Pretrain + RL fine-tune 0.41 0.63 0.31 0.41 0.98 21 50 0.78 0.99

Scratch 0.01 0.04 0.00 0.00 0.00 107 106 0.75 1.00
Scratch + KL-task 0.11 0.29 0.24 0.27 0.24 102 102 0.27 0.74
Scratch + KL-ext 0.01 0.05 0.06 0.04 0.01 106 103 0.10 0.20

TrufLL (Task-LM) 0.35 0.56 0.21 0.15 0.11 24 102 0.78 0.99
TrufLL (Ext-LM) 0.34 0.52 0.18 0.15 0.04 102 24 0.83 0.99

Table 3: VQAv2 metrics on 20k test episodes with 100k train episodes. Scores are averaged over the three decoding procedures.
scratch+KL has λKL=0.05, the truncation for TrufLL with (Task-LM) and TrufLL (Ext-LM) are respectively pth(α=0.005) and
pth(α=0.0075). Best values are underlined, best values without task-data are in bold.
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Pairwise comparisons: % of questions chosen for the model in bold (rows) when compared to the concurrent model (columns).

pretrain (2) pretrain+RL (3) scratch+KL-task (5) TrufLL (Task-LM) (4) TrufLL (Ext-LM) (1)
Syntax errors 16% 17% 27% 24% 15%

Figure 3: VQAv2 results for Human Evaluation study detailed in Section 4.4. The three matrices on top are pairwise comparisons:
each cell displays the proportion of questions chosen for the models in the row (bold) when compared to the concurrent model in
the column. The table at the bottom displays the proportion of incorrect questions coming from each model among all incorrect samples.
In all figures, bracket numbers indicates the model rank per criteria, from 1="best" to 5="worst".

Method Text-gen Score BLEU CIDEr ppl-e

greedy 0.40 0.32 1.01 51
pretrain sampling 0.37 0.30 0.88 62

lm-ranking 0.37 0.14 0.87 54

greedy 0.42 0.32 1.05 55
pretrain + RL sampling 0.40 0.30 0.92 71

lm-ranking 0.40 0.31 0.99 26

greedy 0.36 0.20 0.11 366
TrufLL (Task-LM) sampling 0.35 0.20 0.11 337

lm-ranking 0.34 0.21 0.11 95

greedy 0.36 0.18 0.04 25
TrufLL (Ext-LM) sampling 0.34 0.18 0.04 28

lm-ranking 0.33 0.19 0.15 20

Table 4: VQAv2: Ablation on the sampling methods. Overall
best values are underlined, TrufLL best values are in bold.

2012). Formally, the off-policy PPO loss is defined by:

Loff
ppo(θ)=Eπ−

θ

[
min(ρ̄θtAt,clip(1−ϵ,ρ̄θt ,1+ϵ)At)

]
,

where ρ̄θt =
πθ(at|st)

πθold(at|st)
πθold(at|st)
π−
θold

(at|st)
is the new ratio.4

Table 5 displays the on-policy and off-policy
results on both VQG tasks for TrufLL (task-LM),
and is further detailed in Appendix B.3. We also

4Note that we did not simplify the expression to highlight the
importance sampling ratio.

monitor the probability mass of the policy attributed
to the truncated action space (sumVA). The policy
only samples words within the truncated action space
when sumVA = 1, without needing the truncation.
On CLEVR, the TrufLLoff has lower - yet close
- performance on language and task scores than
TrufLL. As its sumVA ratios are very close to 1,
the agent has learned to generalize over the full
vocabulary. However, the approach does not manage
to sufficiently scale to VQAv2. It could be improved
with regularisation techniques and the use of TruFLL
within state-of-the-art off-policy RL algorithms. We
leave such possibilities to future works.

Algo Score BLEU CIDEr ppl-e sBLEU sumVA

CLEVR
TrufLL 0.56 0.17 0.06 103 0.78 N.A
TrufLLoff 0.50 0.14 0.43 104 0.88 0.96

VQAv2
TrufLL 0.35 0.21 0.11 104 0.36 N.A
TrufLLoff 0.07 0.03 0.01 104 0.05 0.08

Table 5: On-policy vs. off-policy scores: when training with
an off-policy loss, we remove the truncation at test time.
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Additional experiments. We sweep over truncation
hyper-parameters in Table 6 of Appendix B. In
Table 8, we observe that rewarding an agent with a
BLEU score is sub-optimal in both language and task
scores on CLEVR. In VQA, we apply temperature
scheduling on the LM to perform fine-grained
truncations in Table 9 of B.2. Finally, we explore
TrufLL with a pre-training phase in Table 10.

Generalization of the approach. TrufLL learns
conditional language models able to solve specific
Natural Language Generation tasks given a context c.
For solving such tasks, it only requires the context, a
reward function that scores the language generated by
the RL agent with respect to the task, and eventually
a few natural language demonstrations fed as input
prompt to the generic language model used in the
truncation algorithm. Hence, the method is transfer-
able to a wide variety of NLG tasks, without requiring
upfront large-scale labelled datasets. Additionally, the
RL framework allows to optimize non-differentiable
objectives, making TrufLL a natural choice to learn
end-to-end task-oriented dialogs, such as (De Vries
et al., 2017; Das et al., 2017). Other interesting tasks
for TrufLL include the ones typically found in Vision
and Language Representation Learning (Lu et al.,
2020a), such as Image Captioning, Grounding Refer-
ring Expressions (generation of a referring expression
over a specific bounding box of an image), Caption-
based Image Retrieval (generation of a caption that
discriminates an image between a set of images).
Reward functions for such tasks can be based on
similarity scores between the generated language and
the associated image or image region, which can be
computed using pretrained language representations
such as BERT (Devlin et al., 2019) or multi-modal
pretrained systems such as ViLBERT (Lu et al.,
2019). The context can be any kind of data structure
(natural language, database, video, etc): if it is a
linguistic input, TrufLL can be applied for instance
to text summarization, paraphrase generation (with
reward functions based on similarity scores between
the context and the generated language) or text-based
games (Ammanabrolu and Riedl, 2018).

6 Related work

RL and NLP Tasks. Following (Singh et al., 2002;
Lemon and Pietquin, 2007), recent RL-based task-
oriented dialogues (De Vries et al., 2017; Das et al.,
2017; Lewis et al., 2017; Narasimhan et al., 2015)
have been developed, where the policy language
model is generally pretrained with SL followed RL

fine-tuning. Yang et al. (2018); Fan et al. (2018)
focused on tackling VQG tasks with RL, respectively
on CLEVR and on the VQG dataset. Yet, the former
uses slot filling with template questions, while the
later computes a mixed objective with a MLE loss
using ground-truth sentences. Bahdanau et al. (2016);
Rennie et al. (2017) use RL to train language models
as an alternative to SL to prevent typical text degen-
eration issues, but within training algorithms relying
on ground-truth examples from labelled datasets.

RL methods for Language Action Spaces. Sev-
eral RL algorithms have been developed to tackle
large discrete action spaces. Hence, Dulac-Arnold
et al. (2015); Tennenholtz and Mannor (2019); Chan-
dak et al. (2019) embed the actions into a continuous
action space, and then use classic RL algorithms to
learn a policy over this continuous space. Zahavy
et al. (2018); Seurin et al. (2020) proposes Q-learning
algorithms with an elimination signal to eliminate for-
bidden actions. Closer to our work, a few algorithms
(Ammanabrolu and Riedl, 2018) use the structure
of language to prune the action space of text-based
games, but within value-based algorithms, which are
less scalable to large vocabularies. Similarly to Tru-
fLL, CALM (Yao et al., 2020) combines a pretrained
language model to prune the action space with a Deep-
Q network, aka DRNN (He et al., 2016). Yet, its trun-
cation language model remains fine-tuned on the RL
dataset. Besides, CALM is only evaluated on a vocab-
ulary of 697 tokens, and on 4-words action sequences.

Learning Language Models from scratch.
(Ziegler et al., 2019; Garg et al., 2021) finetune
pretrained GPT-2 models with RL for language
generation tasks without task-related data, only using
reward signals. Yet, they still face optimization and
computational challenges (Parisotto et al., 2020).

7 Conclusion

We proposed TrufLL, an original approach to learn
a natural language generation (NLG) task using
RL, without the usual pre-training phase requiring
supervised datasets. To our knowledge, this is the
first RL-based algorithm dedicated to learning a
word-based text-generation task, which does not
rely on a pre-training phase while scaling to large
vocabularies. Although it comes with its limitations,
the truncated RL algorithm provided by TrufLL gets
free from labelled data in task-oriented language
models, presents interesting language generation
properties, and provides a generic and transferable
method to learn any NLG problem.
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A Dataset and training details

A.1 Evaluation Metrics
For the BLEU and METEOR scores, we used the NLTK5 implementations with the smoothing function number
2 for the BLEU score. For the CIDEr score, we used the nlg-eval implementation6.

A.2 Answer filtering
For each dataset, we remove yes and no question-answer pairs which frequency largely exceeds other answers,
to avoid any bias in the question generation process, as usually done in the VQG litterature (Mostafazadeh
et al., 2016).

A.3 Dataset split
For CLEVR (resp. VQAv2), the RL language agent is trained for 50k (resp. 100k) episodes over the first 20k
images (resp. all the images) of the training dataset, and is then evaluated on the first 5k (resp. 20k) images
of the validation set. Besides, we uniformly sample the answer in the set of reference answers for each image
to reduce the bias in the distribution of answers. Finally, questions are limited to 20 (resp. 10) words.

A.4 Language Agent Networks and Training
For CLEVR (resp. VQAv2), we used a single-layer LSTM with 64 (resp. 256) units for the policy network.
At every time step, the LSTM input is then the concatenation of the word embedding of dimension 32 (resp.
128), the answer embedding of dimension 32 (resp. 128), and the image representation. For CLEVR, the image
representation is extracted from a pretrained ResNet50 and projected into a tensor of size (32,7,7) before being
flattened. For VQAv2, the image representation is the average of 200 bounding box features of dimension
1048, extracted from a faster R-CNN (Ren et al., 2015).

We optimize the full loss L=LPPO+αLV F+βLE with α=0.5, β=0.01 and a PPO clipping ratio ϵ=0.02
(resp. 0.01) for CLEVR (resp. VQAv2). We use Adam optimizer (Kingma and Ba, 2014) with a learning rate
(lr) of 10−3 for TrufLL and the scratch baseline, 10−5 (resp. 10−6) for RL algorithms with a pre-training phase
on CLEVR (resp. VQAv2), and 5∗10−4 for models including a KL regularization term. We use a batch size (bs)
of 128 for all models except the ones with KL regularization, for which we use a batch size of 64. Finally, for
the RL from scratch baselines, we perform gradient clipping (gladclip) of 1 (resp. 5) for CLEVR and VQAv2.

Such hyper-parameters were selected, after conducting an extensive hyper-parameter search. The
following values were tested: β ∈ {0.01, 0.02, 0.05, 0.1}, ϵ ∈ {0.01, 0.02, 0.05, 0.1, 0.5, 0.9}, lr
∈{10−6,10−5,10−4,5∗10−4,10−3,5∗10−3,10−2,5∗10−2}, gradclip ∈{None,1,5,10,100}, bs ∈{32,64,128}.

Additionally, we also tested for VQAv2 policy networks with 64, 256 and 1024 units, with respectively
32, 128 and 512 word embedding dimensions. We kept the network size giving the best performances, i.e.
policy network of 256 units and 128 word embedding dimension.

A.5 Reward formula for VQAv2
In this section, we detail the reward function used for the VQAv2 task. r(wt,w<t,c)=1rk(A)≤10,t=T−1e

−rk(A)/2,
with rk(A) the rank of the ground-truth answer given by the VQA model, when predicting the actual answer
from the terminal state (c,w<T ). Formally, it is defined as:

rk(A)=rank(VQA(c,w<T )[A]),

with VQA(c,w<T ) the probability distribution given by the VQA model over the set of answers, and rank
the function which ranks the probability of answer A within VQA(c,w<T ) probability distribution.

B Additional experiments

B.1 CLEVR
Table 6 displays the complete ablation on the truncation functions with parameters sweep. The ’sizeVA’ variable
indicates the average size of the truncated action space for each truncation function. Table 7 displays the

5https://www.nltk.org/
6https://github.com/Maluuba/nlg-eval
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ablation over the three decoding procedures defined in Section 4.5. Such an ablation presents a similar pattern
than VQAv2 results described in section 5.2.

Finally, Table 8 reports CLEVR metrics when using the BLEU score as the reward. While on such a task
TrufLL still exhibits promising language scores, the n-grams metrics remain lower than the pretrained baselines.
This illustrates that using a language similarity score as a reward signal is much less interesting than a reward
based on a task completion score.

Table 6: CLEVR task: Ablation on the truncation functions with parameters sweep. Best values are in bold.

trunc. Score BLEU CIDEr ppl-e(↓) sBLEU(↓) Size VA

TrufLL (Task-LM)
top(k=10)) 0.50 0.12 0.32 102 0.93 10
top(k=20) 0.45 0.10 0.24 103 0.87 20
pth(α=0.05) 0.55 0.18 0.63 25 0.96 4.4
pth(α=0.1) 0.47 0.18 0.87 6.7 0.98 2.4
pth(α=1/V) 0.50 0.16 0.49 41 0.97 6.6
top(p=0.85) 0.52 0.17 0.69 10.4 0.96 4.6
top(p=0.9) 0.51 0.17 0.69 11.5 0.96 5.1
sample(k=20) 0.50 0.18 0.73 18.9 0.86 5.4
sample(k=30) 0.50 0.18 0.73 16.1 0.89 6.1

TrufLL (Ext-LM)
top(k=10)) 0.52 0.06 0.15 102 0.94 10
top(k=20) 0.48 0.05 0.12 102 0.89 20
pth(α=0.05) 0.48 0.08 0.34 3.03 0.95 3.3
pth(α=0.1) 0.45 0.17 0.74 2.2 0.99 2.1
pth(α=1/V) 0.44 0.11 0.37 3.7 0.96 5.7
top(p=0.85) 0.45 0.10 0.39 3.2 0.92 4.1
top(p=0.9) 0.48 0.15 0.57 2.8 0.97 4.3
sample(k=20) 0.45 0.14 0.50 2.4 0.92 4.1
sample(k=30) 0.43 0.13 0.46 2.7 0.92 4.6

Table 7: CLEVR task: Ablation on sampling methods. Best overall values are underlined, while best values for TruFLL are in bold.

method text-gen score BLEU CIDEr ppl-e

greedy 0.32 0.22 1.01 14
pretrain sampling 0.29 0.17 0.76 58

lm-ranking 0.28 0.18 0.73 20

greedy 0.53 0.18 0.73 24
pretrain + RL sampling 0.40 0.16 0.68 39

lm-ranking 0.40 0.17 0.68 5

greedy 0.57 0.17 0.65 39
Task-LM sampling 0.55 0.17 0.66 24

lm-ranking 0.51 0.16 0.65 9

greedy 0.48 0.09 0.34(±0.11) 3.0
Ext-LM sampling 0.48 0.10 0.35(±0.11) 3.1

lm-ranking 0.48 0.06 0.34(±0.11) 2.9

B.2 VQAv2

Temperature scheduling: On the CLEVR task, we observed that dynamic truncations outperform static
ones such as top(k): indeed, they better take into account the inherent variability of the language structure
at the sentence-level. When scaling up to the 15k words of the VQAv2 task, we also dynamically decrease
the truncation size through training, by applying a decreasing temperature schedule on the language model.
While temperature scaling (Bahdanau et al., 2015) is usually used at test time to control the smoothness of
the language model distribution, temperature schedules during training of language models have been used in
several settings (Jang et al., 2016; Zhang et al., 2018; Wang et al., 2020). Formally, fLM(wi|w<t) distribution is
computed as softmax(xi)=e−xi/τ/

∑
je

−xj/τ , with xj the LM logits and τ the temperature, which decreases
from τmax to τmin by a factor TF every Tu training step. In Table 9, both TrufLL (Task-LM) and TrufLL
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Table 8: CLEVR, BLEU reward. Scores are averaged over the three decoding procedures detailed in Section 4.5 and over 5
seeds, standard deviation are displayed whenever greater than 0.01 for accuracy metrics. We here report the models with the highest
task-success, i.e. the scratch with KL regularization baseline with λKL=0.1, and the truncation model with a probability threshold,
pth(α=0.05). Baseline and Metrics are respectively detailed in Section 4.4 and 4.3. Best overall values are underlined, while best
values for models without task-data (i.e RL from scratch algorithms) are in bold.

Method Score R@5 BLEU Meteor CIDEr ppl-t (↓) ppl-e (↓) sBLEU (↓) peak.(↓)

pretrain 0.30 0.71 0.19 0.38 0.83 3.1 31 0.44 0.96
pretrain + RL fine-tune 0.34 0.80 0.20 0.38 0.83 3.8 12 0.56 0.96

scratch 0.03 0.19 0.06 0.09 0.09 108 106 0.13 0.14
scratch + KL-task 0.09 0.33(±0.15) 0.15 0.31 0.58(±0.23) 3.8 63 0.34 0.95
scratch + KL-ext 0.06 0.30(±0.23) 0.13 0.25 0.42 103 3.6 0.37 0.96

scratch + Truncation-task 0.17 0.51 0.18 0.37 0.80 2.6 17 0.63 1.0
scratch + Truncation-ext 0.07 0.36 0.16 0.29 0.49 102 2.3 0.60 1.0

(Ext-LM) benefit slightly from truncation with a temperature schedule compared to a vanilla truncation. The
former displays the best performance/language scores trade-off for the schedule "τ : 3 > 1. & Tu=5,000", while
the latter has the best metrics trade-off for "τ : 1.5 > 1. & Tu=5,000".

Finally, Figure 4 displays the evolution of the training return for TrufLL and the baselines. As expected,
the pretrain+RL fine-tune baseline return does not evolve much, confirming that the policy distribution almost
does not shift through the fine-tuning phase. The training curves of TrufLL present a steady increase in the
return until reaching convergence, confirming that our approach, by guiding the exploration of the action space,
provides a sufficient learning signal. On the other hand, the scratch+KL baselines stay stuck to a low training
return. This suggests that the KL regularization term, while encouraging the policy distribution to resemble
the language model distribution, fails to capture the task pragmatics, which requires generating a language
that is visually grounded.

Table 9: VQA task: Ablation on the temperature schedules. "no temp. sch" is a classic truncation without temperature scheduling.
We then report different schedules τ :τmax>τmin, Tu, with τmax, τmin, Tu, and Tf =0.75 as defined in section B.2. Best values
are in bold.

.

Scheduling Score BLEU CIDEr ppl-e(↓) sBLEU(↓)

TrufLL (Task-LM)
no temp. sch 0.35 0.20 0.11 102 0.78
τ : 1.5 > 1. Tu=5,000 0.34 0.18 0.11 102 0.79
τ : 3 > 1. Tu=5,000 0.35 0.22 0.13 102 0.76
τ : 1.5 > 1. Tu=15,000 0.31 0.23 0.23 102 0.73
TrufLL (Ext-LM)
no temp. sch 0.34 0.18 0.04 25 0.83
τ : 1.5 > 1. Tu=5,000 0.33 0.19 0.05 20 0.83
τ : 3 > 1. Tu=5,000 0.32 0.15 0.05 35 0.82
τ : 1.5 > 1. Tu=15,000 0.29 0.16 0.08 38 0.68

B.3 Additional discussion

TrufLL with a pre-training phase. Although TrufLL aims at providing a robust method to learn a language
model (almost) from scratch, we investigate whether such algorithm can be complementary to RL algorithms
with a pre-training phase. Therefore, when using the task-related dataset, we evaluate TrufLL from a pretrained
policy, and we refer to it as TrufLLpretrain.

In table 10, while on CLEVR, TrufLLpretrain marginally improves the results of the pretrain+RL fine-tune
baseline, the combination of TrufLL with a pre-training phase leads to performance degradation on VQAv2.
This suggests that on a large vocabulary task, the language distribution learned by the SL pretrained policy
is significantly different from the one learned with TrufLL.

On-policy TrufLL versus off-policy TrufLL. To ease off-policy learning, we propose to add a KL-
regularization term in the RL loss (Jaques et al., 2017, 2019; Wu et al., 2019), and refer to it as TrufLLoff,KL.
Intuitively, it encourages the policy to stay close to the language model’s distribution, with a distribution support
attributing negligible probabilities to words outside the truncated action space.
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Figure 4: VQAv2: Training curves. Reward is a rolling average over 5000 timesteps.

Table 10: TrufLLpretrain results on the 2 tasks. Additionally, we report the results for the pretrain+RL fine-tune baseline as a
comparison. Best values are in bold.

Algo Score BLEU CIDEr ppl-e sBLEU

CLEVR
pretrain+RL 0.44 0.17 0.70 35 0.46
TrufLLpretrain 0.61 0.18 0.77 22 0.84

VQAv2
pretrain+RL 0.41 0.31 0.98 50 0.78
TrufLLpretrain 0.33 0.27 0.42 35 1.0

Table 11 displays the full results of on-policy versus off-policy scores for TrufLL (Task-LM) and TrufLL
(Ext-LM) on the two tasks. The full results emphasize the challenges of the approach for the large vocabulary
of VQAv2. Indeed, on the off-policy setting for such a task, the exploding values for e-ppl suggest that the
optimized language agent samples incoherent words taken outside the truncated action space, as corroborated
by the low values of the sumVA ratio.

Interestingly, while on CLEVR, TrufLLoff,KL trades off task performance for language quality when
compared to TrufLLoff , on VQAv2, it mainly provides a better learning signal for the complete (large)
vocabulary. In such a setting, it hence improves the global scores of the off-policy version of TrufLL, and
enables a much better generalization at test time of the global policy over the full vocabulary. Yet, keeping
truncation at test time remains crucial with large vocabulary. Note that for VQAv2, the poor performances
of TrufLLoff,KL on the external LM is mainly due to numerical instability challenges when using GPT-2 as
the target policy of the KL regularization term.

Additionally, on-policy versus off-policy scores split per sampling procedure are displayed in table 12:
unsurprisingly, greedy decoding for TrufLLoff outperforms the two sampling-based methods, that are more
penalized by the imperfect generalization of the optimized policy over the full vocabulary.

28



Table 11: On-policy vs. off-policy scores for different variants of TrufLL: when training with an off-policy loss, we remove the
truncation at test time. TrufLLoff,KL is evaluated with λKL=0.05. Best values are in bold.

Algo Score BLEU CIDEr ppl-e sBLEU sumVA

CLEVR
TrufLL (Task-LM)

TrufLL 0.56 0.17 0.06 103 0.78 N.A
TrufLLoff 0.50 0.14 0.43 104 0.88 0.96
TrufLLoff,KL 0.39 0.17 0.71 69 0.48 0.95

TrufLL (Ext-LM)

TrufLL 0.48 0.08 0.34 3.03 0.95 N.A
TrufLLoff 0.41 0.10 0.35 105 0.88 0.95
TrufLLoff,KL 0.35 0.15 0.60 20 0.55 0.96

VQAv2
TrufLL (Task-LM)

TrufLL 0.35 0.21 0.11 104 0.36 N.A
TrufLLoff 0.07 0.03 0.01 104 0.05 0.08
TrufLLoff,KL 0.12 0.24 0.25 10³ 0.26 0.71

TrufLL (Ext-LM)

TrufLL 0.34 0.18 0.04 24 0.83 N.A
TrufLLoff 0.09 0.04 0.01 104 0.05 0.07
TrufLLoff,KL 0.0 0.15 0.02 103 0.19 0.47
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Table 12: On-policy vs. off-policy scores per decoding procedure: when training with an off-policy loss, we remove the truncation
at test time. TrufLLoff,KL is evaluated with λKL=0.05. Best values are in bold.

method text-gen score BLEU CIDEr e-ppl

CLEVR
TrufLL (Task-LM)

greedy 0.57 0.17 0.65 39
TrufLL sampling 0.55 0.17 0.66 24

lm-ranking 0.51 0.16 0.65 8.8
greedy 0.52 0.17 0.58 71

TrufLLoff sampling 0.49 0.16 0.59 105

lm-ranking 0.48 0.17 0.58 19
greedy 0.56 0.18 0.78 24

TrufLLoff,KL sampling 0.31 0.16 0.62 102

lm-ranking 0.31 0.18 0.74 5.8

TrufLL (Ext-LM)

greedy 0.48 0.09 0.34 3.1
TrufLL sampling 0.48 0.10 0.35 3.1

lm-ranking 0.48 0.06 0.34 2.9
greedy 0.42 0.10 0.38 4.4

TrufLLoff sampling 0.40 0.10 0.35 106

lm-ranking 0.40 0.10 0.34 15
greedy 0.48 0.16 0.70 2.1

TrufLLoff,KL sampling 0.27 0.13 0.48 55
lm-ranking 0.30 0.16 0.61 2.0

VQAv2
TrufLL (Task-LM)

greedy 0.36 0.20 0.11 366
TrufLL sampling 0.35 0.20 0.11 337

lm-ranking 0.34 0.21 0.11 95
greedy 0.09 0.04 0.02 103

TrufLLoff sampling 0.05 0.03 0.01 106

lm-ranking 0.06 0.03 0.01 104

greedy 0.16 0.29 0.46 38
TrufLLoff,KL sampling 0.08 0.19 0.09 104

lm-ranking 0.12 0.24 0.22 102

TrufLL (Ext-LM)
greedy 0.48 0.09 0.34 3.1

TrufLL sampling 0.48 0.10 0.35 3.1
lm-ranking 0.48 0.06 0.34 2.9

greedy 0.11 0.05 0.01 102

TrufLLoff sampling 0.07 0.03 0.01 105

lm-ranking 0.08 0.04 0.01 104

greedy 0.00 0.18 0.05 27
TrufLLoff,KL sampling 0.00 0.13 0.01 103

lm-ranking 0.00 0.16 0.02 102
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C Human Evaluation details

For the Human Evaluation study, we designed one form per participant, with three sections evaluating
respectively the language quality, language grounding and diversity criteria. Given the five evaluated models,
there are ten different model pairs: each section of the form contains 10 pairwise comparison covering all the
possible model pairs for the criteria. Each pairwise comparison is sampled uniformly over the 50 first question
samples generated by the algorithms at test time. The evaluation of syntax errors was made within the diversity
section: for each questions pair, we asked participants to tick the questions if they are grammatically incorrect.
Figure 5 displays one pairwise comparison example for the three sections, and a full form example is available
at the following url: https://forms.gle/kkL38x31wF7A9YKx5.

(a) Language Quality pairwise comparison

(b) Language Grounding pairwise comparison

Figure 5: Examples of pairwise comparison for each evaluated criteria.
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(c) Diversity/Originality with reference question. Pairwise comparison and evaluation of syntax errors.

Figure 5: Examples of pairwise comparison for each evaluated criteria. (cont.)

D Additional VQG Samples

Figure 6 and Figure 7 display the 10 first dialog samples produced at test time on CLEVR, while figures 8,
9, and 10 display the 15 first dialog samples produced at test time on VQAv2.
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Human the big yellow object is what shape ? A:sphere

pretrain there is a small thing that is the same color as the small rubber cylinder ; what is its shape?
pretrain + RL What is on the person’s head?

scratch yellow on or an material ?
scratch+KL-task what number of other things are the same shape as the small gray thing ?
scratch+KL-ext does that tiny object have objects to its left ?

TrufLL (Task-LM) what shape is the big thing that is to the right of the big matte thing ?
TrufLL (Ext-LM) what is the shape of the big object that is behind the big yellow thing and is the same color?

Human what number of other objects are the same size as the red rubber thing ? A:3

pretrain how many other things are there of the same size as the purple rubber thing ?
pretrain + RL what number of objects are either large green metallic objects or tiny objects

that are behind the tiny purple metallic thing?

scratch many tiny cubes things things things things things both things as things that
scratch+KL-task what number of other objects are there of the same material as the tiny cyan thing ?
scratch+KL-ext are there any blue objects ?

TrufLL (Task-LM) what number of objects are either big objects in front of the small yellow object or big matte objects?
TrufLL (Ext-LM) how many objects in front of the big object ?

Human what number of other things are there of the same material as the large green object? A:3

pretrain how many other things are there of the same size as the purple rubber cylinder ?
pretrain + RL what number of objects are either tiny cyan things or big cyan things ?

scratch many tiny cubes things things things things things both things as things that
scratch+KL-task what number of other objects are the same shape as the small yellow object ?
scratch+KL-ext how many things does that large thing have to its behind ?

TrufLL (Task-LM) what number of other things are there of the same size as the green cylinder ?
TrufLL (Ext-LM) how many objects in front of the in the cylinder ?

Human what number of other things are there of the same shape as the small purple metallic thing ? A:1

pretrain what number of other objects are the same color as the tiny rubber cylinder ?
pretrain + RL what number of purple objects are either small matte objects or big matte blocks ?

scratch many gray in big purple purple purple many or many gray matte matte
scratch+KL-task what number of other things are the same color as the large rubber cylinder ?
scratch+KL-ext how many other things in the are of same color as the large cylinder ?

TrufLL (Task-LM) how many tiny things have the same color as the large rubber thing ?
TrufLL (Ext-LM) how many other things in the are of the same color as that large thing ?

Human what shape is the big matte object that is on the right side ofthe big cyan matte object ? A:cylinder

pretrain the cyan matte thing that is the same size as the brown object is what shape ?
pretrain + RL what shape is the cyan matte object that is behind the cylinder ?

scratch many yellow big either either that that that more that metal ?
scratch+KL-task what number of other things are the same shape as the small gray thing ?
scratch+KL-ext what number of blocks are in the things in the ?

TrufLL (Task-LM) how many tiny things have the same color as the large rubber thing ?
TrufLL (Ext-LM) what is the shape of that large thing ?

Figure 6: Samples on CLEVR.
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Human what is the size of the other rubber cylinder that is the same color as the big cylinder ? A:small

pretrain there is a purple object that is the same size as the purple rubber cylinder ; what is its shape?
pretrain + RL what size is the gray ball that is right of the purple sphere ?

scratch that greater tiny as shiny both are a tiny it either ball right
scratch+KL-task there is a big thing that is the same color as the big matte cylinder ; what is its shape?
scratch+KL-ext how material is the yellow ?

TrufLL (Task-LM) how big is the thing that is to the right of the big matte thing ?
TrufLL (Ext-LM) what size is the object that is behind the large red thing ?

Human There is a shiny thing that is both right of the small matte thing and behind the large yellow cube;
what size is it ? A:small

pretrain there is a big thing that is the same color as the small rubber cylinder ; what is its shape
pretrain + RL there is a brown matte object to the right of the cyan object ; what shape is it ?

scratch many yellow big either either that that that more that metal ?
scratch+KL-task what number of other things are the same shape as the small gray thing ?
scratch+KL-ext what is the material of that block ?

TrufLL (Task-LM) what shape is the big thing that is to the right of the big cyan thing ?
TrufLL (Ext-LM) what is the shape of that large thing ?

Human there is a object that is the same color as the rubber cylinder ;what is its shape ? A:sphere

pretrain there is a small thing that is the same color as the small rubber cylinder ; what is its shape?
pretrain + RL what shape is the thing that is the same color as the cylinder ?

scratch many yellow yellow and cube shape behind cubes shape less small equal shape small equal large large ?
scratch+KL-task how many other things in the color are of same material as the green shiny object ?
scratch+KL-ext how many spheres anything ?

TrufLL (Task-LM) what is the shape of the small cyan thing ?
TrufLL (Ext-LM) And shape ?

Human what is the color of the small thing that is the same shape asthe large gray object ? A:green

pretrain there is another rubber object that is the same shape as the small brown object ; what color is it?
pretrain + RL what is the color of the tiny rubber thing ?

scratch many sphere less how an
scratch+KL-task what number of other objects are the same shape as the tiny blue object ?
scratch+KL-ext what size is that cylinder ?

TrufLL (Task-LM) what is the color of the tiny matte thing ?
TrufLL (Ext-LM) what color is the small thing ?

Human what number of shiny objects are cyan spheres or tiny balls ? A:4

pretrain how many other things are there of the same size as the brown rubber thing ?
pretrain + RL how many other things are there of the same size as the cyan rubber thing ?

scratch many yellow do do do either do either do balls
scratch+KL-task what number of other things are there of the same shape as the small gray thing ?
scratch+KL-ext how many other things are of same color as ball ?

TrufLL (Task-LM) how many other things are the same material as the small cyan cylinder ?
TrufLL (Ext-LM) how many other things in the material of the small thing that is the same material as green thing ?

Figure 7: Samples on Clevr.
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Human How many trains? A:1

pretrain How many trains are in the picture?
pretrain + RL How many trains are shown?

scratch AmazingAmazingAmazingAmazingAmazingAmazing
scratch+KL-task How many people are in the picture?
scratch+KL-ext The the same way of the same way of the

TrufLL (Task-LM) How many windows are here?
TrufLL (Ext-LM) How many different ways would we take them to reach

Human What is the man wearing over his shirt? A:nothing

pretrain What is in front of the person?
pretrain + RL What is written on the person’s right?

scratch AmazingAmazingAmazingAmazingAmazing
scratch+KL-task Is this child old or unloaded?
scratch+KL-ext The the first thing of the world’s a few

TrufLL (Task-LM) How many different shapes have been used and used by
TrufLL (Ext-LM) How many planes can be seen on top?

Human Is the fence in the background metal or wood? A:metal

pretrain What kind of dog is on the dog?
pretrain + RL What kind of dog is this?

scratch AmazingAmazingAmazingAmazingAmazing
scratch+KL-task What is 150 seated over theware?
scratch+KL-ext The the same way of the same way to be

TrufLL (Task-LM) Which item has more aggressive up their legs?
TrufLL (Ext-LM) How many different species have been captured and tagged here

Human What is the title of the red book? A:harry potter

pretrain What is the cat inside of?
pretrain + RL Is the cat inside or outside?

scratch AmazingAmazingAmazingAmazingAmazing
scratch+KL-task What color is the man’s shirt?
scratch+KL-ext The way of the world’s a lot of the

TrufLL (Task-LM) Which item appears higher into one and lower?
TrufLL (Ext-LM) What was that?

Human What color is the fire hydrant? A:red

pretrain What color is the hydrant?
pretrain + RL What color is the hydrant?

scratch AmazingAmazingAmazingAmazingAmazing
scratch+KL-task What color is the man’s bat?
scratch+KL-ext The the first thing is a good thing that the

TrufLL (Task-LM) Which color is this fire?
TrufLL (Ext-LM) What color will your feet color look?

Human How many wheels does the truck have? A:3

pretrain How many people are in front of the bus?
pretrain + RL How many slices ofists are on the plate?

scratch AmazingAmazingAmazingAmazingAmazing
scratch+KL-task Is summer out or cloudy next to Winchester?
scratch+KL-ext The the most recent of the most recent years of

TrufLL (Task-LM) How many pieces are here?
TrufLL (Ext-LM) How many different objects have been used?

Figure 8: Samples on VQA.
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Human What is on top of the round dome? A:flag

pretrain What is on the top right mean?
pretrain + RL What is on the front of this event?

scratch AmazingAmazingAmazingAmazingAmazing
scratch+KL-task What zombie is on the mouse?
scratch+KL-ext The the first thing is a bit of the first

TrufLL (Task-LM) Where could one travel park located?
TrufLL (Ext-LM) What color will your shoes look?

Human Where is the chain link fence? A:background

pretrain What is he holding?
pretrain + RL What is he fire hydrant?

scratch mazingAmazingAmazingAmazingAmazing
scratch+KL-task Who is closest to the paint?
scratch+KL-ext The the first thing is a great deal with the

TrufLL (Task-LM) Which item represents than both ends and lower?
TrufLL (Ext-LM) How much food has it given him?

Human What activity are these people doing? A:surfing

pretrain What is the person doing?
pretrain + RL What is the person doing?

scratch noodles noodles noodles noodles noodles noodles
scratch+KL-task How many umbrellas are visible?
scratch+KL-ext The the first thing is the same way of the

TrufLL (Task-LM) Which game does he play?
TrufLL (Ext-LM) What was that for?

Human What color is the umbrella? A:black

pretrain What color is the cat?
pretrain + RL What color is the cat?

scratch AmazingAmazingAmazingAmazingAmazing
scratch+KL-task What color is the man’s shirt?
scratch+KL-ext The the other way of the past time, and

TrufLL (Task-LM) Which item doesn’t both turn?
TrufLL (Ext-LM) What color of clothing did he get?

Human How many planes are shown? A:1

pretrain How many jets are there?
pretrain + RL How many jets are there?

scratch AmazingAmazingAmazingAmazingAmazingAmazing
scratch+KL-task How many skater does Green cents have?
scratch+KL-ext The the first thing is the first time, and

TrufLL (Task-LM) How many surf worthy are here?
TrufLL (Ext-LM) How many different ways should one ask if she wants

Human What is this animal called? A:horse

pretrain What is the animal on?
pretrain + RL What animal is shown on the ground?

scratch AmazingAmazingAmazingAmazingAmazingAmazingAmazing
scratch+KL-task What has to make of the pies that, should
scratch+KL-ext The the next week of the next week, the

TrufLL (Task-LM) Which item doesn’t turn?
TrufLL (Ext-LM) What was that?

Figure 9: Samples on VQA.
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Human What color spot does the horse have? A:white

pretrain What color is the animal?
pretrain + RL What color is the door?

scratch AmazingAmazingAmazingAmazingAmazingAmazing
scratch+KL-task What color is the ATM basketball?
scratch+KL-ext The the same thing that the same way of the

TrufLL (Task-LM) Which color is his socks?
TrufLL (Ext-LM) What color will your shoes look?

Human What color is the girls pants? A:blue

pretrain What color is the man’s blue?
pretrain + RL What color are the bird’s pants?

scratch AmazingAmazingAmazingAmazingAmazingAmazing
scratch+KL-ext The the first thing is a lot of the same

TrufLL (Task-LM) Which color is this fire?
TrufLL (Ext-LM) What color of clothing did he get?

Human What is on the woman’s head? A:helmet

pretrain What is on the girl’s head?
pretrain + RL What is on the person’s head?

scratch AmazingAmazingAmazingAmazingAmazingAmazing
scratch+KL-task Who is behind the horse?
scratch+KL-ext The the same thing that the most important to the

TrufLL (Task-LM) Which item doesn’t turn?
TrufLL (Ext-LM) What was that?

Figure 10: Samples on VQA.
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