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Abstract

Text style transfer (TST) is a well-known task
whose goal is to convert the style of the text
(e.g., from formal to informal) while preserv-
ing its content. Recently, it has been shown
that both syntactic and semantic similarities
between the source and the converted text are
important for TST. However, the interaction
between these two concepts has not been mod-
eled. In this work, we propose a novel method
based on Optimal Transport for TST to simulta-
neously incorporate syntactic and semantic in-
formation into similarity computation between
the source and the converted text. We eval-
uate the proposed method in both supervised
and unsupervised settings. Our analysis reveal
the superiority of the proposed model in both
settings.

1 Introduction

Text style transfer (TST) is an important task in
NLP that aims to change the style of a given text
from source style to target style (e.g., formal to
informal) while preserving its content. For instance,
the formal sentence “However, I do believe it to
be punk" is converted to the informal equivalent
sentence “I’d say it is punk though". This task
could be helpful for downstream applications such
as text simplification, information extraction, and
question answering.

Due to the importance of TST, this task has been
approached with different techniques ranging from
feature-based models (Xu et al., 2012) to recent ad-
vanced deep learning solutions (Chen et al., 2018;
Lee et al., 2021a; Huang et al., 2021). The recent
work can be categorized as supervised (i.e., parallel
corpus with sentences in source and target style)
(Lai et al., 2021), unsupervised (i.e., sentences in
source and target style are available but they are not
aligned) (Krishna et al., 2020), or semi-supervised
(combination of parallel and non-aligned corpora)
(Chawla and Yang, 2020) methods. The three crit-

ical objectives of any TST system are to (1) gen-
erate a text in the target style, (2) keep the con-
tent of the source text, and (3) generate fluent sen-
tences (Krishna et al., 2020). It has been shown that
fine-tuning transformer-based language models on
each of these objectives (i.e., using Reinforcement
Learning) can achieve promising results (Lai et al.,
2021; Liu et al., 2021). However, one of the lim-
itations of the existing works is that the content
preservation (i.e., the second objective) is fulfilled
at either the surface-form level (i.e., by encouraging
the same words to appear in both texts) (Lai et al.,
2021) or at the semantics level (i.e., by encourag-
ing high mutual information between the two texts)
(Chawla and Yang, 2020); ignoring the role of syn-
tactic information. Syntactic information (e.g., de-
pendency tree) can be used to explicitly encode
the connections between the words of the sentence,
thereby playing an important role in the equiva-
lency of two sentences. For instance, consider
the source sentence “a crap touch bar with a nice
screen!!!" and the converted sentence “The screen
is great but the touch bar is terrible". The corre-
sponding dependency between “touch bar → crap"
in the source sentence and “terrible → touch bar"
in the target sentence and also “screen → nice" in
the source sentence and “great → screen" in the
target sentence are helpful to assess the equivalency
of the two sentences. Although the pre-trained lan-
guage models such as BERT have been shown to
be able to encode the syntactic information, it is
not yet verified that these models can take into ac-
count the syntactic dependencies when computing
the similarity between two sentences, especially for
the TST task. To the best of our knowledge, there
is one prior work that shows the importance of the
syntactic information for transformer-based TST
models (Ma et al., 2019). Specifically, Ma et al.
(2019) shows that reconstructing both the words of
the source text and their POS tags could boost the
performance of TST. However, there are two limi-
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tations in this work: (1) the syntactic structure (i.e.,
dependencies between words) is ignored; (2) the
interaction between semantics and the syntax of the
sentences is neglected. More specifically, to obtain
the most value of the syntactic information, it is
crucial to consider the relations between the words
and also their semantics as shown in the example
above. As such, in this work, we propose a novel
method to simultaneously incorporate the interac-
tion between syntax and semantics of the sentences
into the content preservation objective of TST train-
ing. More specifically, for the first time in text style
transfer, we propose to use Optimal Transport (OT)
as an efficient method to consider both the syn-
tax and the semantics of the two sentences when
computing their content similarity. OT has been
shown to be an effective method for image style
transferring (Kolkin et al., 2019; Risser, 2020) and
our work exhibits its application for the domain
of the text. We evaluate the proposed model on
three benchmark datasets and two settings, i.e., su-
pervised and unsupervised. Our extensive analysis
reveals the effectiveness of the proposed model by
establishing new state-of-the-art results.

2 Model

Problem Definition: The task of text style trans-
fer is formally defined as follows: Given the in-
put sentence D = [w1, w2, . . . , wn] with style
s, the goal is to generate a new sentence D′ =
[w′

1, w
′
2, . . . , w

′
m] in the target style t while pre-

serving the content of D in D′. We study both
supervised and unsupervised settings. Specifically,
in the supervised setting, for every training sam-
ple (D, s) there is an aligned sentence D̄ in target
style t, i.e., (D̄, t), whose content is the same as
D. Whereas for the unsupervised setting, there
is no equivalent pair for (D, s). Note that in the
unsupervised setting, there are sentences for both
styles.

In this work, we employ a transformer-based
generative language model, i.e., GPT-2 (Radford
et al., 2019), for TST and we train the model using
REINFORCE algorithm. Specifically, the source
sentence D is prompted to the GPT-2 model to
generate the target sentence D′. Following the
prior work, (Lai et al., 2021), the GPT-2 model is
encouraged to generate the sentence D′ in the target
style t and with the same content as D. Also, in the
supervised setting, we use the gold target sentence
D̄ as an additional supervision signal to train the

model. Since D̄ is not available in the unsupervised
setting, we follow the prior work (Lee et al., 2021a)
to use reconstruction loss as an additional training
signal. The rest of this section provides details for
generating sentences, rewards for generation, and
training procedures.

2.1 Generating Target Sentence

Following the prior work (Lai et al., 2021), we
employ the input sentence D as a prompt to GPT-2
model to generate the target sentence D′. More
specifically, the prompt to GPT-2 consists of the
sequence P = [BOS,w1, w2, . . . , wn, SEP ],
where BOS and SEP are special token indicating
the beginning and the end of the input sentence
D. In addition to the input document D, during
training of the supervised model, the gold target
sentence D̄ = [w̄1, w̄2, . . . , w̄n′ ] is concatenated
to the prompt to create the training sequence S =
[BOS,w1, w2, . . . , wn, SEP, w̄1, w̄2, . . . , w̄n′ ]
and the model is trained in an auto-regressive
manner:

LLM =

n+n′+2∑

i

− log(Q(Si|S<i, θ)) (1)

where θ is GPT-2 parameters and Q(·|S<i, θ) is
the distribution over vocabulary obtained from the
last hidden states of GPT-2 model. During infer-
ence, only the prompt P is provided to the GPT-2
model and the words of D′ are sampled from the
distribution predicted by GPT-2 model until EOS
is sampled.

Unlike the supervised setting in which the GPT-2
model is trained for uni-directional style conver-
sion, i.e., from the source style to the target style,
in the unsupervised setting, the model is trained
for both directions, i.e., from the source to the tar-
get and vice versa. Specifically, given a sentence
and a style, the GPT-2 model is trained to gen-
erate another sentence with the same content in
the given style. Formally, the prompt P is con-
catenated with the style st where st ∈ {s, t}, i.e.,
S = [BOS,w1, w2, . . . , wn, SEP, st]. To train
the model, following the prior work (Lee et al.,
2021a), two types of reconstruction loss are em-
ployed:
Self-Reconstruction: The GPT-2 model is encour-
aged to reconstruct the original input sentence D
when st is s, i.e., the given style to the model is the
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same as the input sentence style. Concretely, the
loss function LLM is defined as follows:

LLM =
n∑

i

− log(Q(Di|D, s, θ)) (2)

Cycle Reconstruction: If st is t, i.e., the given
style to the model is different from the style of
the input sentence, then the GPT-2 model is first
employed to generate the sentence D̄′ in the style
t. Next, the model is encouraged to reconstruct
the original input sentence D using the input S =
[BOS, w̄1, w̄2, . . . , w̄n′ , SEP, s], where w̄i is the
i-th word in the generated sentence D̄′. Concretely,
the loss function LLM is defined as follows:

LLM =

n∑

i

− log(Q(Di|D̄′, s, θ)) (3)

2.2 Rewarding GPT-2 Model

Prior work shows that rewarding generative models
to observe the requirements for TST could improve
the performance (Lai et al., 2021; Liu et al., 2021).
Hence, we follow this optimization step to update
the GPT-2 model based on two different rewards,
i.e., Style Conversion and Content Preservation.
Style Conversion: One of the critical objectives
of TST is to change the style of the given text. To
encourage the model for this objective, prior works
commonly use a pre-trained discriminator to pre-
dict the style of the generated text. Here, we follow
the same approach by pre-training a BERT model
(Devlin et al., 2019) on the combination of the train-
ing sentences D in both styles to identify the style
of the given text (i.e., a binary text classification
task). Next, during the training stage of the GPT-2
model, we send the generated sentence D′ to the
pre-trained BERT model. The probability of the
target style is employed as the style conversion re-
ward: RSC(D

′) = QBERT (t|D′, ϕ), where ϕ is
the BERT parameters.
Content Preservation Content preservation is an
important requirement of TST and prior works use
either surface form of D and D′ (Lai et al., 2021;
Huang et al., 2021), their semantics (Chawla and
Yang, 2020), or only shallow syntax (Ma et al.,
2019) to compute the content overlap between the
source and the generated sentence. None of these
works consider the syntactic structure of two sen-
tences and more importantly its interaction with
the semantics of the sentence. As the main novelty
of the proposed work, inspired by the success of

Optimal Transport in image style transfer (Kolkin
et al., 2019; Risser, 2020) and other related NLP
tasks (Xu et al., 2021), we show that OT is an effec-
tive tool for addressing the shortcoming of syntax-
semantics interaction for content preservation in
prior TST literature.

To represent the semantics of the source and
target sentence D and D′, we employ the hid-
den states of the final GPT-2 layer for each word
wi and w′

j , i.e., H = [h1, h2, . . . , hn] and H ′ =
[h′1, h

′
2, . . . , h

′
n]. Moreover, the syntactic structures

of the two sentences are obtained from an off-the-
shelf dependency tree parser1, represented by T
and T ′. The criterion we use to compute the con-
tent preservation between two sentences D and D′

is that the semantically related words in both sen-
tences should have the same syntactic importance
too. In particular, we expect that similar words
appear at the same level in the dependency tree
of T and T ′. However, since the structure of the
sentence might change during style conversion and
also the number of words might alter, similar words
might appear in other levels too. As such, the op-
timal mapping between similar words in the de-
pendency trees T and T ′ is not trivial. Fortunately,
optimal transport (OT) can be helpful to solve this
issue. OT is a mathematical method to compute the
cheapest plan for converting one data distribution
to another one. We first formally describe OT and
then we elaborate on how it is employed for our
purpose.

OT is an established method to find the opti-
mal plan to convert (i.e., transport) one distribu-
tion to another one. Formally, given the prob-
ability distributions p(x) and q(y) over the do-
mains X and Y , and the cost/distance function
C(x, y) : X × Y → R+ for mapping X to Y ,
OT finds the optimal joint alignment/distribution
π∗(x, y) (over X × Y) with marginals p(x) and
q(y), i.e., the cheapest transportation from p(x) to
q(y), by solving the following problem:

π∗(x, y) = min
π∈Π(x,y)

∫

Y

∫

X
π(x, y)C(x, y)dxdy

s.t. x ∼ p(x) and y ∼ q(y),

(4)

where Π(x, y) is the set of all joint distributions
with marginals p(x) and q(y). Note that if the
distributions p(x) and q(y) are discrete, the inte-
grals in Equation 4 are replaced with a sum and
the joint distribution π∗(x, y) is represented by a

1We employ Stanford dependency parser
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0 → 1 1 → 0
Domain Train Valid Test Valid Test
F&R 51,967 2,788 1,332 2,247 1,019
E&M 52,595 2,877 1,416 2,356 1,082

Table 1: Statistics of GYAFC dataset employed for
supervised setting (number of samples). 0=informal,
1=formal

Dataset Style Train Dev Test

Yelp
Positive 266,041 2,000 500
Negative 177,218 2,000 500

IMDB
Positive 178,869 2,000 1,000
Negative 187,597 2,000 1,000

Table 2: Statistics of the IMDB and Yelp datasets em-
ployed for unsupervised setting (number of samples).

matrix whose entry (x, y) (x ∈ X , y ∈ Y) rep-
resents the probability of transforming the data
point x to y to convert the distribution p(x) to
q(y). Finally, the cost of optimal conversion
(i.e., Wasserstein distance DistW ) is computed by:
DistW = Σx∈XΣy∈Yπ∗(x, y)C(x, y).

In our method, we use the words wi ∈ D as the
domain X and the words w′

j ∈ D′ as the domain
Y . In order to define their distance, we use the
Euclidean distance between their semantic vector
representation C(wi, w

′
j) =

∥∥∥hi − h′j

∥∥∥. Finally,
to define the distributions p(x) and q(y), we use
the level of words wi and w′

j in the dependency
tree T and T ′, respectively. Concretely, p(wi) =
softmax(M − Li), where M is the maximum
depth of T , Li is the depth of wi in T and softmax
is computed over all words wi ∈ D. Similarly,
q(w′

j) is defined by q(w′
j) = softmax(M ′ − L′

j).
By solving the equation 42, the cheapest conversion
of the two sentence D and D′ is obtained and its
cost is equal to Wasserstein distance DistW . We
use this distance as the content preservation penalty,
i.e., RCP (D

′) = −Distw.

3 Training

To train the model, we combine the content preser-
vation reward RCP (D

′), with style conversion
and the language model loss. We use REIN-
FORCE algorithm (Williams, 1992) to train the
model. In particular, the GPT-2 model is trained
on the combination of the language model loss,

2Note that as solving the OT problem in Equation 4 is
intractable, we employ the entropy-based approximation of
OT and solve it with the Sinkhorn algorithm (Peyre and Cuturi,
2019).

i.e., LLM and the rewards of style conversion
and content preservation. The REINFORCE al-
gorithm is employed to incorporate rewards into
fine-tuning of GPT-2. First, the overall reward is
computed by R(D′) = RSC(D

′) + αRCP (D
′),

where α is a trade-off hyper-parameter. Next, we
seek to minimize the negative expected reward
R(D′) over the possible choices of D′: LR =
−ED̂′∼P (D̂′|D)[R(D̂′)]. The policy gradient is then

estimated by: ∇LR = −ED̂′∼P (D̂′|D)[(R(D̂′) −
b)∇ logP (D̂′|D)]. Using one roll-out sample, we
further estimate ∇LR via the generated sentence
D′: ∇LR = −(R(D′)− b)∇ logP (D′|D) where
b is the baseline to reduce variance. In this work,
we obtain the baseline b via: b = 1

|B|
∑|B|

i=1R(D′
i),

where |B| is the mini-batch size and D′
i is the gener-

ated sentence for the i-th sample in the mini-batch.

4 Experiments

Datasets: We evaluate the proposed model,
i.e., Optimal Transport-based Text sTyle Transfer
(OT4), in two different settings, i.e., supervised
and unsupervised. In the supervised setting we
employ the Grammarly’s Yahoo Answers Formal-
ity Corpus (GYAFC) dataset (Rao and Tetreault,
2018). GYAFC is a parallel dataset in two domains
Entertainment & Music (E&M) and Family & Re-
lationships (F&R). Table 1 shows the statistics of
this dataset.

For the unsupervised setting, we employ two
commonly used datasets: Yelp (Li et al., 2018)
and IMDB (Dai et al., 2019) review. Both datasets
contain sentiment-annotated reviews. The text style
transfer on these datasets is defined as sentiment
polarity conversion. In particular, given a sentence
with a specific sentiment polarity (e.g., positive),
the goal is to generate a new sentence with the
opposite sentiment polarity (e.g., negative). Note
that no parallel data is available for the sentences
in these datasets. The statistics of both datasets are
provided in Table 2
Evaluations: We validate the model performance
using both automatic and human evaluation. For
the automatic evaluation in the supervised setting,
following the prior work (Lai et al., 2021), we as-
sess the performance of the models based on: (1)
Style Strength (ACC): The binary style classifier
TexCNN (Kim, 2014) (with 87.0% and 89.3% ac-
curacy on E&M and F&R domains, respectively) is
employed to predict the strength of the style conver-
sion; (2) Content Preservation (BLEU): The BLEU
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score computed using four reference sentences; (3)
HM: The harmonic mean of ACC and BLEU; and
(4) BLEURT: A new metric for content preserva-
tion proposed by Sellam et al. (2020). For the
automatic evaluation in the unsupervised setting,
following prior work (Lee et al., 2021b), we use:
(1) Style Transfer Accuracy (S-ACC): Following
(Lee et al., 2021b), a Bi-GRU layer with atten-
tion mechanism, trained for style classification on
IMDB and Yelp dataset, is employed to assess the
style transfer; (2) Content Preservation (self-BLEU,
ref-BLEU, BERT-P, BERT-R, and BERT-F1): To
validate the content preservation in the generated
sentence, its BLEU score with input sentence, i.e.,
self-BLEU, and with the human-generated sen-
tence, i.e., ref-BLEU, are used. Moreover, to in-
corporate contextual semantics, the BERT score
proposed by (Zhang et al., 2020) is employed to as-
sess the similarity between the generated sentence
and the human reference. Following prior work
(Lee et al., 2021b), we report precision, recall, and
F1 score for this metric; (3) Fluency (PPL): The flu-
ency of the generated sentences is evaluated based
on the perplexity of the sentences using the 5-gram
KenLM (Heafield, 2011) model trained on both
datasets;

For human evaluation, following prior work (Lee
et al., 2021b), we randomly select 150 documents
for each test set and we hire 4 annotators to rate
model predictions from 1 (Very Bad) to 5 (Very
Good) on content preservation, style conversion,
and fluency. For each annotator, we provide them
with the source text, source style, target style, and
model-generated text.

Baselines: We compare our model with the prior
state-of-the-art models in each setting. Specifically,
for the supervised setting on GYAFC, we compare
our model with GPT-2 + SC & BLEU (Lai et al.,
2021): Similar to our model, this baseline employs
GPT-2 to generate the target sentence. The gen-
erative model is trained using rewards for style
conversion (SC) and content preservation (BLEU);
BART + SC & BLEU (Lai et al., 2021): The same
as the previous baseline with the difference of using
BART instead of GPT-2; NMT-Combined (Rao
and Tetreault, 2018): This baseline casts TST as
a machine translation problem and employs atten-
tion based BiLSTM encoder-decoder architecture;
Bi-directional FT (Niu et al., 2018): This model
employs BiLSTM encoder to jointly learn text for-
mality style transfer in both direction (from formal

to informal and vice versa); CPLS (Shang et al.,
2019): This baselines employs an encoder-decoder
architecture to obtain latent space representation
of the styles, then a projection model converts
the styles in the latent space; GPT-CAT (Wang
et al., 2019): This baseline combines rule-based
methods with neural-based TST systems. GPT-2
is employed as the neural component; TS→CP
(Sancheti et al., 2020): This model exploits re-
inforcement learning to explicitly encourage con-
tent preservation and transfer strength. It exerts
BLEU score between generated and ground-truth
sentence to compute content preservation reward;
and Chawla’s (Chawla and Yang, 2020): This
baseline uses a language model discriminator to
guide the text formality style transfer. For con-
tent preservation, it employs mutual information
between source and target sentence.

For the unsupervised setting on IMDB and Yelp,
we compare with Cross-Alignment (Shen et al.,
2017): This baseline is trained to generate a sen-
tence in the target style that could match the ex-
ample sentences in the source style. To this end, a
cross-aligned auto-encoder is utilized; Controlled-
Gen (Hu et al., 2017): This model employs varia-
tional author encoder (VAE) with attribute discrim-
inators to impost semantic structure, including text
style; Style Transformer (Dai et al., 2019): In
this baseline, a transformer model is employed to
directly takes the input sentence and target style
to generate the target sentence; Deep Latent (He
et al., 2020): This baseline models the unsuper-
vised text style transfer as the task of inferring
latent variables, i.e., target sentences, on the par-
tially observed data of each style. A recurrent lan-
guage model is employed to fulfill the objective.
RACoLN (Lee et al., 2021b): In this baseline, the
reverse attention technique is employed to remove
style information from the representations of the
tokens in the source sentence.

4.1 Results

Supervised: Table 3 shows the results of the evalu-
ations on the test set. Following prior work, we
compare the performance of the proposed OT4
model in the following settings: (1) Informal ↔
Formal: In this setting the performance of the base-
lines for converting a formal to informal text or vice
versa is evaluated. From this table, we observe that
GPT-2 model has a better capability of style con-
version. However, the baseline model using GPT-2

2536



Domain Model BLEURT BLEU ACC HM Model BLEURT BLEU ACC HM
(A) INFORMAL ↔ FORMAL (B) INFORMAL → FORMAL

NMT-Combined -0.100 0.501 0.797 0.615 GPT-CAT (train on E&M and F&R) 0.176 0.725 0.876 0.793
BART + SC & BLEU 0.044 0.577 0.859 0.690 Chawla’s 0.260 0.762 0.910 0.829
GPT-2 + SC & BLEU -0.007 0.542 0.923 0.683 BART large + SC & BLEU 0.274 0.765 0.929 0.839

E&M OT4 (Ours) 0.102 0.602 0.949 0.736 OT4 (Ours) 0.322 0.812 0.951 0.876
(C) INFORMAL ↔ FORMAL & COMBINED DOMAINS (D) BLEU EVALUATED AGAINST THE FIRST REFERENCE

Bi-directional FT 0.023 0.554 0.818 0.661 TS→CP - 0.292 - -
BART large + SC BLEU 0.078 0.596 0.905 0.719 BART + SC & BLEU - 0.306 - -
OT4 (Ours) 0.192 0.671 0.939 0.782 OT4 (Ours) - 0.352 - -

(A) INFORMAL ↔ FORMAL (B) INFORMAL → FORMAL
NMT-Combined -0.089 0.527 0.798 0.635 GPT-CAT (train on E&M and F&R) - 0.769 - -
BART + SC & BLEU 0.068 0.595 0.882 0.711 Chawla’s 0.302 0.799 0.910 0.851
GPT-2 + SC & BLEU 0.038 0.572 0.915 0.704 BART large + SC & BLEU 0.324 0.793 0.920 0.852

F&R OT4 (Ours) 0.112 0.618 0.942 0.746 OT4 (Ours) 0.401 0.825 0.961 0.887
(C) INFORMAL ↔ FORMAL & COMBINED DOMAINS (D) 10% PARALLEL TRAINING DATA

Bi-directional FT 0.037 0.568 0.839 0.677 CPLS - 0.379 - -
BART large + SC & BLEU 0.100 0.611 0.900 0.728 BART + SC & BLEU - 0.571 - -
OT4 (Ours) 0.185 0.652 0.933 0.767 OT4 (Ours) - 0.644 - -

Table 3: Automatic evaluation result on GYAFC dataset. The performance of the baselines are taken from (Lai
et al., 2021).

Model S-ACC ref-BLEU self-BLEU PPL G-score BERT-P BERT-R BERT-F1
Cross-Alignment 74.2 4.2 13.2 53.1 32.0 87.8 86.2 87.0
ControlledGen 83.7 16.1 50.5 146.3 65.0 90.6 89.0 89.8
Style Transformer 87.3 19.8 55.2 73.8 69.4 91.6 89.9 90.7
Deep Latent 85.2 15.1 40.7 36.7 58.9 89.8 88.6 89.2
RACoLN 91.3 20.0 59.4 60.1 73.6 91.8 90.3 91.0
OT4 93.4 26.7 71.2 42.1 81.4 97.7 96.7 97.2

Table 4: Automatic evaluation result on Yelp dataset. G-Score is the geometric mean of self-BLEU and S-ACC. The
evaluation results of the baselines are taken from (Lee et al., 2021b)

S-ACC self-BLEU PPL G-score
Cross-Alignment 63.9 1.1 29.9 8.4
ControlledGen 81.2 63.8 119.7 71.2
Style Transformer 74.0 70.4 71.2 72.2
Deep Latent 59.3 64.0 41.1 61.6
RACoLN 83.1 70.9 45.3 76.8
OT4 86.2 80.5 39.8 83.30

Table 5: Automatic evaluation result on IMDB dataset.
Since human references are not available for IMDB
dataset, self-BLEU and BERT scores are omitted. The
evaluation results of the baselines are taken from (Lee
et al., 2021b)

employs BLEU score to encourage content preser-
vation. In contrast, we equip our GPT-2 model
with OT-based reward that can incorporate both
semantics and syntax of the sentences and achieve
the best results; (2) Informal → Formal: In this
setting, only the conversion from informal to for-
mal text is evaluated. compared to the previous
setting, we see an improvement in the style con-
version and content preservation for the equivalent
models. It shows that this direction of conversion
is relatively easier. However, the proposed OT4
model still significantly outperform the baselines
in this setting too, indicating the importance of con-
tent preservation for this setting; (3) Informal ↔

Formal & Combined Domains: In this setting,
the data from both domains are combined for train-
ing and the model is evaluated for conversion in
both direction. The results show that in this setting,
all baselines benefit from the extra training data
from the other domain, however, the proposed OT4
enjoys the largest improvement. Our hypothesis
for such improvement in OT4 is that the existence
of the other domain data provides more syntac-
tic structure to the model, therefore, compared to
the baselines that miss this information, the pro-
posed OT4 baseline can benefit from more training
signals. (5) Evaluation with the first reference:
To conduct a comprehensive comparison, we also
compare our model with the baselines that only
report the performance of the models evaluated
on the first reference sentence. In this setting, we
see that the proposed model achieves the highest
BLEU score; and finally (6) 10% Parallel Data:
To show the effectiveness of the proposed model
in the case of low-resource setting, we compare
the performance of the proposed model when only
10% of the training parallel data is employed. We
see in this setting the improvement achieved by our
proposed model is higher, especially in terms of
BLEURT, reflecting its superiority to benefit more
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Yelp IMDB
Style Content Fluency Style Content Fluency

Cross-Alignment 2.5 2.1 3.2 2.0 2.0 1.9
ControlledGen 3.1 3.5 3.4 3.0 3.4 3.2
Style Transformer 3.3 3.6 3.5 3.5 3.1 3.5
Deep Latent 3.5 2.9 4.1 2.6 3.1 3.1
RACoLN 3.6 3.7 3.8 3.3 3.5 3.7
OT4 (Ours) 4.1 4.6 4.2 3.9 4.6 4.0

Table 6: Human evaluation of the baseline outputs for
Yelp and IMDB datasets. Numbers are the average score
of the four annotators.

Model Style Content Fluency
TS→CP 2.1 2.5 2.7
CPLS 3.2 2.6 3.0
NMT-Combined 3.0 2.6 2.2
Bi-directional FT 3.3 3.0 2.0
Chawla’s 2.9 2.7 3.4
GPT-CAT 3.4 3.4 3.8
GPT-2 + SC & BLEU 3.1 3.4 3.1
BART + SC & BLEU 3.1 3.3 3.5
OT4 (Ours) 3.9 4.2 3.9

Table 7: Human evaluation of the baseline outputs for
GYAFC dataset. Numbers are the average score of the
four annotators.

efficiently from training signals.

Unsupervised: The results of the evaluation of
the unsupervised model on the Yelp and IMDB
datasets are presented in Table 4 and 5, respec-
tively. Note that due to the lack of reference tar-
get sentences in the IMDB dataset, we omit self-
BLEU and BERT scores in Table 5. There are sev-
eral observations from these tables. First, the pro-
posed OT4 model outperforms all baselines with
respect to style conversion and content preserva-
tion. Specifically, for style conversion, our model
improves the S-ACC on Yelp and IMDB by 2.1%
and 3.1%, respectively. Compared the baselines,
we attribute the style conversion improvement to
the explicit rewards employed in our model to di-
rectly train the model for better style conversion.
More importantly, since our model is equipped with
OT to improve content preservation, we see a sig-
nificant improvement for this metric. In particular,
on the Yelp dataset, our model improves BERT-F1
score by 6.2% and self-BLEU by 11.8%. Consider-
ing the improvement on ref-BLEU on this dataset
also indicates that while our model improves the
content preservation, it is not repeating the input
sentence. Finally, comparison of the fluency of
the generated sentences shows that our model is
competitive with baselines by achieving the second-
lowest PPL on both datasets.

4.2 Ablation Study

In order to shed more light on the contribution of
the proposed OT-based content preservation reward,
in this section we study the performance of alterna-
tive architecture designs: (1) No Semantics: Here,
the cost function C(x, y) is replaced by the con-
stant function C(x, y) = 1, hence removing all in-
formation regarding the semantics of the sentence;
(2) No Syntax: In this baseline, the probability dis-
tribution p(x) and q(y) are represented by uniform
distribution, thus removing all information about
the syntactic structure; (3) NO OT: In this base-
line, the content preservation reward is completely
removed; (4) Reconstruct: Following prior work
(Ma et al., 2019), instead of using OT-based reward,
we add another auxiliary task in which the model is
trained to reconstruct the POS tag of the input sen-
tence. Note that, for this auxiliary task, the model
is trained to re-convert the generated sentence D′

back to D; (5) Graph-based: Instead of directly
encoding the interaction between the syntax and
semantics via OT-based distance, in this baseline
we encode the syntax and the semantics together
using a Graph Convolution Network (GCN) (Kipf
and Welling, 2017). Specifically, before generating
the words of D′, the representations H obtained
from the GPT-2 model are further abstracted using
a two-layer GCN that takes the dependency tree
of the input sentence as the input graph. We eval-
uate the models on the development set of E&M
domain for formal and informal style transfer (i.e.,
both direction)3.

Table 9 shows the results. This table shows that
removing both syntax and semantics scores from
OT will hurt the performance. However, syntac-
tic information has more importance as removing
them results in more performance loss. Moreover,
it is clear from this table that reconstructing syntac-
tic features is not as effective as OT-based reward.
This inferiority is better evident from the loss in
BLEU and BLEURT scores. Our hypothesis for
better performance of the OT-based reward is that
OT can encode the interaction between the syntax
and semantics while reconstruction makes these
two tasks separate. Finally, this table shows that
the graph-based model has poor performance com-
pared to OT4. Our hypothesis for this observation
is that while the GCN model can encode the syntac-
tic structure of both sentences, it cannot encode the

3Note that the same pattern is observed in other settings
and domains too
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ID Sentence Important Alignments (source → generated)
Source #1 Oh, I’m literally dismal in my writing skills but a hero in singing (literally → very), (dismal → poor), (skills → abilities)
Generated #1 My writing abilities are very poor but my singing is excellent. (hero → excellent), (reading → reading)
Source #2 though she is not his gf but he hangs out with her a lot! (though → However), (gf → girlfriend), (hangs → spend),
Generated #2 However she is not his girlfriend, he spends too much time with her. (hangs → time), (lot → much), (her → her)

Table 8: Case Study for Informal to Formal conversion. The important alignments are the alignments with the
highest probability predicted by solving the Optimal Transport problem for the given two sentences.

Model BLEURT BLEU ACC HM
No Semantics 0.079 0.545 0.921 0.684
No Syntax 0.064 0.521 0.912 0.663
No OT 0.050 0.509 0.889 0.647
Reconstruct 0.059 0.560 0.929 0.698
Graph-based 0.063 0.555 0.921 0.692
OT4 (Full) 0.114 0.621 0.940 0.747

Table 9: Ablation study on the development set of E&M
domain for formal ↔ informal conversion

alignment between the words of the input sentence
and the generated sentence. Hence, hindering the
content preservation computation.

4.3 Case Study

To provide more insight into the performance of the
proposed model, in this section we conduct a quali-
tative analysis. Specifically, we study how the OT-
based model is able to find the perfect alignment
between the words of the input sentence and the
generated sentence. Note that in case of a success-
ful style conversion, there should be a small Wasser-
stein distance between the two sentences, hence,
the semantically related words will be aligned with
each other. Table 8 shows two informal sentences
along with their converted formal counterparts gen-
erated by OT4. To study the role of Optimal Trans-
port, we report the alignments with the highest
probability which are obtained by solving the OT
problem for the given two sentences. This table
shows that there is a high semantic similarity be-
tween the aligned words. More importantly, the
aligned words have the same syntactic connections
with the other words in their sentence. For instance,
in the first example, the word “dismal" and its child
in the dependency tree, i.e., “skills", are aligned
with the word “poor" and its child in the depen-
dency tree, i.e., “abilities". This example shows
that the OT alignment considers both semantic and
syntactic relations between aligned words. How-
ever, OT is not restricted to semantic or syntactic
structures and it can relax the alignments whenever
it is needed. For instance, in the second example,
we observe that the word “time" and “hangs" are
aligned with each other while serving different syn-

Original Input
It actually turned out to be pretty decent
as far as B-list horror/suspense films go

RACoLN
It is a terrible movie for a category of
this genre.

OT4 (Ours)
It seems to be an unsatisfactory movie
for the genre of horror.

Table 10: Generated text by the proposed model and the
prior SOTA model for an IMDB sample text.

tactic roles in the sentence. It shows that when the
semantic relation is more important, OT can break
the syntactic constraints to find a perfect alignment
and the lowest Wasserstein distance. This example
shows that the prior work for reconstructing the
syntactic roles regardless of their semantic impor-
tance will be inferior to our proposed OT-based
approach.

Finally, to qualitatively study the improvement
obtained by the proposed model on the unsuper-
vised setting, we present the generated text for a
sample text from the IMDB dataset. Specifically,
we compare our model output with the prior SOTA
model, i.e., RACoLN. Table 10 shows the samples.
It is clear from this table that the proposed model
can retain more content from the input text. In
particular, while RACoNL omits the genre of the
movie, OT4 successfully keeps this information in
the generated text. We hypothesis that the simi-
lar distance of the word “horror" to the opinion
words in the input and the generated text, i.e., “de-
cent" and “unsatisfactory", are helping to keep this
information in OT4 output.

5 Conclusion

We propose a new model for encouraging content
preservation in text style transfer. We demonstrate
that both syntax and semantics of the input sen-
tence and the generated sentence should be taken
into account for content preservation. More im-
portantly, we empirically show that the interaction
between syntax and semantics of the input and tar-
get sentences is necessary for TST. We conducted
extensive experiments on benchmark datasets in
supervised and unsupervised settings, achieving
state-of-the-art performance on multiple datasets.
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