
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 2026 - 2040

July 10-15, 2022 ©2022 Association for Computational Linguistics

CS1QA: A Dataset for Assisting Code-based Question Answering in an
Introductory Programming Course

Changyoon Lee, Yeon Seonwoo, Alice Oh
School of Computing, KAIST

changyoon.lee@kaist.ac.kr, yeon.seonwoo@kaist.ac.kr
alice.oh@kaist.edu

Abstract

We introduce CS1QA, a dataset for code-based
question answering in the programming ed-
ucation domain. CS1QA consists of 9,237
question-answer pairs gathered from chat logs
in an introductory programming class using
Python, and 17,698 unannotated chat data
with code1. Each question is accompanied
with the student’s code, and the portion of
the code relevant to answering the question.
We carefully design the annotation process to
construct CS1QA, and analyze the collected
dataset in detail. The tasks for CS1QA are to
predict the question type, the relevant code snip-
pet given the question and the code and retriev-
ing an answer from the annotated corpus. Re-
sults for the experiments on several baseline
models are reported and thoroughly analyzed.
The tasks for CS1QA challenge models to un-
derstand both the code and natural language.
This unique dataset can be used as a benchmark
for source code comprehension and question
answering in the educational setting.

1 Introduction

Question answering (QA) studies systems that
understand questions and the relevant context to
provide answers. Question forms include single
document QA (Rajpurkar et al., 2016), multi-hop
QA (Yang et al., 2018), conversational QA (Reddy
et al., 2019), and open domain QA (Kwiatkowski
et al., 2019). Questions about specific domains
are asked in NewsQA (Trischler et al., 2016) and
TechQA (Castelli et al., 2020), and images are pro-
vided with the question in visual QA (Antol et al.,
2015). Another interesting field of QA asks ques-
tions about source code (Liu and Wan, 2021).

A useful application of QA is in the educational
domain. Asking questions and getting the answer is
an essential and efficient means of learning. In this
paper, we focus on QA for programming education,

1The code and the data used in this paper can be found at
https://github.com/cyoon47/CS1QA.

Figure 1: An example of our data tuple. Each data tuple
consists of {question, answer, question type, code, rele-
vant code lines}. We annotate the type of each question
and the code lines (orange) relevant to the question.

where both the input modes and the domain pose
interesting challenges. Answering these questions
requires reading and understanding both source
code and natural language questions. In addition,
students’ questions are often complex, demanding
thorough understanding of the context such as the
intention and the educational goal to answer them.

Recently, models that understand programming
languages (PL) have been studied, and show
promising results in diverse code comprehension
tasks (Alon et al., 2018; Feng et al., 2020; Guo
et al., 2021). However, these models have limi-
tations to support question answering. They are
not trained on datasets containing questions about
the code and are not designed for QA tasks. Also,
many assume fully functional code as input, while
students’ code contains diverse syntax and logical
errors and is often incomplete.

To address this issue, we introduce CS1QA, a
new dataset with tasks for code-based question an-
swering in programming education. Questions and
answers about programming are collected from the

2026

https://github.com/cyoon47/CS1QA


naturally occurring chat messages between students
and TAs. The question type and the code snippet
relevant to answering the question are also col-
lected. The final CS1QA dataset consists of ques-
tion, question type, answer, and code annotated
with relevant lines. The data is collected mostly in
Korean and then machine-translated into English
and quality-checked for easy application on models
pretrained in English. Figure 1 shows an example
of our data. We also include two-semesters’ worth
of TA-student chat log data consisting of 17,698
chat sessions and the corresponding code.

We design three tasks for the CS1QA dataset.
Type classification task asks the model to predict
the question type. Code line selection task asks the
model to select lines of code that are relevant to
answering the given question. Answer retrieval task
finds a similar question already answered, and uses
its answer as the answer to the given question. The
outputs for these tasks can help the students debug
their code and the TAs spend less time and effort
when answering the students’ questions.

Finally, we implement and test baseline mod-
els, RoBERTa (Liu et al., 2019), CodeBERT (Feng
et al., 2020) and XLM-RoBERTa (Conneau et al.,
2020), on the type classification and code line selec-
tion tasks. The finetuned models achieve accuracies
up to 76.65% for the type classification task. The
relatively low F1 scores of 57.57% for the line se-
lection task suggest that the task is challenging for
current language models. We use DPR (Karpukhin
et al., 2020) to retrieve the most similar question
and its answer. We compare the retrieved answer
with the gold label answer, and achieve a BLEU-1
score of 13.07, which shows incompetent perfor-
mance of answer retrieval on CS1QA dataset. We
show with a qualitative evaluation the model be-
havior with different inputs for the first two tasks.
Our contributions are as follows:

• We present CS1QA, a dataset containing
9,237 question-answer-code triples from a pro-
gramming course, annotated with question
types and relevant code lines. The dataset’s
contribution includes student-TA chat logs in
a live classroom.

• We introduce three tasks, question type clas-
sification, code line selection and answer re-
trieval, that require models to comprehend the
text and provide useful output for TAs and
students when answering questions.

• We present the results of baseline models on
the tasks. Models find the tasks in CS1QA
challenging, and have much room for improve-
ment in performance.

2 Related Work

Code-based Datasets Recently, research deal-
ing with large amounts of source code data has
gained attention. Often, the source code data is
collected ad hoc for the purpose of the research
(Allamanis et al., 2018; Brockschmidt et al., 2018;
Clement et al., 2020). Several datasets have been
released to aid research in source code comprehen-
sion, and avoid repeated crawling and processing
of source code data. These datasets serve as bench-
marks for different tasks that test the ability to un-
derstand code. Such datasets include: ETH Py150
corpus (Raychev et al., 2016), CodeNN (Iyer et al.,
2016), CodeSearchNet (Husain et al., 2020) and
CodeQA (Liu and Wan, 2021). We compare these
datasets with CS1QA in Table 1.

In an educational setting, students’ code presents
different chracteristics from code in these datasets:
1) students’ code is often incomplete, 2) there
are many errors in the code, 3) students’ code
is generally longer than code used in existing
datasets, and 4) questions and answers from stu-
dents and TAs provide important additional in-
formation. In CS1QA, we present a dataset more
suited for the programming education context.

Source Code Comprehension In the domain of
machine learning and software engineering, under-
standing and representing source code using neu-
ral networks has become an important approach.
Different approaches make use of different charac-
teristics present in programming languages. One
such characteristic is the rich syntactic informa-
tion found in the source code’s abstract syntax tree
(AST). Code2seq (Alon et al., 2018) passes paths
in the AST through an encoder-decoder network
to represent code. The graph structure of AST has
been exploited in other research for source code
representation on downstream tasks such as vari-
able misuse detection, code generation, natural lan-
guage code search and program repair (Allamanis
et al., 2018; Brockschmidt et al., 2018; Guo et al.,
2021; Yasunaga and Liang, 2020). Source code text
itself is used in models such as CodeBERT (Feng
et al., 2020), CuBERT (Kanade et al., 2020) and
DeepFix (Gupta et al., 2017) for use in tasks such

2027



Dataset Programming Language Data Format Dataset Size Data Source

ETH Py150 Python Parsed AST 7.4M files GitHub
CodeNN C#, SQL Title, question, answer ∼187,000 pairs StackOverflow

CodeSearchNet Go, Java, JavaScript, PHP, Python, Ruby Comment, code ∼2M pairs GitHub
CodeQA Java, Python Question, answer, code ∼190,000 pairs GitHub

CS1QA Python Chat log, question, answer, type, code 9,237 pairs Real-world classroom

Table 1: Comparison between different code-based datasets and CS1QA.

as natural language code search, finding function-
docstring mismatch and program repair.

The tasks that these methods are trained on tar-
get expert software engineers and programmers
who can gain significant benefit with support by
the model. On the other hand, students learning
programming have different objectives and require
fitting support by the models. Rather than getting
an answer quickly, students seek to Students ask
lots of questions while learning, and thus question
answering for code is needed. CS1QA focuses on
code-based question answering and can be used as
training data and a benchmark for neural models
in an education setting. The CS1QA data can also
be used for other tasks than QA, such as program
repair and code search.

3 CS1QA Dataset

3.1 Data Source

The data for CS1QA is collected from an introduc-
tory programming course conducted online. Stu-
dents complete lab sessions consisting of several
programming tasks and students and TAs ask ques-
tions to each other using a synchronous chat fea-
ture. We make use of the chat logs as the source
for the natural question and the corresponding an-
swer. These chat logs are either in Korean or in
English. The student’s code history is also stored
for each programming task for every keystroke the
student makes. This allows us to extract the code
status at the exact time the question is asked, which
provides valuable context for the question. We take
this code as the context for the given question. The
thorough code history and the student-TA chat logs
are a unique and important contribution of CS1QA.
CS1QA also contributes with data from multiple
students working on the same set of problems.

3.2 Question Type Categorization

Answering different types of questions requires un-
derstanding the different intentions and information
- answering questions about errors requires identi-

fying the erroneous code and answering questions
about algorithms requires understanding the overall
program flow. As the different question types affect
the answering approach and location of code to
look at, knowing them in advance can be beneficial
in the QA and code selection tasks.

Allamanis and Sutton (2013) have categorized
questions asking for help in coding on Stack Over-
flow into five types. We adapt these types to stu-
dents’ questions. In addition, we define the “Task”
type that asks about the requirements of the task.
TAs’ question types are derived from the official
instructions by the course instructors given in the
beginning of the semester. TAs were instructed to
ask questions that gauge students’ understanding
of their implementation, for example by asking
the meaning of the code and reasoning behind the
implementation. TAs’ probing questions are cate-
gorized into five types: Comparison, Reasoning,
Explanation, Meaning, and Guiding. Examples for
the question types can be found in Table 2. We
present intentions of the question types in Table 3.

3.3 Collecting Question-Answer Pairs with
Question Types

We collected a total of 5,565 chat logs over the
course of one semester from 474 students and 47
TAs. After removing the logs where the TA did not
participate in the chat, 4,883 chat logs remained.

We employed crowdworkers with self-reported
skill in Python of three or higher on a 5-point Lik-
ert Scale to collect the questions. Each worker first
selected messages in the chat log corresponding to
the question and the answer, then selected the ques-
tion type. Workers were provided with descriptions
of the question types with examples before work-
ing on the task. Workers were asked to divide the
message into individual questions when there were
multiple questions or answers in the message. They
were instructed to only choose programming re-
lated questions, for which the answer is obvious in
the chat from the question alone. This ensures that
the questions and answers are independent from the

2028



Question Type Allamanis’ Type Question Answer

Code
Understanding How/why something works Why is the print cards function at the bottom of the

check function? Can I not have it?
This is because if two cards match through a check,
you have to show them two cards.

Logical Error Do not work Now, the file is created, but when I go inside and
look at the value, it seems to be a little different
from the one requested in the problem.

You seem to have forgotten the line break in the
middle I think you can add \n

Error Do not work I don’t know where the task 2 error came from.... When creating image There is a negative number
in the image size Please do something like absolute
value

Function/Syntax
Usage Way of using And I forgot how to make a blank image Blank images can be created with new_img= cre-

ate_picture(width,height)!
Algorithm How to implement So, what if there is any other way to count the num-

ber including the number not included in the ran-
domly created list?

Parameter: a list which is returned from draw-
ing_integers Count integers function is supposed
to take that as input

Task - Isn’t it a task in which the number of iteration steps
changes according to the input value?

Yes, but the value of x must also change according
to the input value!

Comparison - How was the method of reading and writing differ-
ent in task1?

There was a difference between read mode and write
mode, open(file name, r) and open (file name, w)

Reasoning - I’ve read the task1 code. What is the intention of
using continue on line 55?

This is to go back to the beginning without execut-
ing the next print function.

Explanation - How do you create new_img when ’horizontal’ is
input as Direction in Task2?

I did it like I did with vertical, but since the y value
is changing, when I change the y value and run the
loop, I did x first among x and y.

Meaning - Can you explain the role of the global keyword in
Task 1?

If you use a variable specified only within a function,
it cannot be used in other functions, so I used it for
global variable processing!

Guiding - Is there a simpler way to change average_integers
using a function already defined in the python list??

In average_integers, it would be more convenient to
use the len function when counting the total number
of elements.

Table 2: Examples of translated and untranslated question and answer texts for each question type in CS1QA. First
column shows our type classification, and second column shows the classification by Allamanis and Sutton (2013).
The first six rows in the top part are student question types, the last five rows in the bottom part are TA’s probing
question types.

chat history. Every chat log was annotated by two
workers to ensure the quality of annotation. A total
of 20,403 question-answer pairs were collected.

The question and answer texts are machine-
translated using Google’s Neural Machine Trans-
lation model (Wu et al., 2016) from Korean to En-
glish to form the dataset in two languages. The
translation allows for easy integration of CS1QA
data to models pretrained in English, which make
up a huge portion of NLP models.

3.4 Selecting Code Lines
Providing relevant code snippets allows the an-
swerer to identify the problem more quickly and
easily. We annotate the lines of code that provide
information necessary to answer the question for
use in the code line selection task.

We collected code for all questions asked by stu-
dents. For the TA probing questions, we collected
code for all Reasoning and Meaning types, and
472 randomly selected Explanation questions, for
a total of 4677 questions. This keeps a balance in
the number of questions for each type. Comparison
questions were left out as they require comparison
of code across different tasks, making the anno-
tation and the tasks too complicated. We exclude
Guiding questions as answering them requires more

than just understanding code; the answer is often
new algorithms not based on the current code.

We employed crowdworkers who have worked
as TAs for the programming course to select the
code that the questions refer to. We provided the
workers with the collected questions, answers, and
the student’s code for each task at the time the
question was asked. The workers selected the code
file for the question and the relevant code lines to
answer the question. When reading the code was
not necessary to answer the question, the workers
were asked to choose Not Applicable (NA) for the
code selection. For every question, two workers
made code annotations.

A total of 9,359 code selections were made by
the workers. Some of the selections with empty
code or incorrectly extracted code were removed
from the dataset. The remaining 9,237 questions
annotated with type, lab and task numbers, code,
code lines and answer make up the final CS1QA
dataset. Every code selection made by the work-
ers is used as gold labels even if the two workers
choose different lines. Thus, every question can
have up to two correct code selections in different
parts of code. An example of the data is found in
Appendix A.

2029



Q Type Intention # Q # Code NA (%) Span (%)

Code Understanding Understanding the functionality of the code 105 209 33.9 11.0

Logical Error Investigating the cause of
the unexpected outputs of the code 541 1060 16.7 21.6

Error Resolving syntax errors and exceptions 488 959 10.1 13.0
Function/
Syntax Usage

Learning correct usage of
a function or syntax 411 811 55.4 11.8

Algorithm Learning the underlying algorithm for the task 603 1194 50.0 19.3

S

Task Confirming the goal and requirement
of the task 677 1322 82.3 15.3

Reasoning Understanding the reasoning behind
student’s implementation 402 799 5.6 21.8

Explanation Checking the validity of
student’s explanation of their code 472 940 2.6 42.8T

Meaning Checking the meaning of
a function or a variable in the code 978 1943 2.1 24.2

Table 3: Types of questions asked by students (S) and TAs (T) in a programming class. Questions are categorized by
different intention and information required to answer them. The number of questions and code snippets collected
from the annotators, percentage of Not applicable code selections and selected code lines are reported.

3.5 Quality Control and Validation

As the workers worked independently, there were
some differences in the annotated data even when
they correspond to the same question. There were
some questions that were selected by only one
worker as well. These questions are further re-
viewed to ensure the quality of the collected
dataset.

Out of 20,403 collected questions, 3,556 ques-
tions were selected by only one worker, and 4,787
pairs of questions had some differences between
the workers’ selections. The remaining questions
had perfect agreement between the workers. The
authors reviewed questions selected by only one
worker, and those without perfect agreement. Un-
necessary words present in only one text were re-
moved and crucial words missing in the question
were added to the text while preserving the mean-
ing to make the two texts equal. The conflicts in
question types were resolved with the authors’ ad-
ditional vote that made a clear majority in the type
selection.

We calculate the inter-rater reliability score with
Cohen’s Kappa (Cohen, 1960) for the question
type selection. The Kappa value is calculated be-
tween every pair of workers who selected the same
question-answer pairs. The mean of the Kappa val-
ues is 0.657, which suggests substantial agreement
for type classification between the annotators.

Out of 9,237 questions with code line selection,
2,197 pairs had perfect agreement (100% overlap),
while 1,225 pairs had 0% overlap. We compute the
mean line F1 as the measure for agreement of spans,

considering one annotator’s span selection as the
ground truth and the other annotator’s selection as
prediction. The resulting F1 score is 0.6482. The
disagreements are largely due to selecting different
but relevant code and selecting different amounts
of surrounding context in the code.

4 Task Definition

We design three tasks for the CS1QA dataset that
identify important information that leads to the
answer.

The type classification task is to predict the ques-
tion’s type. We use nine types of questions that
we categorized as the candidates for classification,
each question belonging to a single type. We use
the accuracy and macro F1 score as the measure
of performance. The code line selection task is to
select lines of code that give relevant information
to answer the question. The code is a strong sup-
porting context to answering the given question,
and this task tests the model’s ability to retrieve
this critical information.

For the code line selection task, we use the Exact
Match (EM) and line F1 score as the measure of
performance, same as the metrics used for support-
ing fact selection task in HotpotQA (Yang et al.,
2018). The EM score measures the proportion of
selections that exactly match the ground truth. The
line F1 score measures the average overlap between
the selected lines and the ground truth selections.
The score is computed by treating the selections as
bags of lines and calculating their F1 with the an-
notated lines. These two tasks take as inputs the lab

2030



and task numbers of the question, the questioner
(student or TA), question and the code texts.

The answer retrieval task retrieves a similar ques-
tion given an unseen question, and uses the re-
trieved question’s answer as the answer to the un-
seen question. BLEU score is calculated between
the retrieved answer and the gold label answer.

Answer generation task given the question and
the code context is possible with CS1QA dataset.
However, meaningfully generating the answer de-
mands a model that understands long and erroneous
code, and the natural language question. This poses
a significant challenge, and we leave the generation
task as future work.

5 Dataset Analysis

644 out of 9,237 questions are originally asked in
English, while the rest are asked in Korean. The
CS1QA dataset is split into train, development and
test sets in the ratio of 0.6, 0.2 and 0.2 respectively,
keeping the ratio of question types in each set the
same to ensure equal distribution in all three sets.

5.1 Text Lengths

Table 4 shows the statistics of question and answer
token lengths, for data translated to English (EN)
and the original (ORIG) data, and the number of
lines of code.

Data Min Max Mean Median

EN 1 119 15.7 13Question ORIG 1 79 10.9 9

EN 1 272 27.2 22Answer ORIG 1 166 17.6 14

Code - 1 655 76.0 52

Table 4: Statistics of question, answer lengths in tokens
and code length in number of lines in CS1QA.

The lengths of questions and answers lie mostly
between 10 to 30 tokens. The distributions show
long tails for both questions and answers, but an-
swers are more evenly distributed. The distribution
of token lengths for questions and answers can be
found in Appendix B.

The number of lines of code shows a peak be-
tween 12.5 and 50, as shown in Figure 2. Code snip-
pets have a wider distribution in length. This can
be the result of varying difficulties of tasks, with
more difficult tasks requiring longer code snippets
to solve. The number of lines of code in CS1QA

50 100 150 200 250
Number of lines of code

0

5

10

15

20

Fr
eq

ue
nc

y 
(%

)

Proportion of 
selected code lines

0.0 < x 0.2
0.2 < x 0.4
0.4 < x 0.6
0.6 < x 0.8
0.8 < x 1.0

Figure 2: The total number of lines in code and the
proportion of selected code lines in code (color coded).
The last bin contains all code longer than 250 lines.

is larger than those in other code-based datasets,
which can present interesting challenges.

5.2 Question Type Distribution
We present the distribution of question types in Ta-
ble 3 in number of questions collected and number
of code snippets collected.

The CS1QA dataset contains similar number of
questions for each student type of questions, ex-
cept for Code Understanding type, which contains
significantly fewer questions. One plausible reason
for this is that most of the tasks require writing
the program from scratch, thus students ask fewer
questions about the skeleton code.

There are more Meaning questions than other
types of TAs’ probing questions. This can be be-
cause TAs often ask the students about the mean-
ings of functions and variables to make sure that
the students understand the code they wrote for
each task.

5.3 Code Line Distribution
The average number of selected code lines is 13.0.
A majority of the questions can be answered by
looking at fewer than 20 lines of code. The number
of selected code lines can be a gauge of the diffi-
culty of answering the questions; a longer selection
means that one has to read and understand a larger
amount of code. The detailed distribution of code
lines and code lengths can be found in Appendix B.
Figure 2 shows the percentage of selected code
lines. The graph shows that majority of the selected
code lines are less than 20% of the total number of
lines of code.

The proportion of Not applicable code selections
differ by question types, as shown in Table 3. As
TAs ask questions about the implementation details,
answering most of them requires looking at the
code. On the other hand, students often ask about

2031



the approach to the problems and implementation.
These questions have less basis on the code and
often refer to shorter spans where an error occurs
or a function is used. Thus finding the relevant
code takes more effort, although answering them
requires looking at less code on average.

5.4 Machine Translation Quality

We have employed 16 workers who are fluent in
both Korean and English to check the quality of
the machine translation of sampled questions and
answers. Each worker checked the quality of 8
question-answer pairs per question type. Each pair
was checked by at least two workers. Workers com-
pared the original and the translated texts, and gave
scores to four statements on a 5-point Likert scale,
with 1 being disagree/bad and 5 being agree/good.
The statements were: 1) I can understand the trans-
lation, 2) The translation has similar meaning to the
original text, 3) The translation contains grammat-
ical and lexical errors, and 4) Overall translation
quality. The mean scores between workers for each
statement were 4.37, 4.11, 2.06 and 3.92 respec-
tively. The results suggest that the translation was
overall in good quality, with high understandability
and similar meaning to the original text. The trans-
lation contains grammatical or lexical errors, but
not to a significant extent.

6 Experimental Setup

We select three baseline models, CodeBERT,
RoBERTa and XLM-RoBERTa, and test their per-
formance on the type classification and code line
selection tasks. CodeBERT model is selected to test
the effectiveness of pretraining on NL-PL paired
data. Other models based on syntactic structures
of code cannot take students’ erroneous code as
input. RoBERTa and XLM-RoBERTa models are
selected to test the performance of NL-based mod-
els, for translated and untranslated data respectively.
Questions translated to English are provided to the
two models pretrained in English, CodeBERT and
RoBERTa. XLM-RoBERTa model receives the un-
translated questions as input to compare the perfor-
mance when using the untranslated data. We used
the default hyperparameters used in CodeBERT for
training. The tokenizers encode newline token to
maintain the code’s structure in the tokenized text.
For the code line task, we also test the performance
of the naive baseline, which selects the middle 60
lines of code, which showed the best performance

among different numbers of lines, as the output.
Since the token lengths for code in CS1QA are

greater than the limit of the transformer-based mod-
els, we preprocess the input to fit within the token
length limit. We split the code into smaller seg-
ments so that the combined length of the split seg-
ment and the question is within the limit. For type
classification, the type with the most number of
votes is selected as the final selection. For code line
selection, the model chooses a start and end token
position from each segment. The lines between the
start and end tokens are given as the output for the
segment, and the union of segment outputs is given
as the final selection for the question. N/A is given
as the output when 1) the end position is before the
start position, 2) either the start or the end position
is 0 ([CLS] token), or 3) either the start or the end
position is out of range.

For the answer retrieval task, we train the DPR
by taking the questions as the passages. We use the
question with the highest BM25 score in the corpus
set as the gold label for the questions in the training
set. For testing, the most similar question in the
corpus is retrieved using the trained DPR with the
new question as the query. The retrieved answer is
used as the answer to the new question verbatim.

7 Results

We report the mean score from three runs with
different seeds for all experiments. The test score
is reported on the best-performing epoch out of 10
on the development set.

7.1 Type Classification

The results of our baseline models on type classi-
fication are shown in Table 5. The models learn
to predict the question types with relatively high
accuracy, but there is still a room for improvement.

Model Dev Test Q only
Acc F1 Acc F1 Acc F1

RoBERTa 77.57 72.31 76.65 71.10 75.74 69.40
CodeBERT 76.20 69.09 75.65 70.13 74.75 67.07

XLM-R 72.60 67.88 72.62 66.19 76.18 68.68

Table 5: Type classification task scores for the three
baseline models. Q only column shows the test scores
with only the question text as the input.

The class-wise classification F1 scores in Table 6
shows a significant drop for ‘understanding’ type
when code is not provided. The low number of

2032



Understanding Logical Error Usage Algorithm Task Reasoning Explanation Meaning

RoBERTa
w/ code 29.26 70.53 77.14 53.23 60.22 66.95 96.41 91.59 95.26
w/o code 21.99 70.76 76.39 50.87 67.96 68.64 95.32 88.35 94.38

CodeBERT
w/ code 28.80 68.35 74.46 54.29 61.77 66.26 95.94 87.87 93.80
w/o code 13.63 67.91 74.77 44.07 59.93 65.49 95.96 87.91 93.98

XLM-R
w/ code 15.12 68.13 72.26 46.87 59.22 61.88 93.83 86.32 92.12
w/o code 9.70 71.40 75.20 53.04 61.42 67.05 97.44 88.77 94.12

Table 6: Class-wise F1 scores on test set for type classification for baseline models

Understanding Logical Error Usage Algorithm Task Reasoning Explanation Meaning

RoBERTa
w/ code 30.89 72.64 77.09 53.18 59.95 68.06 96.96 90.62 95.00
w/o code 33.16 72.67 77.45 53.37 59.46 66.40 96.15 90.05 94.44

CodeBERT
w/ code 28.93 68.82 76.87 54.53 60.02 64.35 95.94 87.42 94.81
w/o code 30.33 65.67 72.85 54.65 60.97 67.60 96.19 88.48 94.96

XLM-R
w/ code 25.02 73.44 76.80 52.77 62.13 67.21 95.90 87.92 94.21
w/o code 28.77 69.68 77.39 54.83 59.23 67.29 96.70 88.17 93.91

Table 7: Class-wise F1 scores on test set for type classification for baseline models trained with augmented data.

questions for the understanding type might be the
reason, thus we augment the dataset with generated
understanding type questions. The common ques-
tion templates for understanding type questions are
extracted, and keywords in the question are ran-
domly replaced with keywords in a randomly cho-
sen code in the dataset. The generated question and
the chosen code are given as the input to the models.
The question templates are provided in Appendix C.
The class-wise classification F1 scores are reported
in Table 7. The difference in scores depending on
the presence of code is reduced, and overall per-
formance increases. The results suggest that pres-
ence of code does not significantly affect the type
classification performance. This is expected, as the
question type annotation was conducted without
providing the code.

7.2 Code Line Selection

The results of our baseline models on line selection
are shown in Table 8. We also conduct another
set of experiments with questions with N/A line
selection removed (Valid Line column). The drop
in scores on the code with valid line selections
shows that large portion of the scores come from
the model correctly identifying N/A selections.

The naive baseline performance is much worse
than the models’ performance, which suggests that
line selection task is not trivially solved. The rela-
tively low scores on the tasks for CS1QA suggest
that they are challenging for models built for nat-

Model Dev Test Valid Line
EM F1 EM F1 EM F1

Naive 1.08 23.97 0.65 21.84 0.90 30.42

RoBERTa 46.62 62.61 41.80 57.57 22.02 43.50
CodeBERT 42.00 57.74 38.95 54.06 16.42 37.12

XLM-R 42.57 58.63 39.14 55.40 21.85 43.90

Table 8: The naive and three baseline models’ scores on
line selection task.

ural language understanding. CodeBERT’s perfor-
mance is not superior for the span selection task
even though the model was pretrained on code and
natural language together. This suggests that Code-
BERT’s pretraining objective is not appropriate for
the CS1QA tasks.

7.3 Answer Retrieval

The mean BLEU-1 score that compare the answers
for the questions in the test set is 13.07. This shows
that a simple retrieval based answering system is
not sufficient for answering students’ questions.
The code provides important context to generate
accurate answers, and the answer likely differs even
for the same question, depending on the code.

The mean BLEU score for TA’s probing ques-
tions is 18.48, while that for student-asked ques-
tions is 8.91. This suggests that the TAs tend to ask
similar questions that have similar answers, while
students’ questions vary more with largely different
answers.

2033



7.4 Qualitative Analysis

In order to better understand the baseline models’
behavior, we analyze the output type classifications
and line selections for 180 questions, 20 per ques-
tion type.

For type classification, most of the ‘why’ ques-
tions from students are classified as ‘logical er-
ror’ or ‘error’ types. These questions are often
phrased as “I don’t know why. . . ” or “why some-
thing doesn’t work”. This leads to relatively high
scores for the two error types. 84% of the ‘why’
questions were classified into the two types. 15
questions were correctly classified.

Keyword matching for line selection task ac-
counts for approximately 54% of line selections.
When a function name or variable name is men-
tioned in the question, the selected code lines often
include the mentioned name. However, this tac-
tic sometimes fools the model into selecting more
lines than necessary. This was more frequently ob-
served for Meaning and Function/Syntax Usage
tasks, where 94% and 75% of the line selections
included the keyword.

8 Conclusion

In this paper, we present CS1QA, a dataset for code-
based question answering in introductory program-
ming course. CS1QA’s crowdsourced data from a
programming course provide rich information that
code understanding models need to consider to cor-
rectly answer the given questions. We introduce
three tasks for CS1QA, whose output can help stu-
dents debug and reduce workloads for the teaching
staff. Results from the baseline models indicate
that tasks for CS1QA are challenging for current
language understanding models. CS1QA promotes
further research to better represent and understand
source code for code-based question answering.

As CS1QA data deliver the full context of the
questions, the answer texts in CS1QA can be used
as training and testing data for an answer gener-
ation task in the future. Although the generation
task is difficult and demands new code represen-
tation and processing methods, models that show
good performance on it will allow a new level of au-
tomation in code-based QA. We hope that CS1QA
will bring research interest in the domain of code
understanding for question answering.

9 Ethical Consideration

All students and TAs, whose chat logs and code are
used to build the dataset, have given permission to
use these data for research purposes prior to this
research. No disadvantage was given to any student
or TAs for not providing their data for this research.
The IRB at our university approved the annotation
experiments conducted in this research.

The annotators were compensated appropriately
for their participation in the experiments. Com-
pensation was determined to meet the minimum
wage requirements. For the experiment collect-
ing question-answer pairs with question types, the
workers were paid $9 for the first 50 chat logs
marked and $13.50 for every 50 chat logs marked
afterwards. It took less than an hour to complete
annotations for 50 chat logs on average. For the
experiment collecting the code lines, the workers
were paid $0.45 for every code annotation made.
Workers were able to complete approximately 30
selections in an hour on average. For the experi-
ment testing the effectiveness of providing relevant
code lines on answering the questions, the partici-
pants were paid $13.50 to answer 48 questions by
the students. It took approximately an hour for each
participant to finish answering all 48 questions.

The authors made their best efforts to anonymize
the dataset and remove all personal information
such as student ID and phone number from the
dataset.

References

Miltiadis Allamanis, Marc Brockschmidt, and Mah-
moud Khademi. 2018. Learning to represent pro-
grams with graphs. In International Conference on
Learning Representations.

Miltiadis Allamanis and Charles Sutton. 2013. Why,
when, and what: analyzing stack overflow questions
by topic, type, and code. In 2013 10th Working
Conference on Mining Software Repositories (MSR).
IEEE.

Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav.
2018. code2seq: Generating sequences from struc-
tured representations of code. In International Con-
ference on Learning Representations.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-
garet Mitchell, Dhruv Batra, C Lawrence Zitnick, and
Devi Parikh. 2015. Vqa: Visual question answering.
In Proceedings of the IEEE international conference
on computer vision.

2034



Marc Brockschmidt, Miltiadis Allamanis, Alexander L
Gaunt, and Oleksandr Polozov. 2018. Generative
code modeling with graphs. In International Confer-
ence on Learning Representations.

Vittorio Castelli, Rishav Chakravarti, Saswati Dana, An-
thony Ferritto, Radu Florian, Martin Franz, Dinesh
Garg, Dinesh Khandelwal, Scott McCarley, Michael
McCawley, Mohamed Nasr, Lin Pan, Cezar Pendus,
John Pitrelli, Saurabh Pujar, Salim Roukos, Andrzej
Sakrajda, Avi Sil, Rosario Uceda-Sosa, Todd Ward,
and Rong Zhang. 2020. The TechQA dataset. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, Online. Asso-
ciation for Computational Linguistics.

Colin Clement, Dawn Drain, Jonathan Timcheck,
Alexey Svyatkovskiy, and Neel Sundaresan. 2020.
Pymt5: Multi-mode translation of natural language
and python code with transformers. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP).

Jacob Cohen. 1960. A coefficient of agreement for
nominal scales. Educational and psychological mea-
surement, 20(1).

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Édouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, et al. 2020. Codebert: A
pre-trained model for programming and natural lan-
guages. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing:
Findings.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng,
Duyu Tang, Shujie LIU, Long Zhou, Nan Duan,
Alexey Svyatkovskiy, Shengyu Fu, Michele Tufano,
Shao Kun Deng, Colin Clement, Dawn Drain, Neel
Sundaresan, Jian Yin, Daxin Jiang, and Ming Zhou.
2021. Graphcode{bert}: Pre-training code represen-
tations with data flow. In International Conference
on Learning Representations.

Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish
Shevade. 2017. Deepfix: Fixing common c language
errors by deep learning. In Thirty-First AAAI Confer-
ence on Artificial Intelligence.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis
Allamanis, and Marc Brockschmidt. 2020. Code-
searchnet challenge: Evaluating the state of semantic
code search.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and
Luke Zettlemoyer. 2016. Summarizing source code
using a neural attention model. In Proceedings of the

54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers).

Aditya Kanade, Petros Maniatis, Gogul Balakrishnan,
and Kensen Shi. 2020. Learning and evaluating con-
textual embedding of source code. In Proceedings of
the 37th International Conference on Machine Learn-
ing, volume 119 of Proceedings of Machine Learning
Research. PMLR.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), Online. Association
for Computational Linguistics.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, et al. 2019. Natural questions: A benchmark
for question answering research. Transactions of the
Association for Computational Linguistics, 7.

Chenxiao Liu and Xiaojun Wan. 2021. Codeqa: A ques-
tion answering dataset for source code comprehen-
sion. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2021.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, Austin, Texas. Association
for Computational Linguistics.

Veselin Raychev, Pavol Bielik, and Martin Vechev. 2016.
Probabilistic model for code with decision trees.
ACM SIGPLAN Notices.

Siva Reddy, Danqi Chen, and Christopher D. Manning.
2019. CoQA: A Conversational Question Answer-
ing Challenge. Transactions of the Association for
Computational Linguistics, 7.

Adam Trischler, Tong Wang, Xingdi Yuan, Justin Harris,
Alessandro Sordoni, Philip Bachman, and Kaheer
Suleman. 2016. Newsqa: A machine comprehension
dataset. arXiv preprint arXiv:1611.09830.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le,
Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff
Klingner, Apurva Shah, Melvin Johnson, Xiaobing
Liu, Łukasz Kaiser, Stephan Gouws, Yoshikiyo Kato,
Taku Kudo, Hideto Kazawa, Keith Stevens, George
Kurian, Nishant Patil, Wei Wang, Cliff Young, Ja-
son Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals,
Greg Corrado, Macduff Hughes, and Jeffrey Dean.

2035



2016. Google’s neural machine translation system:
Bridging the gap between human and machine trans-
lation. CoRR.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D Manning. 2018. Hotpotqa: A dataset for
diverse, explainable multi-hop question answering.
In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing.

Michihiro Yasunaga and Percy Liang. 2020. Graph-
based, self-supervised program repair from diagnos-
tic feedback. In International Conference on Ma-
chine Learning, pages 10799–10808. PMLR.

2036



Appendix

A Example data in CS1QA

We present an example of a question in the CS1QA dataset in Figure 3.

Figure 3: An example of the data in CS1QA. Note that taskNo, startLine and endLine variables count from 0. The
code is prettified for readability.

2037



B Distribution of Question, Answer and
Code Lengths

Figures 4 and 5 show the distribution of question
lengths for questions translated to English and orig-
inal questions respectively.

0 10 20 30 40 50 60 70 80
Token lengths

0

500

1000

1500

2000

2500

Fr
eq

ue
nc

y

Length of questions

Figure 4: The distribution of question lengths translated
to English in number of white space separated tokens.
The last bin contains all questions longer than 80 tokens.

0 10 20 30 40 50 60 70 80
Token lengths

0

500

1000

1500

2000

2500

3000

3500

Fr
eq

ue
nc

y

Length of questions

Figure 5: The distribution of original question lengths
in number of white space separated tokens. The last bin
contains all questions longer than 80 tokens.

Figures 6 and 7 show the distribution of answer
lengths for answers translated to English and origi-
nal answers respectively.

0 20 40 60 80 100
Token lengths

0

200

400

600

800

1000

1200

1400

Fr
eq

ue
nc

y

Length of answers

Figure 6: The distribution of answer lengths in number
of white space separated tokens. The last bin contains
all answers longer than 100 tokens.

0 20 40 60 80 100
Token lengths

0

250

500

750

1000

1250

1500

1750

2000

Fr
eq

ue
nc

y

Length of answers

Figure 7: The distribution of original answer lengths in
number of white space separated tokens. The last bin
contains all answers longer than 100 tokens.

Figure 8 shows the distribution of number of
lines in the selected code spans. Figure 9 shows the
distribution of proportions of the code lines that is
included in the selected code span.

0 10 20 30 40 50 60 70 80
Number of lines in selected code span

0

500

1000

1500

2000

Fr
eq

ue
nc

y

Size of code spans

Figure 8: The distribution of number of lines selected
in code spans. The last bin contains all selections with
more than 80 lines of code.

0.0 0.2 0.4 0.6 0.8 1.0
Percentage of selected lines

0

200

400

600

800

1000

1200

1400

1600

Fr
eq

ue
nc

y

Length of codes

Figure 9: The distribution of the percentage of selected
code lines in code.

2038



C Question Templates for Understanding Type Questions

The templates used for augmenting CS1QA dataset with understanding type questions are presented in
Table 9. The keywords variable, function, and snippet are extracted from the randomly chosen code in the
dataset. Variable is a random token, function is a random function name, and snippet is a random line
of code. In the last template, one of the words list, dictionary, variable, function is chosen randomly to
complete the template.

Template format
What does [variable, function] mean?
What does [variable, function] refer to?
What’s the meaning of [variable, function]
What does [function] do?
Can you explain what [function] does?
Can you describe what [function] is doing?
How do I use [function]?
How to use [function]?
I don’t understand [snippet].
What is [function]?
Should I use [function, snippet]?
Why do you do [snippet]?
Is [variable, function] a {list, dictionary, variable, function}?

Table 9: Templates used for the question augmentation for Understanding type questions. The keywords in square
brackets are chosen from a randomly chosen code in the dataset. The words in curly brackets are randomly chosen.

D Experiment Details

We ran the experiments for RoBERTa-base, CodeBERT-base and XLM-RoBERTa model on 4 Quadro
RTX 8000 GPUs. We ran 10 epochs for fine-tuning the models. All of these models were released with
MIT License, and our use is consistent with the license.

For all models, we used the batch size of 32 for training, evaluating and testing.
The average runtime for each epoch for RoBERTa-base and CodeBERT-base models is approximately

1 hour for training, and 1 minute for evaluating and testing. For XLM-RoBERTa-base model, the average
runtime for each epoch is approximately 3.3 minutes hour for training and 0.5 minute for evaluating and
testing.

The number of parameters for RoBERTa-base, CodeBERT-base and XLM-RoBERTa models are 125M,
125M and 270M respectively.

2039



E Annotation Interface

We present the annotation interface used to collect the question, answer, and question type in Figure 10.
Annotators can choose the messages corresponding to the question or answer text, and modify the texts in
the interface. Annotators also select a question type for every question.

Figure 10: The annotation interface for question, answer and type selection. On the left, the chat log is presented.
On the right, annotators can modify the question and answer texts and select the question type.

We present the annotation interface used to collect the code and the code span in Figure 11. Annotators
choose the code for the question given, and select code spans with a code line as a unit.

Figure 11: The annotation interface for code line selection. On the left, the question and answer texts are presented.
On the right, annotators select the correct task for the given question and answer, and select the code lines that
provide information to answer the question.

The full-text instructions for QA annotation can be found in this link. The instructions for code line
annotaion can be found in this link.

2040

https://docs.google.com/document/d/1Q6HJc2K9j-4btK3PdRVjLgzJ11twe8quqzSX6YJmnWU/edit?usp=sharing
https://docs.google.com/document/d/1s-X7RHjZMQd2iqP5RPSzjrvBEy267NfPqYTHPUlxI60/edit?usp=sharing

