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Abstract

Parody is a figurative device used for mimick-
ing entities for comedic or critical purposes.
Parody is intentionally humorous and often
involves sarcasm. This paper explores jointly
modelling these figurative tropes with the goal
of improving performance of political parody
detection in tweets. To this end, we present a
multi-encoder model that combines three paral-
lel encoders to enrich parody-specific represen-
tations with humor and sarcasm information.
Experiments on a publicly available data set
of political parody tweets demonstrate that our
approach outperforms previous state-of-the-art
methods.1

1 Introduction

Parody is a figurative device which imitates enti-
ties such as politicians and celebrities by copying
their particular style or a situation where the en-
tity was involved (Rose, 1993). It is an intrinsic
part of social media as a relatively new comedic
form (Vis, 2013). A very popular type of parody
is political parody, which is used to express politi-
cal opposition and civic engagement (Davis et al.,
2018).

One of the hallmarks of parody expression is the
deployment of other figurative devices, such as hu-
mor and sarcasm, as emphasized on studies of par-
ody in linguistics (Haiman et al., 1998; Highfield,
2016). For example, in Table 1 the text expresses
sarcasm about Myspace2 being a ‘winning tech-
nology’, while mocking the fact that three more
popular social media sites were unavailable. This
example also highlights the similarities between
parody and real tweets, which may pose issues to
misinformation classification systems (Mu and Ale-
tras, 2020).

1Code is available here https://github.
com/iamoscar1/Multi_Encoder_Model_for_
Political_Parody_Prediction

2https://myspace.com

Twitter
Handle @Queen_UK

Parody
tweet

Boris Johnson on the phone. Very
smug that #myspace hasn’t gone
down. Says he’s always backed
winning technologies #whatsappdown

#instagramdown #FacebookIsDown

Table 1: Example of a parody tweet3 by the Twitter han-
dle @Queen_UK. Humor and sarcasm are expressed
simultaneously.

These figurative devices have so far been stud-
ied in isolation to parody. Previous work on mod-
eling humor in computational linguistics has fo-
cused on identifying jokes, i.e., short comedic
passages that end with a hilarious line (Hetzron,
1991), based on linguistic features (Taylor and Ma-
zlack, 2004; Purandare and Litman, 2006; Kid-
don and Brun, 2011) and deep learning techniques
(Chen and Soo, 2018; Weller and Seppi, 2019; An-
namoradnejad and Zoghi, 2020). Similarly, compu-
tational approaches for modeling sarcasm (i.e., a
form of verbal irony used to mock or convey con-
tent) in texts have been explored (Davidov et al.,
2010; González-Ibáñez et al., 2011; Liebrecht et al.,
2013; Rajadesingan et al., 2015; Ghosh et al., 2020,
2021), including multi-modal utterances, i.e. texts,
images, and videos (Cai et al., 2019; Castro et al.,
2019; Oprea and Magdy, 2020). Recently, parody
has been studied with natural language processing
(NLP) methods by Maronikolakis et al. (2020) who
introduced a data set of political parody accounts.
Their method for automatic recognition of posts
shared by political parody accounts on Twitter is
solely based on vanilla transformer models.

In this paper, we hypothesize that humor and
sarcasm information could guide parody specific
text encoders towards detecting nuances of figu-

3https://twitter.com/Queen_UK/status/
1445103605355323393?t=FGMNsMVFF_
G2tABYxFmkFw&s=07
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Figure 1: The structure of our multi-encoder model for
combining humor and sarcasm information for political
parody prediction.

rative language. For this purpose, we propose a
multi-encoder model (§2) consisting of three paral-
lel encoders that are subsequently fused for parody
classification. The first encoder learns parody spe-
cific information subsequently enhanced using the
representations learned by a humor and sarcasm
encoder respectively.

Our contributions are: (1) new state-of-the-art
results on political parody detection in Twitter, con-
sistently improving predictive performance over
previous work by Maronikolakis et al. (2020); and
(2) insights on the limitations of neural models
in capturing various linguistic characteristics of
parody from extensive qualitative and quantitative
analyses.

2 Multi-Encoder Model for Political
Parody Prediction

Maronikolakis et al. (2020) define political parody
prediction as a binary classification task where a
social media post T , consisting of a sequence of to-
kens T = {t1, ..., tn}, is classified as real or parody.
Real posts have been authored by actual politicians
(e.g., realDonaldTrump) while parody posts
come from their corresponding parody accounts
(e.g., realDonaldTrFan).

Parody tends to express complex tangled seman-
tics of both humor and sarcasm simultaneously
(Haiman et al., 1998; Highfield, 2016). To better
exploit this characteristic of parody, we propose a
multi-encoder model that consists of three paral-
lel encoders, a feature-fusion layer and a parody
classification layer depicted in Fig.1.4.

4Early experiments with multi-task learning did not result
in improved performance. The results of these experiments
can be found in Appendix A.

Figure 2: Humor Encoder.

Figure 3: Sarcasm Encoder.

2.1 Text Encoders

Parody As a task-specific parody encoder, we
use the vanilla pretrained BERTweet (Nguyen et al.,
2020), a BERT (Devlin et al., 2019) based model
pre-trained on a corpus of English Tweets and fine-
tuned on the parody data set (§3.1).

Humor To capture humor specific characteris-
tics in social media text, we use the data set in-
troduced by Annamoradnejad and Zoghi (2020)
which contains humorous and non-humorous short
texts collected from Reddit and Huffington Post.
First, we adapt BERTweet using domain-adaptive
pre-training (Sun et al., 2020a; Gururangan et al.,
2020) on 10,000 randomly selected humor-only
short texts with masked language modeling. Sub-
sequently, we use a continual learning strategy (Li
and Hoiem, 2018; Sun et al., 2020b) to gradu-
ally learn humor-specific properties by further fine-
tuning BERTweet on a humor classification task
(i.e., predicting whether a text is humorous or not)
by using 40,000 randomly selected humorous and
non-humorous short texts from the humor corpus
described above (see Figure 2).

Sarcasm Similar to humor, we extract sarcasm-
related semantic information from a post T by us-
ing sarcasm annotated data sets from Oprea and
Magdy (2020) and Rajadesingan et al. (2015). The
first data set consists of 777 and 3,707 sarcasm and
non-sarcasm posts from Twitter and the second data
set consists of 9,104 sarcasm and more than 90,000
non-sarcasm posts from Twitter. We first perform
domain-adaptive pre-training of BERTweet on all
sarcastic posts with masked language modeling.
Then, we fine-tune the model on a sarcasm clas-
sification task, similar to the humor encoder (see
Figure 3). For the fine-tuning step, we use the 9,881
sarcastic tweets and 10,000 randomly sampled non-
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sarcasm tweets from the two data sets (i.e., 3,707
from the first and 6,293 from the second).

We compute parody f t, humor fh, and sarcasm
fs representations by extracting the ‘classification’
[CLS] token from each encoder respectively, where
f ∈ R768.

2.2 Combining Encoders

We explore three approaches to combine f t, fh,
and fs representations.

Concatenation First, the three text representa-
tions are simply concatenated to form a combined
representation f ∈ R768×3.

Self-Attention We also use a 4-head self-
attention5 mechanism (Vaswani et al., 2017) on
f t, fh, fs. The goal is to find correlations between
representations and learn the contribution of each
encoder in the final representation.

Max-Pooling Finally, we perform a max-pooling
operation on each dimension of f t, fh, f s to obtain
a representation f ∈ R768. The aim is to use the
most dominant features learned by each encoder.

2.3 Classification

Finally, we pass the combined representation f
to a classification layer with a sigmoid activation
function for predicting whether a post is a parody or
not. Three encoders are fine-tuned simultaneously
on the parody data set (§3.1).6

3 Experimental Setup

3.1 Data

We use the data set introduced by Maronikolakis
et al. (2020) which contains 131,666 tweets writ-
ten in English, with 65,956 tweets from political
parody accounts and 65,710 tweets posted by real
politician accounts. The data set is publicly avail-
able7 and allows us to compare our results to state-
of-the-art parody detection methods.

We use the three data splits provided: (i) Person
Split, each split (train, dev, test) contains tweets
from different real – parody account pairs; (ii) Gen-
der Split, two different splits based on the gender

5Early experimentation with larger attention heads did not
improve results in the dev set.

6Early experimentation with humor and sarcasm encoders
frozen during the fine-tuning process did not show any perfor-
mance improvement.

7https://archive.org/details/parody_
data_acl20

of the politicians (i.e., female accounts in train/dev
and male in test, and male accounts in train/dev
and female in test); Location Split, data is split ac-
cording to the location of the politicians in three
groups (US, UK, Rest of the World or RoW). Each
group is assigned to the test set and the other two
groups to the train and dev sets.

3.2 Baselines

We compare our multi-encoder models with trans-
formers for parody detection (Maronikolakis et al.,
2020): BERT (Devlin et al., 2019) and RoBERTa
(Liu et al., 2019). Also, we compare our models to
BERTweet (Nguyen et al., 2020).

3.3 Implementation details

Humor Encoder For adaptive pre-training, the
batch-size is set to 16 and the number of training
epochs is set to 3 with a learning rate of 2e−5. For
humor classification, we use batch size of 128 and
the number of epochs is set to 2 with a learning
rate of 3e−5.

Sarcasm Encoder We pretrain using a batch-size
of 16 over 5 epochs with a learning rate of 2e−5.
For fine-tuning on a sarcasm classification task,
we use the 9, 881 sarcasm tweets and 10, 000 ran-
domly sampled non-sarcasm tweets from the two
data sets (i.e., 3, 707 from the first and 6, 293 from
the second) using the same hyperparameters to the
humor-specific encoder.

Multi-encoder For the complete multi-encoder
model, we use a batch size of 128 and the learning
rate is set to 2e−5. The entire model is fine-tuned
for 2 epochs.

3.4 Evaluation

We evaluate the performance of all models using
F1 score as Maronikolakis et al. (2020). Results are
obtained over 3 runs using different random seeds
reporting average and standard deviation.

4 Results

4.1 Predictive Performance

Table 2 shows the results for parody detection on
the Person Split. We observe that BERTweet has the
best performance (F1: 90.72) among transformer-
based models (BERT, RoBERTa, BERTweet), out-
performing previous state-of-the-art by Maroniko-
lakis et al. (2020). This is due to the fact that
BERTweet has been specifically pre-trained on
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Person
Model F1

Single-Encoder
BERT∗∗ 87.65± 0.18
RoBERTa∗∗ 89.66± 0.33
BERTweet 90.72± 0.31

Multi-encoder (Ours)
Concatenation 88.99± 0.17
Self-Attention 91.19 ± 0.31
Max-Pooling 91.05± 0.30

Table 2: F1-scores for parody detection on the Person
Split. ∗∗ Results from Maronikolakis et al. (2020). Best
results are in bold.

Gender
Model M→F F→M

Single-Encoder
BERT∗∗ 85.85± 0.28 84.40± 0.35
RoBERTa∗∗ 87.11± 0.31 84.87± 0.38
BERTweet 88.01± 0.29 85.57± 0.27

Multi-encoder (Ours)
Concatenation 86.84± 0.15 84.21± 0.22
Self-Attention 89.97 ± 0.34 88.56 ± 0.39
Max-Pooling 88.39± 0.27 86.89± 0.56

Table 3: F1-scores on the Gender Split. ∗∗ Results from
Maronikolakis et al. (2020). Best results are in bold.

Twitter text. Similar behavior is observed on the
Gender and Location splits (see Table 3 and 4 re-
spectively).

Our proposed multi-encoder achieves the best
performance when using Self-Attention to com-
bine the three parallel encoders (F1: 91.19; 89.97,
88.56; 88.37, 87.91, 87.16; for Person, Gender,
and Location splits respectively). Moreover, it out-
performs the best single-encoder model BERTweet
in the majority of cases which corroborates that
parody detection benefits from combining general
contextual representations with humor and sarcasm
specific information, as humor and sarcasm are im-
portant characteristics of parody (Haiman et al.,
1998; Highfield, 2016). On the other hand, sim-
ply concatenating the three parallel encoders de-
grades the performance across different splits (Per-
son: 88.99; Gender: 86.84, 84.21 Location: 85.41,
84.74, 83.62). This happens because the concatena-
tion operation treats the three encoders as equally
important. While humor and sarcasm are related
to parody, they may not necessarily have the same
relevance as indicators of parody.

Our best performing model (Self-Attention) out-
performs the vanilla BERTweet by 3 F1 points
when trained on female accounts and by almost
2 F1 points when trained on male accounts. We

Location

Model UK+US
→ RoW

RoW+US
→ UK

RoW+UK
→ US

Single-Encoder
BERT∗∗ 86.69± 0.45 83.78± 0.19 83.12± 0.60
RoBERTa∗∗ 87.70± 0.45 85.10± 0.27 85.99± 0.61
BERTweet 88.21± 0.26 87.85± 0.24 87.18 ± 0.41
Multi-encoder (Ours)
Concatenation 85.41± 0.26 84.74± 0.20 83.62± 0.35
Self-Attention 88.37 ± 0.28 87.91 ± 0.19 87.16± 0.37
Max-Pooling 88.25± 0.39 86.49± 0.33 86.54± 0.41

Table 4: F1-scores on the Location Split. ∗∗ Results from
Maronikolakis et al. (2020). Best results are in bold.

speculate that the additional linguistic information
from the two encoders (i.e., sarcasm and humor)
is more beneficial in low data settings. The num-
ber of female politicians is considerably smaller
than males in the data set (see Maronikolakis et al.
(2020) for more details).

4.2 Ablation Study

We also examine the effect of combining parody-
specific representations with humor and sarcasm
information by running an ablation study. We com-
pare performance of four models: using parody rep-
resentations only (P), and combining parody rep-
resentations with humor (P+H), or sarcasm (P+S)
information, as well as with both (P+S+H). The re-
sults of this analysis are depicted in Tables 5, 6 and
7. We observe that both sarcasm and humor con-
tribute to the performance gain, but using both is
more beneficial. Modelling sarcasm leads to more
gains than humor and this could be attributed to the
characteristics of the parody corpus, namely that it
focuses primarily on the political domain, which
have a high sarcastic component (Anderson and
Huntington, 2017).

5 Error Analysis

Finally, we perform an error analysis to examine
the behavior and limitations of our best-performing
model (multi-encoder with Self-Attention).

The next two examples correspond to real tweets
that were misclassified as parody:

(1) Congratulations, <mention>! <url>.

(2) It’s a shame that Boris isn’t here answering
questions from the public this evening.

We speculate that the model misclassified these
tweets as parody because they contain terms that
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Person
Model F1

Single-Encoder
BERTweet (P) 90.72± 0.31

Multi-encoder (Ours)
Concatenation (P+S+H) 88.99± 0.17

Concatenation (P+S) 90.51± 0.26

Concatenation (P+H) 89.98± 0.23

Self-Attention (P+S+H) 91.19 ± 0.31
Self-Attention (P+S) 91.14± 0.40

Self-Attention (P+H) 90.98± 0.36

Max-Pooling (P+S+H) 91.05± 0.30

Max-Pooling (P+S) 91.06± 0.39

Max-Pooling (P+H) 90.78± 0.42

Table 5: F1-scores for parody detection on the Person
Split with various settings: parody (P) representations
only, and combining parody representations with humor
(P+H), or sarcasm (P+S) information, as well as with
both (P+S+H). Best results are in bold.

Gender
Model M→F F→M

Single-Encoder
BERTweet (P) 88.01± 0.29 85.57± 0.27

Multi-encoder (Ours)
Concatenation (P+S+H) 86.84± 0.15 84.21± 0.22

Concatenation (P+S) 86.93± 0.40 83.70± 0.41

Concatenation (P+H) 86.58± 0.31 83.34± 0.38

Self-Attention (P+S+H) 89.97 ± 0.34 88.56 ± 0.39
Self-Attention (P+S) 89.49± 0.37 88.23± 0.44

Self-Attention (P+H) 88.71± 0.42 87.62± 0.50

Max-Pooling (P+S+H) 88.39± 0.27 86.89± 0.56

Max-Pooling (P+S) 88.36± 0.46 86.55± 0.49

Max-Pooling (P+H) 88.14± 0.52 86.53± 0.53

Table 6: F1-scores for parody detection on the Gender
Split with various settings: parody (P) representations
only, and combining parody representations with humor
(P+H), or sarcasm (P+S) information, as well as with
both (P+S+H). Best results are in bold.

are related to sarcastic short texts such as user men-
tions, punctuation marks (!), and negation (isn’t)
(González-Ibáñez et al., 2011; Highfield, 2016).

The following two examples correspond to par-
ody tweets that were misclassified as real:

(3) Hey America, it’s time to use your safe word.

(4) I fully support the Digital Singles Market.

Example (3) is a call-to-action message, while
Example (4) is a statement expressing support for a
particular subject. These statements are written in a
style that is similar to political slogans or campaign
speeches (Fowler et al., 2021) that the model fails

Location

Model UK+US
→ RoW

RoW+US
→ UK

RoW+UK
→ US

Single-Encoder
BERTweet (P) 88.21± 0.26 87.85± 0.24 87.18 ± 0.41
Multi-encoder (Ours)
Concatenation (P+S+H) 85.41± 0.26 84.74± 0.20 83.62± 0.35

Concatenation (P+S) 85.92± 0.24 85.67± 0.18 84.09± 0.39

Concatenation (P+H) 85.39± 0.29 85.33± 0.26 83.75± 0.44

Self-Attention (P+S+H) 88.37 ± 0.28 87.91 ± 0.19 87.16± 0.37

Self-Attention (P+S) 88.24± 0.33 87.88± 0.23 86.47± 0.32

Self-Attention (P+H) 88.13± 0.35 87.05± 0.28 85.36± 0.40

Max-Pooling (P+S+H) 88.25± 0.39 86.49± 0.33 86.54± 0.41

Max-Pooling (P+S) 88.28± 0.42 87.83± 0.39 86.56± 0.36

Max-Pooling (P+H) 88.22± 0.52 86.44± 0.42 85.96± 0.45

Table 7: F1-scores for parody detection on the Location
Split with various settings: parody (P) representations
only, and combining parody representations with humor
(P+H), or sarcasm (P+S) information, as well as with
both (P+S+H). Best results are in bold.

to recognise. As a result, in addition to humor and
sarcasm semantics, the model might be improved
by integrating knowledge from the political domain
such as from political speeches.

6 Conclusion

In this paper, we studied the impact of jointly mod-
elling figurative devices to improve predictive per-
formance of political parody detection in tweets.
Our motivation was based on studies in linguis-
tics which emphasize the humorous and sarcastic
components of parody (Haiman et al., 1998; High-
field, 2016). We presented a method that combines
parallel encoders to capture parody, humor, and sar-
casm specific representations from input sequences,
which outperforms previous state-of-the-art pro-
posed by Maronikolakis et al. (2020).

In the future, we plan to combine information
from other modalities (e.g., images) for improving
parody detection (Sánchez Villegas and Aletras,
2021; Sánchez Villegas et al., 2021).
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A Multitask-Learning

We also tested applying multi-task learning ap-
proaches (Caruana, 1993) to use either sarcasm
prediction (P+S), humor prediction (P+H) or both
(P+S+H) as auxiliary tasks for parody detection.
We utilize BERTweet as the share encoder and inde-
pendent classification layers for parody and humor
or sarcasm. Three sets of weights are applied to
losses from each independent classification layer
and the three layers are stacked. The best results
are chosen and depicted in Table 8, Table 9 and
Table 10.

Person
Model F1

Single-Encoder
BERTweet (P) 90.72 ± 0.31
Multi-Task
P+S+H 87.46± 0.18

P+S 89.41± 0.31

P+H 87.41± 0.38

Table 8: F1-scores for parody detection on the Person
Split using Multi-task Learning models (P: Parody, S:
Sarcasm, H: Humor). Best results are in bold.

Gender
Model M→F F→M

Single-Encoder
BERTweet (P) 88.01± 0.29 85.57± 0.27

Multi-Task
P+S+H 85.28± 0.29 84.10± 0.37
P+S 88.13 ± 0.21 86.07 ± 0.44
P+H 84.53± 0.31 86.07± 0.47

Table 9: F1-scores on the Gender Split using Multi-task
Learning models (P: Parody, S: Sarcasm, H: Humor).
Best results are in bold.

Location

Model UK+US
→ RoW

RoW+US
→ UK

RoW+UK
→ US

Single-Encoder
BERTweet (P) 88.21 ± 0.26 87.85 ± 0.24 87.18 ± 0.41
Multi-Task
P+S+H 86.41± 0.17 86.23± 0.20 85.13± 0.29

P+S 87.74± 0.36 87.26± 0.34 86.67± 0.43

P+H 85.54± 0.38 84.78± 0.47 84.15± 0.56

Table 10: F1-scores on the Location Split using Multi-
task Learning models (P: Parody, S: Sarcasm, H: Hu-
mor). Best results are in bold.
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