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Abstract
It is difficult for non-autoregressive translation
(NAT) models to capture the multi-modal dis-
tribution of target translations due to their con-
ditional independence assumption, which is
known as the “multi-modality problem”, in-
cluding the lexical multi-modality and the syn-
tactic multi-modality. While the first one has
been well studied, the syntactic multi-modality
brings severe challenge to the standard cross
entropy (XE) loss in NAT and is under studied.
In this paper, we conduct a systematic study on
the syntactic multi-modality problem. Specif-
ically, we decompose it into short- and long-
range syntactic multi-modalities and evaluate
several recent NAT algorithms with advanced
loss functions on both carefully designed syn-
thesized datasets and real datasets. We find
that the Connectionist Temporal Classification
(CTC) loss and the Order-Agnostic Cross En-
tropy (OAXE) loss can better handle short- and
long-range syntactic multi-modalities respec-
tively. Furthermore, we take the best of both
and design a new loss function to better han-
dle the complicated syntactic multi-modality
in real-world datasets. To facilitate practical
usage, we provide a guide to use different loss
functions for different kinds of syntactic multi-
modality.

1 Introduction

Traditional Neural Machine Translation (NMT)
models predict each target token conditioned on
previous generated tokens in an autoregressive
way (Vaswani et al., 2017), resulting in high la-
tency in inference. Non-Autoregressive Transla-
tion (NAT) models generate all the target tokens
in parallel (Gu et al., 2018), significantly reduc-
ing inference latency. A disadvantage of NAT is
that it suffers from the multi-modality problem (Gu
et al., 2018) when a source sentence corresponds
to multiple correct translations (Ott et al., 2018).

∗This work was conducted at Microsoft Research Asia.
†Corresponding author.

There are two types of multi-modalities: the lex-
ical one and the syntactic one. The former one has
been adequately studied (Gu et al., 2018; Zhou
et al., 2020; Ding et al., 2021), while the latter
one brings severe challenges to the widely used
cross entropy (XE) loss in NAT. With standard XE
loss, the generated tokens are required to be strictly
aligned with ground truth tokens in the same posi-
tions, which fails to provide positive feedback for
correctly predicted words on different positions as
shown in Fig. 1a. Therefore, advanced loss func-
tions are introduced to provide better feedback for
NAT training: Connectionist Temporal Classifica-
tion (CTC) loss (Libovický and Helcl, 2018) con-
siders all possible monotonic alignments between a
generated sequence and the ground truth; Aligned
Cross-Entropy (AXE) loss (Ghazvininejad et al.,
2020) selects the best monotonic alignment; and
Order-Agnostic cross entropy (OAXE) loss (Du
et al., 2021) calculates the XE loss with the best
alignment based on maximum bipartite matching
algorithm.

Even if with those advanced loss functions,
we find they do not perform consistently across
datasets and languages. In addition, diverse gram-
mar rules in natural language (Comrie, 1989) im-
plies the existence of different kinds of syntactic
multi-modality. Inspired by Odlin (2008); Jing and
Liu (2015); Liu (2007, 2010), we categorize the
syntactic multi-modality into two sub types: the
long-range and short-range ones. The long-range
multi-modality is mainly caused by long-range
word order diversity (e.g., an adverbial of place
may appear at the beginning or the end of a sen-
tence). The short-range multi-modality is mainly
caused by short-range word order diversity (e.g., an
adverb may appear either in front of or behind the
corresponding verb) and optional words (e.g., in
some languages, determiners and prepositions may
be optional (Ott et al., 2018)). Based on the above
categorization of syntactic multi-modality, we fur-
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ther ask two research questions: (1) Which kinds
of syntactic multi-modality do these loss functions
excel at respectively? (2) How to better address
this problem by taking advantage of different loss
functions?

In this paper, we conduct a systematic study to
answer these questions:

• Since the short-range and long-range syntactic
multi-modalities are usually entangled together
in real-world datasets, we first design synthesized
datasets to decouple them to better evaluate ex-
isting NAT algorithms (§3). We find that the
CTC loss (Libovický and Helcl, 2018) can better
handle the short-range syntactic multi-modality
while the OAXE loss (Du et al., 2021) is good at
the long-range one. Though carefully designed,
the synthesized datasets are still different from
the real-world datasets. Accordingly, we fur-
ther conduct analyses on real-world datasets (§4),
which also show consistent findings with that in
synthesized datasets.

• We design a new loss function that takes the best
of both CTC and OAXE, and performs better to
handle the short- and long-range syntactic multi-
modalities simultaneously (§5), as verified by
experiments on benchmark datasets including
WMT14 EN-DE, WMT17 EN-FI, and WMT14
EN-RU. Moreover, we further provide a practical
guide to use different loss functions for different
kinds of syntactic multi-modality (§5).

2 Background

Non-Autoregressive Translation Given the
source sentence x = (x1, x2, ..., xTx), traditional
NMT model generates the target sentence y =
(y1, y2, ..., yTy) from left to right and token by
token: P (y|x) =

∏Ty

t=1 P (yt|y<t, x; θenc, θdec),
where y<t indicates the target tokens generated
before the t-th timestep, Tx and Ty denote the
length of source and target sentence, θenc and θdec
denote the encoder and decoder parameters re-
spectively. This autoregressive way suffers from
high latency during inference. Non-Autoregressive
Translation (NAT) (Gu et al., 2018) is proposed
to reduce the inference time by generating the
whole sequence in parallel, P (y|x) = P (Ty|x) ·∏Ty

t=1 P (yt|x; θenc, θdec), where P (Ty|x) indicates
the length prediction function. While the infer-
ence speed is boosted, the translation accuracy is

A dog ravenously eats  a  pie   in   a pet restaurant

In   a pet   restaurant a dog eats a pie ravenouslyPRED

GT

(a) XE
A dog ravenously eats  a  pie   in   a pet restaurant

In   a pet   restaurant a dog eats a pie ravenouslyPRED

GT

(b) AXE
A dog ravenously eats  a  pie   in   a pet restaurant

In   a pet   restaurant a dog eats a pie ravenouslyPRED

GT

(c) CTC, where solid, dash, and dot dash lines illustrate three
possible alignments respectively.

A dog ravenously eats  a  pie   in   a pet restaurant

In   a pet   restaurant a dog eats a pie ravenouslyPRED

GT

(d) OAXE

Figure 1: The illustration of different loss functions,
where “GT” stands for ground truth, “PRED” stands for
predicted sequence, the green check indicates that credit
is provided to the token.

sacrificed due to that target tokens are generated
conditional independently.

Multi-Modality Problem The multi-modality
problem (Gu et al., 2018; Zhou et al., 2020) in-
dicates that one source sentence may have multiple
correct target translations, which brings challenges
to NAT models as they generate each target to-
ken independently. Specifically, we categorize the
multi-modality problem into two sub-problems, i.e.,
lexical and syntactic multi-modalities. The lexical
multi-modality indicates that a source token can
be translated into different target synonym tokens
(i.e., “thank you” in English can be translated into
both “Danke” or “Vielen Dank” in German), while
the syntactic multi-modality indicates the inconsis-
tency of word-orders (e.g., an adverb may appear
either in front of or behind the corresponding verb)
and the existence of optional words between source
and target languages (e.g., in some languages, de-
terminers and prepositions may be optional) (Ott
et al., 2018). The lexical multi-modality prob-
lem has been adequately studied in recent works.
Sequence-level knowledge distillation (Gu et al.,
2018; Zhou et al., 2020) is shown capable to reduce
the lexical diversity of the dataset and thus alleviate
the problem. Some works also introduce extra loss
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functions such as KL-divergence (Ding et al., 2021)
and bag-of-ngram (Shao et al., 2020) to alleviate
the lexical multi-modality problem.

On the contrary, there still lacks a system-
atic study on the syntactic multi-modality prob-
lem. Generally, it is difficult to solve this prob-
lem because the order and optional words vary
across different languages. For example, the word
order of Russian is quite flexible (Kallestinova,
2007), thus the syntactic multi-modality may exist
more frequently in Russian corpora. In contrast,
the structure of English sentences is mostly sub-
ject–verb–object (SVO) (Givón, 1983), which re-
sults in less variation on word order. In this paper,
we categorize the syntactic multi-modality prob-
lem into short-range and long-range instances, and
provide detailed analyses accordingly.

Loss Functions in NAT Standard cross-
entropy (XE) loss requires the predicted tokens to
be strictly aligned with ground truth tokens, which
fails to deal with the syntactic multi-modality
problem. Different loss functions are proposed
to solve the problem, and here we consider some
most recent works. The CTC loss sums XE losses
of all possible monotonic alignments and has been
widely used in speech recognition (Graves et al.,
2006, 2013), and the effectiveness of the CTC loss
in NAT has been validated (Libovický and Helcl,
2018; Gu and Kong, 2021). AXE (Ghazvininejad
et al., 2020) selects the monotonic alignment
between the predicted sequence and the ground
truth with the minimum XE loss. OAXE (Du et al.,
2021) further relaxes the position constraint and
only considers the best alignment. The illustration
for each loss function is provided in Fig. 1. Though
effective in different datasets, these works ignore
fine-grain features of the multi-modality problem
such as short/long syntactic multi-modalities. In
this work, we analyse the performance of these
loss functions in different syntactic scenarios,
and provide a practical guide to use appropriate
loss functions for different kinds of syntactic
multi-modality.

3 Analyses on Synthesized Datasets

To make fine-grained analyses on the syntactic
multi-modality problem, we first categorize it into
long-range and short-range types, where the long-
range one is mainly caused by long-range word
order diversity, and the short-range one is mainly
caused by short-range word order diversity and op-

Sen

NP VP

DT RB JJ N

The  extremely  large  dog  eats  the  small  pie ravenously

V JJDT N

NP

RB

Figure 2: An illustration of generating a syntax tree for
a source sentence. In the first iteration, “Sen” consists of
(“NP”, “VP”) as the solid lines. In the second iteration,
“NP” consists of (“DT”, “RB”, “JJ”, “N”) and “VP”
consists of (“V”, “NP”, “RB”) as the dash lines. In the
third iteration, “NP” consists of (“DT”, “JJ”, “N”) as
the dot-and-dash lines.

tional words. Then, we would like to evaluate the
accuracy of different losses on different types of
syntactic multi-modality. However, in real-world
corpora, the different types are usually entangled,
making it difficult to control and analyse one as-
pect without changing the other. Thus, we con-
struct synthesized datasets based on phrase struc-
ture rules (Chomsky, 1959) to manually control
the degree of syntactic multi-modality in different
aspects, and evaluate the performance of different
existing techniques.

3.1 Synthesized Datasets
We first employ phrase structure rules (Chomsky,
1959) to synthesize the source sentences, where
the rules are based on the syntax of languages.
Considering that translation can be decomposed
to word reordering and word translation (Banga-
lore and Riccardi, 2001; Sudoh et al., 2011), we
then “translate” the synthesized source sentences to
synthesized target sentences in two steps: 1) word
reordering by changing its syntax tree; 2) and word
translation by substituting the source words into
target words.

Source Sentence Synthesis. We first generate
the syntax tree of the source sentence. Specifically,
we use the notations of the constituents in syntax
tree according to the Penn Treebank syntactic and
part of speech (POS) tag sets1 (Marcus et al., 1993),
and generate the syntax tree of a source sentence
as following (Rosenbaum, 1967):

• Sen → NP VP,
1“Sen”:sentence; “NP”: noun phrase; “VP”: verb phrase;

“DT”: determiner; “JJ”: adjective; “RB”: adverb; “N”: noun;
“V”: verb.
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Sen

NP VP

DT RB JJ N V JJDT N

NP

Sen
1 − 𝑃𝑙𝑜

Source Target

NP

RB JJ N

VP

V JJDT N

NP

RB RB

1 − 𝑃1
𝑠𝑜 − 𝑃2

𝑠𝑜

15001 12600 100301 27000 5002 15002 12060 3500 13000               28000 21003 30004 26010 16601 29012 25303 17728 

Figure 3: An illustration of “translation”, where the constituent order of “Sen” is changed to “VP NP” with
probability 1− P lo, the constituent order of “VP” is changed to “RB V NP” with probability 1− P so

1 − P so
2 , and

the circled “DT” is removed with probability P op. Meanwhile, the numbers in the source sentence are replaced
with the ones in the target sentence based on mappings.

• NP → (DT) (RB)∗ (JJ)∗ N,

• VP → V (NP) (RB)∗,

where the constituent on the left side of the arrow
consists of the constituents on the right side in se-
quence, “(·)” means that the constituent is optional,
and “(·)*” denotes that the constituent is not only
optional but can also be repetitive. For each sen-
tence, we start with a single constituent Sen and
iteratively decompose “Sen”, “NP”, and “VP” ac-
cording to the rules until all the constituents are
decomposed to “DT”, “JJ”, “RB”, “V”, and “N”.
An illustration of generating a syntax tree is de-
picted in Fig. 2. To synthesize the source sentence
according to the syntax tree, we use numbers as
the words in the synthesized source sentences and
use different ranges of numbers to represent words
with different POS, where the details of the ranges
are provided in Appendix A. Then, a number is
randomly sampled in the corresponding range for
each word in the syntax tree.

Word Reordering. To introduce syntactic multi-
modality, we consider multiple possible rules for
“Sen”, “NP”, and “VP” in the target sentences.
Dependency distance is defined as the linear dis-
tance between two words with syntactical relation-
ship (Liu et al., 2017), which can be used as a
guide to select typical rules to introduce long- and
short-range word order diversity. Specifically, we
consider three options: 1) The word order of “Sen”
is with probability P lo to be the same with the
source sentence (i.e., NP VP) and with probabil-
ity
(
1− P lo

)
to swap the “NP” and “VP” (i.e.,

VP NP), which has long dependency distance and
represents for the long-range word order; 2) For
the word order in “VP”, it is considered to be the
same with the source sentence with probability P so

1 ,

Probability Default Effect

P lo 1 long-range word order

P so
1 1 short-range word order

P so
2 0 short-range word order

P op 0 optional words

Table 1: Default values of the probabilities to adjust the
syntactic multi-modality.

place “RB” between “V” and “NP” with probability
P so
2 , and place “RB” before “V” with probability

(1− P so
1 − P so

2 ), which has short dependency dis-
tance and represents for the short-range word order;
3) To introduce the syntactic multi-modality of op-
tional words, we change the existence of “DT” in
each “NP” of the source sentence with probabil-
ity P op (i.e, remove “DT” if it exists in the source
sentence and add “DT” if it does not exist in the
source sentence).

Word Translation. Same as in the source sen-
tences, we use different range of numbers to repre-
sent words with different POS in target sentences.
To do the word translation, we first randomly build
mappings between the source and target words
with different POS respectively. Since we focus on
studying the syntactic multi-modality, we consider
each source word is mapped to a single target word
to eliminate the lexical multi-modality. Then, we
replace the words in the source sentence based on
the mappings to generate the target sentence. An
illustration of “translation” is shown in Fig. 3.

3.2 Experiments and Analyses
We conduct experiments to compare existing loss
functions on different kinds of syntactic multi-
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modality on the synthesized datasets, by changing
the probabilities (i.e., P op, P so

1 , P so
2 , and P lo) as

listed in Table 1. In the following, we first provide
the experimental settings, then show the results
on the long-range and short-range syntactic multi-
modalities, and finally conclude the key findings.

Experimental Settings. We consider two sep-
arate vocabularies for the source and target sen-
tences, each containing 15K words. 0.3M, 5K,
and 5K synthesized sentence pairs are generated as
training, validation, and test sets respectively. We
use the same hyper-parameters in the transformer-
base model (Vaswani et al., 2017), which is com-
monly used in the NAT models (Gu et al., 2018; Du
et al., 2021; Saharia et al., 2020). All settings are
trained on 4 Nvidia V100 GPUs with 16k tokens in
a batch. For the model with OAXE loss, we train
the first 50K updates with XE loss and the next 50K
updates with OAXE loss (Du et al., 2021). For the
other losses, we train the model for 100K updates.
The length of the decoder input is set as twice the
length of the source sequence for CTC loss (Sa-
haria et al., 2020), while the golden target length
is used for OAXE, AXE, and XE. To evaluate the
accuracy of the predicted sequence, we first cal-
culate the longest common sub-sequence between
the predicted and the golden sequences, and then
the accuracy is defined as the ratio between the
length of the longest common sub-sequence and
the golden sequence. The accuracy on the test set
is calculated as the average accuracy among all the
predicted sentences.

Long-Range Syntactic Multi-modality. To con-
sider the effect of long-range diversity, we change
the corresponding probability P lo, while keeping
the others unchanged to eliminate the short-range
syntactic multi-modality. It is observed in Fig. 4a
that CTC loss always performs better than AXE,
and OAXE is the best with different degree of long-
range multi-modality.

Short-Range Syntactic Multi-modality. Simi-
larly, we only change the probabilities P so

1 and
P so
2 to adjust the degree of short-range word or-

der diversity. The results are shown in Fig. 4b,
where OAXE loss performs better than AXE loss,
and CTC loss outperforms all the other losses with
varied degree of short-range word order diversity.
In order to study the effect of optional words, we
vary the probability P op to change the existence of
“DT”. As shown in Fig. 4c, OAXE loss is slightly
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(c) Effect of optional words.

Figure 4: The accuracy of different loss functions on
synthesized datasets.

better than AXE loss, and CTC loss performs the
best, indicating that CTC loss is superior in the syn-
tactic multi-modality problem caused by optional
words.

Analyses and Discussions. Based on the results
in Fig. 4, we can get the following observations:

• OAXE loss is superior in handling the long-range
syntactic multi-modality (i.e., long-range word
order). OAXE loss is order-agnostic, which
is able to provide fully positive feedback to
the word in different positions compared to the
ground truth sequence. Accordingly, OAXE is
suitable for datasets with long-range word order
diversity. Though it can deal with high diversity
of word order, it may also incur wrong predic-
tions on word order, which may be why OAXE
is not suitable when the diversity only exists in
short-range.

• CTC loss is the best choice for dealing with short-
range syntactic multi-modality (i.e., short-range
word order and optional words). CTC loss is
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generally considered to handle monotonic match-
ing, which seems not effective in handling the
multi-modality caused by word order (Saharia
et al., 2020). However, it is observed in Fig. 4a
and 4b that CTC loss outperforms AXE and XE
when dealing with long-range word order diver-
sity and performs the best on the multi-modality
caused by short-range word order. Since CTC
considers all the monotonic alignments, it can
partially provide positive feedback to the words
with different order through multiple monotonic
alignments. As shown in Fig. 1c, all the words
can be considered in the three alignments.

Considering that AXE loss does not show superior-
ity on any type of the syntactic multi-modality, we
will only focus on CTC and OAXE losses in the
following.

4 Analyses on Real Datasets

Though carefully designed, the synthesized sen-
tence pairs consisting of numbers are still different
from the real sentence pairs. Therefore, in this sec-
tion, we validate the findings in Section 3 based on
real datasets. Considering that different types of
syntactic multi-modality are highly coupled in the
real corpus, we conduct experiments on carefully
selected sub-datasets from a corpus, to approxi-
mately decompose the syntactic multi-modality. In
the following, we first show the details of the ap-
proach to decompose the syntactic multi-modality,
and then provide the analytical results based on the
real datasets.

Analytical Approach. In order to decompose
the long-range and short-range types of syntactic
multi-modality, we select sentences that only con-
tain subject and verb phrases from a corpus, and
divide them into two sub-datasets according to the
relative order of subject and verb (i.e., subject first
that denoted as “SV”, or verb first that denoted as
“VS”). Meanwhile, we only consider the declara-
tive sentence pairs in the corpus to eliminate the
word order difference caused by mood. Follow-
ing this method, the long-range multi-modality
is eliminated in each sub-dataset (i.e., “SV” and
“VS”), which can be used to evaluate the effect of
short-range multi-modality. To analyse the long-
range multi-modality, we can adjust the degree of
long-range word order diversity by sampling data
from the two sub-datasets with varied ratios, while
roughly keeping the degree of short-range word or-

Table 2: BLEU scores of models with CTC and OAXE
losses, where the models are evaluated on the WMT’19
EN-RU test set. The percentage of sentences with “RB
V” among the sentences with both “RB V” and “V RB”
orders are shown in column “RB V”. The percentage of
sentences with “JJ N” among the sentences with both
“JJ N” and “N JJ” orders are shown in column “JJ N”.

“SV”:“VS” CTC OAXE “RB V” “JJ N”

100% : 0% 17.7 16.5 68% 84%
75% : 25% 17.2 16.9 63% 82%
50% : 50% 16.8 17.3 70% 79%

der diversity unchanged. Specifically, considering
that Russian is flexible on word order (Kallesti-
nova, 2007) and it is feasible to select sentences on
both the “SV” and “VS” order, we use an English-
Russian (EN-RU) corpus from Yandex2 that con-
tains 1M EN-RU sentence pairs, from which we
get 0.2M and 0.1M sentence pairs data with “SV”
order and “VS” order respectively. To select the
sentence pairs with different word orders, we use
spaCy(Honnibal et al., 2020) to parse the depen-
dency of Russian sentences. For the models with
CTC loss, we train for 300K updates. For the mod-
els with OAXE loss, we train with XE loss for
100K updates and then train with OAXE loss for
200K updates.

Analytical Results. We keep the total number
of sentence pairs in the training set as 0.2M (i.e.,
the number of Russian sentences in the “VS” sub-
dataset), and change the ratio of sentence pairs sam-
pled from two sub-datasets (i.e., “SV” and “VS”).
The results are shown in Table 2, where the training
parameters are the same as that used in Section 3.
It is observed that CTC loss outperforms OAXE
loss when all data samples are from the “SV” sub-
dataset, which indicates that CTC loss performs
better on short-range syntactic multi-modality prob-
lem. When the ratio of the data sizes on the two sub-
datasets is changed to 75% : 25%, the gap between
the performance of CTC and OAXE losses dimin-
ished, while CTC loss still performs slightly better
than OAXE loss. When the ratio changed to 50% :
50%, model with OAXE loss becomes better than
that with CTC loss. In summary, OAXE loss is bet-
ter at handling long-range syntactic multi-modality
while CTC loss is better on short-range syntactic
multi-modality, which validates the key observa-
tions we obtained on the synthesized datasets in
Section 3.

2https://translate.yandex.ru/corpus
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In order to demonstrate whether we have decom-
posed the long- and short-range syntactic multi-
modalities, we verify whether the degree of short-
range multi-modality remains almost the same
when varying the degree of long-range multi-
modality. We evaluate the short-range syntactic
diversity based on the relative order between: 1)
adverb and verb (“RB V”); 2) adjective and noun
(“JJ N”). As shown in Table 2, when the ratio of
the data sizes on the two sub-datasets varied from
100% : 0% to 50% : 50% (i.e., the ratio between
“SV” and “VS” changes), the relative order on “RB
V” and “RB V” (which can represent the degree
of short-range word order diversity) does not vary
much. These analyses verify the rationality of our
analytical approach in this section.

5 Better Solving the Syntactic
Multi-Modality Problem

As shown in previous sections, the CTC and the
OAXE loss functions are good at dealing with short-
and long-range syntactic multi-modalities respec-
tively. While in real-world corpora, different types
of multi-modalities usually occur together and vary
in different languages. Accordingly, it may be bet-
ter to use different loss functions for different lan-
guages. In this section, we first introduce a new
loss function named Combined CTC and OAXE
(CoCO), which takes advantage of both CTC and
OAXE to better handle the long-range and short-
range syntactic multi-modalities simultaneously,
and then provide a guideline on how to choose the
appropriate loss function for different scenarios.

5.1 CoCO Loss

To obtain a general loss that performs well at both
types of multi-modalities, it is natural to combine
the two loss functions studied above. However, the
output length is mismatched between the models
using CTC and OAXE, where the output length
is required to be longer than the target sequence
with CTC loss, and is required to be the same as
the target sequence with OAXE loss. To solve this
length mismatch problem, we consider using the
same output length as in CTC loss, and modify
the OAXE loss to make it suitable on this output
length by allowing consecutive tokens in the output
to be aligned with the same token in the reference
sequence. The details of the modified OAXE loss
are provided in Appendix B. Then, the proposed
CoCO loss is defined as a linear combination of the
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Figure 5: Comparing different losses on different lan-
guage pairs.

CTC and modified OAXE losses as:

LCoCO = λLCTC + (1− λ)LM−OAXE , (1)

where LM−OAXE denotes the modified OAXE
loss and λ is a hyper-parameter that balances the
two losses.

5.2 Choosing Appropriate Loss Function

The degree of different types of multi-modalities
varies among different languages. In order to find
the insight to choose the appropriate loss function
for different languages, we conduct experiments on
several languages including Russian (RU), Finnish
(FI), German (DE), Romanian (RO), and English
(EN). These languages have different requirements
on the positions of subject (S), verb (V), and object
(O), which is one major influence factor on the
large-range syntactic multi-modality. Specifically,
the order in RU and FI is quite flexible, where
all the 6 possible orders of “S”, “V”, and “O” are
valid. In DE, the verb is required to be placed on
the second position, which is called verb-second
word order. Meanwhile, in RO and EN, the order
is restricted to “SVO”.

We evaluate the accuracy of different loss func-
tions (i.e., CTC, OAXE, and CoCO) on WMT’14
EN-RU, WMT’17 EN-FI, WMT’14 EN-DE, and
WMT’16 EN-RO datasets with 1.5M, 2M, 4M,
and 610K sentence pairs, respectively. The λ
in COCO loss is set as 0.1 so that λLCTC and
(1 − λ)LM−OAXE are in the same order of mag-
nitude. Following Du et al. (2021), for the models
with OAXE and CoCO loss, we first train with XE
or CTC loss for 100K updates and then train with
OAXE or CoCO loss for 200K updates, respec-
tively. For CTC loss, we train for 300K updates.
For decoding, we follow Gu and Kong (2021);
Huang et al. (2021) to use beam search with lan-
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Table 3: BLEU scores of NAT models.

Model WMT14 WMT16 WMT14 WMT17
EN-DE DE-EN EN-RO EN-RU EN-FI Speedup

Autoregressive
Transformer 27.48 31.39 33.70 27.2 28.12 1.0 ×

Non-Autoregressive
Vanilla NAT (Gu et al., 2018) 17.69 21.47 27.29 – – 15.0 ×
BoN (Shao et al., 2020) 20.90 24.60 28.30 – – 10.0 ×
AXE (Ghazvininejad et al., 2020) 23.53 27.90 30.75 – – 15.3 ×
Imputer (Saharia et al., 2020) 25.80 28.40 32.30 – – 18.6 ×
OAXE (CMLM) (Qian et al., 2021) 26.10 30.20 32.40 – – 15.6 ×
GLAT (Qian et al., 2021) 26.39 29.84 32.79 – – 14.6 ×
CTC (VAE) (Gu and Kong, 2021) 27.49 30.46 33.79 – – 16.5 ×
CTC (GLAT) (Gu and Kong, 2021) 27.20 31.39 33.71 – – 16.8 ×
CTC (DSLP) (Huang et al., 2021) 27.02 31.61 34.17 21.38 22.83 14.8 ×
CoCO (DSLP) 27.41 31.37 34.32 21.82 23.25 14.2 ×

guage model scoring3 for CTC and CoCO. The
other training settings are the same as used in Sec-
tion 3. We report the tokenized BLEU score to
keep consistent with previous works. We show the
difference values of BLEU score in Fig. 5 and pro-
vide the corresponding absolute BLEU scores in
Appendix C. According to Fig. 5, we have several
observations: 1) The proposed CoCO loss consis-
tently improves the translation accuracy on all the
language pairs compared to OAXE loss; 2) The
CoCO loss outperforms CTC loss when the target
language is with flexible word order or verb-second
word order (i.e., EN-RU, EN-FI, and EN-DE); 3)
CTC loss performs the best when the target lan-
guage is “SVO” language (i.e., DE-EN, RO-EN,
and EN-RO).

We would also like to evaluate the CoCO loss
based on SOTA NAT models. Though the proposed
CoCO loss can be used in both iterative and non-
iterative models, we only show the results on non-
iterative models in this paper and leave the iterative
models as future work. We use CoCO loss on a
recently proposed Deeply Supervised, Layer-wise
Prediction-aware (DSLP) transformer (Huang et al.,
2021), which achieves competitive results. The de-
tails of how CoCO loss is applied on DSLP are
provided in Appendix D. The results are shown in
Table 3. Compared to DSLP with CTC loss (Huang
et al., 2021), DSLP with CoCO loss consistently
improves the BLEU scores on three language pairs,
including EN-RU, EN-FI, and EN-DE. On the con-
trary, DSLP with CTC loss is better or comparable

3https://github.com/kpu/kenlm

to DSLP with CoCO loss when the target language
is restricted to the “SVO” word order, including
EN-RO and DE-EN.

According to the experiments on language pairs
with different kinds of requirements on word order,
we suggest to: 1) use CoCO loss when the word
order of the target language is relatively flexible (
e.g., RU and FI, where word order on “S” “V” “O”
is free, and DE, where the verb is required to be
placed on the second position); 2) use CTC loss
when the target language is with relatively strict
word order (e.g., RO and EN, which are “SVO”
languages).

6 Conclusion

In this paper, we conduct a systematic study
on the syntactic multi-modality problem in non-
autoregressive machine translation. We first catego-
rize this problem into long-range and short-range
types and study the effectiveness of different loss
functions on each type. Considering the different
types are usually entangled in real-world datasets,
we design and construct synthesized datasets to
control the degree of one type of multi-modality
without changing another for analyses. We find that
CTC loss is good at short-range syntactic multi-
modality while OAXE loss is better at the long-
range one. These findings are further verified on
real-world datasets with our designed analytical
approach. Based on these analyses, we propose a
CoCO loss that can better handle the complicated
syntactic multi-modality in real-world datasets, and
a practical guide to use different loss functions for
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different kinds of syntactic multi-modality: CoCO
loss is preferred when the word order of target
language is relatively flexible while CTC loss is
preferred when target language is with strict word
order. Our study in this paper can facilitate bet-
ter understanding of the multi-modality problem
and provide insights to better solve this problem in
non-autoregressive translation. Besides, there still
remain some open problems that need future inves-
tigation. For example, we generally consider long-
range and short-range types for syntactic multi-
modality, while there may be more fine-gained cat-
egorizations on the syntactic multi-modality due to
the complex syntax of natural language.
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Appendix

A Number Ranges to Synthesis the
Source and Target Sentences

We use [1, 5000], [5001, 10000], [10001, 12500],
[12501, 15000], and 15001, 15002, 15003 to rep-
resent “N” “V” “JJ” “RB” “DT” in the source
sentences, and [15004, 20003], [20004, 25003],
[25004, 27503], [27504, 30003], and 30004, 30005,
30006 to represent “N” “V” “JJ” “RB” “DT” in the
target sentences.

B Modified OAXE Loss

Tokens Probability distribution of the output

𝑃1 𝑃2 𝑃3 𝑃4 𝑃5 𝑃6

A 0.2 0.3 0.3 0.1 0.4 0.5

B 0.2 0.3 0.5 0.7 0.2 0.2

C 0.6 0.4 0.2 0.2 0.4 0.3

𝛼⋆

6

4

1

𝛽 3 -1 -1 2 -1 1

Possible end 
tokens of “A”

𝑃1 𝑃2 𝑃3

Select the best

Step 1

𝛽 3 3 2 2 -1 1

Possible end 
tokens of “B”

𝑃4 𝑃5

Select the best

𝛽 3 3 2 2 2 1

Step 2-1

Step 2-2

Figure 6: An illustration of the modified OAXE loss.

Specifically, we consider one training pair
(X ,Y ), where there are n tokens in the ground truth
sequence, denoted as Y = (y1, y2, . . . , yn). The
corresponding output sequence has m tokens with
probability distributions P1, P2, . . . , Pm, where
m > n. According to OAXE, we first get the
alignment between the ground truth sequence and
the output sequence that minimizes the cross en-
tropy loss based on maximum bipartite matching
algorithm (Kuhn, 1955):

α⋆ = argmin
α∈γ(α)

(
−
∑

i

logPα(i)(yi|X, θ)

)
, (2)

where α denotes the alignment from the ground
truth sequence to the output sequence, γ(α) is the
set of all possible alignments, and yi is aligned with
the α(i)-th token of the output. We consider each
output token can only be aligned to one ground
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Table 4: BLEU scores of models with different losses on different language pairs.

Loss EN-RU EN-FI EN-DE DE-EN RO-EN EN-RO

CTC 20.84 22.86 26.10 30.36 33.68 33.06
OAXE 21.23 23.13 26.16 30.07 33.25 32.31
CoCO 21.45 23.27 26.25 30.19 33.31 32.67

truth token (i.e., α(i) ̸= α(j) if i ̸= j). Then, we
can get the alignment from the output sequence to
the ground truth sequence, based on α⋆:

β(k) =

{
i if α⋆(i) = k,

−1 if ∀i ∈ [1, n], α⋆(i) ̸= k,
(3)

where the k-th token of the output is aligned to
yβ(k) and β(k) = −1 denotes the token has not
been aligned. We provide an illustration as the
“step 1” in Fig. 6, where we consider 3 tokens
in the target sequence and 6 tokens in the output
and the best alignment is “A”-“P6”, “B”-“P4”, and
“C”-“P1”. Since consecutive repetitive tokens are
merged when decoding with CTC loss, we consider
that consecutive tokens in the output can be aligned
to the same ground truth token. Accordingly, we
enumerate the end of each ground truth token in
the output sequence respectively, and select the one
that minimize the cross entropy loss. For example,
given β(k1) = i, β(k2) = j and β(k) = −1 when
k1 ≤ k ≤ k2, we select k⋆ according to:

k⋆ = argmin
k1≤k′<k2

(
−

∑

k1≤k≤k′
logPk(yi|X, θ)

−
∑

k′<k≤k2

logPk(yj |X, θ)

)
,

(4)
and align the (k1, k

⋆]-th output token to i and the
(k⋆, k2)-th output token to j as:

β(k) =

{
i if k ∈ (k1, k

⋆]

j if k ∈ (k⋆, k2).
(5)

As the illustration in Fig. 6, we enumerate all the
possible end tokens of ’A’ and ’B’ to find the best
one. Then, we get the modified OAXE loss as:

LM−OAXE = −
∑

1≤k≤m

logPk

(
yβ(k)|X, θ

)
.

(6)

C BLEU Scores of Different Losses on
Different Language Pairs.

The BLEU scores of models with CTC, OAXE and
CoCO loss on different languages pairs are shown

in Table 4.

D Use CoCO Loss in DSLP

Partially feeding ground truth tokens to the decoder
during training shows promising performance in
NAT (Ghazvininejad et al., 2019; Saharia et al.,
2020; Qian et al., 2021; Huang et al., 2021). For the
models training with golden length of the ground
truth sentence using XE loss, the ground truth token
embedding is placed to the position of the corre-
sponding input (Qian et al., 2021). When using
CTC loss, the inputs of the decoder are always
longer than the ground truth sentences, where Gu
and Kong (2021) proposes to use the best mono-
tonic alignment between the ground truth and out-
put sequences, and provides the ground truth to the
corresponding input position of the decoder. With
the proposed CoCO loss, we use the best align-
ment which is not required to be monotonous. In
addition, DSLP requires deep supervision on each
layer of the decoder. We find that only replacing
CTC loss with CoCO loss on the first layer is better
than using CoCO loss on all layers. Accordingly,
when using CoCO loss in DSLP transformer, we
use CoCO loss in the first layer and CTC loss for
all the other layers in the DSLP transformer.
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