
Proceedings of NAACL-HLT 2022: Industry Track Papers, pages 280 - 288
July 10-15, 2022 ©2022 Association for Computational Linguistics

Constraint-based Multi-hop Question Answering with Knowledge Graph

Sayantan Mitra, Roshni Ramnani and Shubhashis Sengupta
Accenture Labs, Bengaluru

{sayantan.a.mitra, roshni.r.ramnani, shubhashis.sengupta}@accenture.com

Abstract

The objective of a Question-Answering sys-
tem over Knowledge Graph (KGQA) is to re-
spond to natural language queries presented
over the KG. A complex question answering
system typically addresses one of the two cat-
egories of complexity: questions with con-
straints and questions involving multiple hops
of relations. Most of the previous works have
addressed these complexities separately. Multi-
hop KGQA necessitates reasoning across nu-
merous edges of the KG in order to arrive at
the correct answer. Because KGs are frequently
sparse, multi-hop KGQA presents extra compli-
cations. Recent works have developed KG em-
bedding approaches to reduce KG sparsity by
performing missing link prediction. In this pa-
per, we tried to address multi-hop constrained-
based queries using KG embeddings to gen-
erate more flexible query graphs. Empirical
results indicate that the proposed methodol-
ogy produces state-of-the-art outcomes on three
KGQA datasets.

1 Introduction

Multi-relational graph, also known as Knowledge
Graph (KG) comprises of a large number (of-
ten, millions) of entities and relations represented
in the form of triplets (entity -> relation -> en-
tity). Some of the most widely used KGs in-
clude DBPedia (Lehmann et al., 2015), Freebase
1, YAGO (Suchanek et al., 2007), KENSHO2 and
NELL (Mitchell et al., 2018). In the recent years,
Knowledge Graph question answering (KGQA)
has emerged as a significant research field (Sun
et al., 2018; Zhang et al., 2018; Bordes et al., 2014).
Given a natural language question, a KGQA system
derives the right answer by analyzing the question
and mapping it to the underlying KG.

1https://developers.google.com/
freebase

2https://www.kaggle.com/
kenshoresearch/kensho-derived-wikimedia-data

Early works of KGQA mainly focused on simple
questions containing single relations (Yang et al.,
2014; Hao et al., 2017; Dong et al., 2015). How-
ever, in the real world, questions are often complex
and recent work focuses on addressing these com-
plexities. The complexities in KGQA can broadly
be divided into two types: (1) Constraint based:
Single-relation questions with constraints. For ex-
ample, in this query “when did the 7th harry potter
book come out?” there is only one relation, “pub-
lished in” between the answer entity and the entity,

“harry potter book” but there is also a constraint
“7th” which needs to be addressed. To handle these
kind of questions, query graph generation methods
have been proposed (Yih et al., 2015; Bao et al.,
2016; Luo et al., 2018). These methods first iden-
tify the 1-hop paths and then apply constraints on
them. (2) Multi-hop based: Questions with multi-
hop answers. For example, consider this query

“What language is spoken where the capital city
is Brussels?” the answer is associated with entity

“Brussels” through two hops of relations, namely,
“capital of” and “language spoken”. For address-
ing such multi-hop questions, it is important to
consider longer paths. One of the main challenges
is increasing search space. It is important to restrict
the multi-hop relations to be considered, otherwise
the search space can grow exponentially with the
length of the relation paths. For example, Chen
et al. (2019) and Lan et al. (2019) proposed to con-
sider only the best matching relations instead of
all relations when extending a relation path. How-
ever, there exists little work to address both types
of complexities together.

In this paper, we address both types of complex
question answering - with constraints as well as
multi-hop relations - together. We propose an em-
bedding based graph query generation method by
allowing longer relation paths. Instead of adding
constraints after complete generation of all prob-
able paths, we apply constraints on partial paths
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Figure 1: Overall representation of the proposed method for constraint based Multi-hop KGQA. It has five
components: (1) KG Embedding Module which learns embeddings of all the entities and relations present in the
KG, (2) Question Embedding Module which learns embedding for the given question, (3) Constraint Module for
identifying constraints in the question (4) Graph Query Generation Module which generates the relevant query
graphs based on the question, and (5) The fifth module selects top-k graphs and generates the final answer. Graph
embeddings help our proposed method to effectively handle KG sparsity.

and explore the next path segments. This helps to
lessen the query search space effectively. For the
ComplexWebQuestions dataset, which has more
number of complex questions; our method outper-
forms SOTA in terms of Prec@1 and F1. On other
benchmark datasets as well our proposed approach
achieves SOTA results. The overall representation
of our proposed model is presented in Figure 1. We
make the following contributions in this paper:

1. Our proposed method combines embeddings
with query graphs to address constraint based
multi-hop complex questions. To the best of
our knowledge, this is the first attempt of com-
bining embeddings with query graph to ad-
dress all types of complex questions.

2. The proposed method leverages the require-
ment of answer selection from a pre-specified
local neighborhood - an auxiliary constraint.

2 Related Work

2.1 Knowledge Graph Question Answering
Previous works (Li et al., 2018) used TransE (Bor-
des et al., 2013) graph embedding method to an-
swer factoid based questions. However, it is a
simple question answering method which works
with 1-hop questions and furthermore, it requires

ground-truth labeling for each question. Yih et al.
(2015) and Bao et al. (2016) in their works used
query graph based approaches to answer the ques-
tions. Yang et al. (2015) uses embedding based
approach to co-related natural language questions
to its corresponding logic forms. Different method-
ologies proposed in (Hao et al., 2017; Lukovnikov
et al., 2017; Yin et al., 2016; Dai et al., 2016; Dong
et al., 2015) use neural networks based approach.
These neural networks are trained to learn a scoring
function and rank the candidate answers based on
these scores. There are other works (Mohammed
et al., 2018; Ture and Jojic, 2017) which have for-
mulated the QA task as a classification problem by
using relations as a label. These approaches are not
easily extendable to multi-hop settings.

2.2 Knowledge Graph Embedding

Real world KGs have the following limitations: (1)
Most of them are often incomplete (Wang et al.,
2017); (2) Real-world data is frequently dynamic
and constantly changing(Cai et al., 2018). There-
fore, KG completion is often formulated as the
link-prediction problem(Arora, 2020). In the recent
years, a lot of research has gone into link predic-
tions in Knowledge Graphs using KG embeddings.

TransE (Bordes et al., 2013) generates high di-
mensional embeddings for entities in real space
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Figure 2: Constraint(s), topic entity and relations are detected for the given question. Assuming we start from the
topic entity "Pastime with Good Company", the core relation path is the path linking topic entity to the variable X.
Here, only one constraint ("first") is present, represented by shaded ellipse.

and TransE (Bordes et al., 2013) embeds entities in
high-dimensional real space and translates between
the head and tail entities. DistMult (Yang et al.,
2015) and RESCAL (Nickel et al., 2011) construct
KG embeddings by learning a score function that
contains a bi-linear product of the vectors of the
head and tail entities, as well as a relation matrix.
These models, however, only consider each individ-
ual fact and neglect intrinsic relationships, thus can-
not capture deeper semantics for better embedding.
ComplEx (Trouillon et al., 2016), first presents
complex vector space, which is capable of captur-
ing both symmetric and antisymmetric relations. It
uses tensor factorization to generate embeddings of
relations and entities in complex space. The com-
plex vectors can retain the benefit of dot product,
that is linearity in both space and time complex-
ity. This motivated us to use this embedding in
our present work. RotatE (Sun et al., 2019) creates
entity embeddings by projecting them in complex
space, and relations are represented as complex
plane rotations. InteractE (Vashishth et al., 2020) is
an improvement over ConvE (Dettmers et al., 2018)
method by increasing feature interaction. These
models have high time complexity.

3 Background

3.1 Knowledge Graph

A knowledge graph is a set of triples represented by
(h, r, t), where r ∈ R is the relation and h, t ∈ E
are subject and object respectively. Here, R and E
represents set of relations and entities respectively.

3.2 Link Prediction

Given an incomplete knowledge graph, the task of
the link prediction is to predict the valid unknown
links. This task is achieved by KG embedding

models which assign a score s = ϕ(h, r, t) ∈ R
to the predicted links and validate whether the link
is true. The goal of this model is to predict the
missing links correctly.

3.3 Knowledge Graph Embeddings
Complex Embedding (Trouillon et al., 2016) is a la-
tent factorization method that learns a large variety
of symmetric and anti-symmetric relations in com-
plex space. The complex vectors can retains the
benefit of dot product, that is linearity in both space
and time complexity. This motivated us to use this
embedding in our present work. It is used to gen-
erate entity and relation embeddings in knowledge
graphs. Given h, t ∈ E and r ∈ R the complex
embedding generates eh, er, et ∈ Cd and defines a
scoring function:

ϕ(h, r, t) = Re(

d∑

k=1

e
(k)
h e(k)r ē

(k)
t ) (1)

For all correct triplets ϕ(h, r, t) > 0 and for others
ϕ(h, r, t) < 0. Re stands for the real part of the
complex numbers.

3.4 Graph Query
For a given question Q, the task of the KGQA is to
find an answer a such that a ∈ E .

In Figure 2, we show the query graph (Bao et al.,
2016; Yih et al., 2015; Luo et al., 2018) for the in-
put question Who was the first wife of the composer
of "Pastime with Good Company"? A query graph
broadly have four parts: (i) A grounded entity,
a head/ topic entity (for e.g "Pastime with Good
Company") which is explicitly mentioned in the
question. It is represented by a shaded recatangle in
Fig 2; (ii) A lambda variable (X in Figure 2) is the
actual answer to the input question; (iii) An existen-
tial entity, intermediate node/nodes (y in Figure 2)

282



between grounded entity and lambda variable; and
(iv) An aggregation function (argmin/count) is the
constraint imposed on the lambda variable. In Fig
2, first is the constraint on the lambda variable,
it is internally mapped to argmin (described under
Section 4.6). The edges of the graph represent the
relations r ∈ R. The core relation path is the path
connecting the topic entity to the lambda variable
X.

4 Method

4.1 Problem Statement

For a given natural language question q having
relations r (r ∈ R), entities eh (eh ∈ E) and
zero/more constraint(s), the task is to identify the
answer et, where et ∈ E . As an external knowledge
source, Knowledge graph G is used. It is the set
of available facts represented by triples K, where
K ⊆ E ×R× E . Here, R is set of relations and E
is set of entities.

4.2 Overview of the Proposed Method

Our proposed method uses graph embeddings to
answer complex questions. It begins by learning
a KG representation in the embedding space. For
a given question, it then learns the question em-
bedding and also identifies the topic entities. For
relation extraction, we use the training questions
and their answers to learn the linking model. For
learning the temporal constraints and superlative
linking, we simply use regular expressions and a
superlative word list(Luo et al., 2018) . The superla-
tive words are manually mapped to the aggregation
functions: argmin & argmax. Finally it combines
these embedding and constraints to predict the an-
swer.

4.3 KG Embedding Module

For KG embedding we used complex embeddings
(Trouillon et al., 2016) for all h, t ∈ E and all
r ∈ R such that eh, er, et ∈ Cd. The entity em-
beddings are used to learn a triple scoring function
between topic entity, question and answer entity.
The selected triplets are used to generate the query
graphs. The entity and relation embeddings learned
here are kept fixed and used for fine-tuning subse-
quent steps. For our work we have used latest dump
of Freebase3 as our Knowledge graph for all the
datasets.

3https://developers.google.com/
freebase/

4.4 Question Embedding Module

This module is used to map the natural language
questions to a fixed dimension vector eq ∈ Cd. We
have used ROBERTa4 (Liu et al., 2019) model to
generate q into vector of dimension 768. The gener-
ated vector is passed through three fully-connected
linear layers with ReLU activation and a dropout of
0.1 in each layer and finally projected to a complex
space Cd.

For a question q, topic entity h ∈ E and set of
answers A ⊆ E , the question embedding is learned
such that

ϕ(eh, eq, ea) > 0 ∀a ∈ A (2)

ϕ(eh, eq, eā) < 0 ∀ā /∈ A (3)

where, ϕ is defined in equation 1 and eh, ea are
entity embeddings. The model is learned by mini-
mizing the binary cross entropy loss between the
sigmoid of the scores and the target answer labels.
When the entities are large we do label smoothing.

4.5 Relation matching

For relation matching we learn a scoring function
Sr(r, q) similar to PullNet (Sun et al., 2019) and
rank the relations r ∈ R for question q. Let q̄ =
{< s > w1, w2 . . . w|q| < /s >}, word sequence
in question q and hr be the relation embedding,
then the scoring function is defined as follows:

hq = ROBERTa(q̄) (4)

Sr(r, q) = sigmoid(hTq hr) (5)

ROBERTa(.) returns the last hidden layer output
of ROBERTa model. We select those relations
where Sr > 0.5 it is denoted as Ra.

4.6 Query Graph Generation

After extracting the entities and relation(s) in the
previous steps, the constraint(s) are detected and
are manually mapped to the aggregation functions
by the method described under Section 4.2. To
generate the query graph g, {extend, aggregate}
actions are applied. An extend action extends the
core path by one or more relation in R. An ag-
gregate action attaches the detected aggregation

4The pre-trained ROBERTa base model could be found
at https://huggingface.co/models?search=
roberta
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Figure 3: Examples of the Query Graph generation by extend and aggregate actions.

function to either a lambda variable or an existen-
tial variable.

In Figure 3, we start with the ground entity "Pas-
time with Good Company" and apply extend ac-
tion to find the temporal entity y (here it is Henry
VIII) connected by the relation "composer". As
there is no constraint attached with the above re-
lation, we again apply extend action and find the
"lambda variable" attached with y with the relation
"wife_of". Here, the constraint "first" is associated
with this relation and is mapped to the aggregation
function argmin. We apply this constraint on the
"lambda variable" (X) and select the final answer
(here the answer is Catherine of Aragon).

We start with extend action, then apply aggre-
gate action, this significantly reduces the search
space. We repeat the steps till we generate the
query graph.

4.7 Answer Selection Module
Sometimes, the previous step may generate a set of
query graphs instead of a single graph. In that case
we select the best answer by this module. Let Rg

represent the set of relations for each query graph g.
We also have a set of relations Ra extracted from
equation 5. For g, we calculate a relation score as:

RelScoreg = |Ra ∩Rg| (6)

We combine RelScoreg with Complex score to
find the answer entity:

eans = argmax
a′∈Ng

ϕ(eh, eq, ea′) + γ ∗RelScoreg

Here, γ is a tunable parameter. We select the entity
with highest score (eans) as the answer.

5 Experiments

In this section, we first describe the datasets used
for evaluating our method and the SOTA models.
Finally we describe the results, ablation study and
error analysis.

Question Type CWQ WQSP
1-hop w/o cons. 0.10% 71.30%
1-hop w/ cons. 35.90% 28.20%
2-hop w/o cons. 33.50% 0.0%
2-hop w/ cons. 30.50% 0.50%

Table 1: Statistics for CWQ and WQSP datasets. cons.
stands for constraints.

5.1 Datasets
We evaluate our method on the following datasets:
WebQuestions Semantic Parses (WQSP)(Yih et al.,
2015), ComplexQuestions (CQ) (Bao et al., 2016)
and ComplexWebQuestions (CWQ) (Talmor and
Berant, 2018). In Table 1, we have listed the statis-
tics for each dataset. CQ dataset does not provide
ground truth query graphs so we could not collect
similar statistics. It has been observed that major
questions are 1-hop in CQ dataset.

Method CWQ (Prec@1 / F1) WQSP (F1) CQ (F1)
Yih et al. (2015) NA 69.0 NA
Luo et al. (2018) NA NA 40.9
Bao et al. (2016) NA NA 42.8
Lan et al. (2019) 39.3/36.5 67.9 NA
Bhutani et al. (2019) 40.8/33.9 60.3 NA
Chen et al. (2019) 30.5/29.8 68.5 35.3
Ansari et al. (2019) NA 72.6 NA
Lan and Jiang (2020) 44.1/40.4 74.0 43.3
Proposed Method 46.3/41.9 77.8 45.9

Table 2: Comparison of the results between our pro-
posed method and other state of the art methods.

5.2 Results
We compare the results of our proposed model with
the following existing works. We first compare
with the methods which use staged graph query
but cannot handle multi-hop questions (Yih et al.,
2015; Bao et al., 2016; Luo et al., 2018). Next, we
compare with the method proposed by Lan et al.
(2019), it handles constraints and consider multi-
hop but does not use any strategy to reduce the
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search space. We further compare with (Chen et al.,
2019), which does not handle constraint but uses
beam search with a beam size of 1 to handle multi-
hop questions. Bhutani et al. (2019) uses a strategy
to decompose complex questions into simple ques-
tions and achieved SOTA results on CWQ dataset
in terms of Prec@1. Ansari et al. (2019) proposed
a method which generates query programs from
question token by token. Finally, we compare our
method with Lan and Jiang (2020), their method
handles both multi-hop and constrained based com-
plex question and uses beam search with beam size
3 to reduce the search space.

The overall comparison results with the SOTA
models in shown in Table 2. From the table we can
see that our model outperforms other methods on
CWQ dataset in terms of both Prec@1 and F1. Our
models shows an improvement of 2.2% in terms
of Prec@1 and 1.5% in terms of F1 compared to
the best SOTA model. This validates our claim
that our proposed method can effectively handle
the complex questions with both constraints and
multiple hops. In WQSP dataset, the percentage
of constrained based questions are low specially
for multi hops (0.5% only, shown in Table 1). For
this reason, our model not only outperforms all
other SOTA models but also displays around 74%
F1 score which is highest in comparison to other
two datasets (CWQ and CQ). CQ dataset contains
only single hop constrained based questions. In this
dataset also our model outperforms other models
in terms of F1 by 2.5%. This shows the effec-
tiveness of our model in terms of handling only
constraint based question. Overall the results in
Table 2 shows the robustness and efficiency of our
proposed model.

Method CWQ (Prec@1 / F1)
SOTA 44.1 / 40.4
w GRU 43.3 / 38.6
w/o extend 26.4 / 22.8
w/o connect 36.8 / 32.3
w/o aggregate 43.8 / 39.5
Freebase-50 (avg.) 27.7 / 22.8
TransE 43.8 / 39.8
TransH 44.5 / 40.8

Table 3: Ablation study on CWQ dataset.

5.3 Ablation Study

We performed ablation study to better understand
our model. To show that the performance of our
model is not mainly due to use of ROBERTa (Liu
et al., 2019) we replaced it with simple GRU model
and conducted the experiments. The results in Ta-
ble 3 shows that GRU based version of our method-
ology shows comparable results with SOTA in
terms of both Prec@1 and F1. This verifies that
performance of our method is not mainly because
of the use of ROBERTa. To show the importance
of each actions in the query graph, we have created
three variants of our proposed method by eliminat-
ing one of the actions from each of them. From
the results in Table 3, we can see that aggregate ac-
tion has the least effect among the three and extend
action have the most effect on the performance
of the proposed method. The best answer is ob-
tained when all the three actions are used together.
To show the effectiveness of the KG embedding
module we have randomly removed 50% of the
relations from the KG ( Freebase) and created a
new KG Freebase-50 and then execute our algo-
rithm on this new KG. We reported this step 10
times and reported the average results of our model
in Table 3 in terms of Prec@1 and F1. From the
results we can see that with the reduced KG our
model performs similar to that of the w/o extend
approach. This shows that our model is able to pre-
dict the missing links correctly but failed to apply
constraints effectively due to sparse KG.

Further, to show the effect of embedding model
on our proposed method, we have created two new
variants of our proposed model using TransE (Bor-
des et al., 2013) and TransH(Wang et al., 2014)
KG embeddings. The results are shown in Table 3.
From the Table it can be seen that both the models
produce comparable results with respect to SOTA
models. This shows that the performance of our
proposed method is not mainly dependent on the
type of KG embeddings used.

6 Conclusion

In this paper, we propose an embedding based
query graph generation method to address com-
plex questions (constrained multiple hops queries).
Often KGs are incomplete or sparsely populated,
and this poses additional challenges for complex
KGQA methods. By using KG embedding, the
proposed methodology effectively address this KG
sparsity problem by predicting missing links with-
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out the use of secondary corpus. By strategically
incorporating constraints into the query graphs, we
are able to restrict the search space. Experiments
showed that our proposed method outperforms all
other SOTA methods on all the datasets (CWQ,
WQSP and CQ). In future, we would like include a
module to handle abbreviation errors.
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