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Abstract

During their pre-flight briefings, aircraft pilots
must analyze a long list of NOTAMs (NO-
tice To AirMen) indicating potential hazards
along the flight route, sometimes up to 100
pages for long-haul flights. NOTAM free-text
fields typically have a very special phrasing,
with lots of acronyms and domain-specific vo-
cabulary, which makes it differ significantly
from standard English. In this paper, we pre-
train language models derived from BERT on
circa 1 million unlabeled NOTAMs and reuse
the learnt representations on three downstream
tasks valuable for pilots: criticality prediction,
named entity recognition and translation into a
structured language called Airlang. This self-
supervised approach, where smaller amounts
of labeled data are enough for task-specific fine-
tuning, is well suited in the aeronautical con-
text since expert annotations are expensive and
time-consuming. We present evaluation scores
across the tasks showing a high potential for an
operational usability of such models (by pilots,
airlines or service providers), which is a first to
the best of our knowledge.

1 Introduction

Each upcoming flight requires a preparation phase
for the crew. During this phase, the pilots check all
the elements concerning the flight, being the mete-
orological conditions, fuel supply, or safety related
notifications. Pilots receive these notifications from
the aviation authorities under the form of small text
messages, called NOtice To AirMen (NOTAM).
It represents a large number of messages to read
and process before the flight, sometimes up to 100
pages for long-haul flights, which translates to a
long analysis time. The messages are mostly, but
not only, written in the English language. How-
ever, the phrasing being very special, with a lot of
acronyms, technical words and without the usual
grammar and syntax rules, the language differs
from standard English.

In this paper, we aim to apply the latest advances
in Natural Language Processing (NLP) to the aero-
nautical field leading to more autonomy and less
overhead for the pilots. In particular, the use of lan-
guage models like BERT enables leveraging lots of
unlabeled data for pretraining and fine-tuning on
downstream tasks with limited amounts of labeled
data. Our main contribution is to present a knowl-
edge extraction pipeline adapted to the aeronautical
context. We introduce a language model trained
from scratch on a large amount of raw NOTAMs,
followed by three downstream tasks: criticality pre-
diction, named entity recognition and translation
into a structured language called Airlang.

This paper is organised as followed: in Section 2,
the NOTAMs are detailed both on the operational
and the linguistic side, the problem is defined in
Section 3 with a focus on the three downstream
tasks. In Section 4, after a brief reminder of the
state of the art, we present our approaches and the
results of our experiments.

2 NOTAMs in aeronautical context

A NOTAM is a message filled by aviation author-
ities to alert pilots about potential hazards along
a flight route or at a location that could affect the
flight. The message can inform about temporary
disruptions (from a few hours to one year maxi-
mum) on aeronautical infrastructures (for example,
closure or limited usage of runway or taxiway in a
given airport), about inoperable radio navigational
aids, military exercises with resulting airspace re-
strictions, temporary erections of obstacles near
airfields (e.g. cranes), passage of flocks of birds
through airspace, etc. An example of a NOTAM
message is shown in Figure 1; more details about
the fields can be found in Appendix A.

2.1 Operational point of view

During the pre-flight briefing phase, a pilot has to
read all NOTAMs relevant for the flight in order to
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Figure 1: NOTAM example with its different Q, A, B, C and E fields

guarantee safety.
Reading these NOTAMs is a mandatory task for

the pilot but can be long and challenging. First,
those short messages are quite cryptic, all written in
capitals, with many confusing abbreviations. Sec-
ond, the number of emitted NOTAMs is growing
over time with for example 2 million in 2018 (circa
5500 per day). Some of them are crucial for the
flight, but the vast majority are of low importance,
which makes the analysis difficult.

NLP techniques can be very helpful in that aero-
nautical context, typically to rank NOTAMs by
criticality and highlight important information in
them (like runway and taxiway identifiers). For
example, NOTAMs about runway or flight area clo-
sure are often more relevant than the ones repeated
every day by small airports about strong wind in
the area.

TWY E(BTN H AND Z)-RESTRICTED DUE TO

CONST RMK/NOT AVBL FOR ACFT WITH MORE

THAN 65M

TWY HOTEL CLSD 283M FROM INTERSECTION

WITH TWY GOLF

Figure 2: Example of NOTAMs (E field)

2.2 Linguistic point of view
NOTAMs are composed of multiple fields, some of
which contain structured information that is easy
to parse with a fixed grammar. In this work we
focus on the "E field", which usually contains the
most detailed information in an unstructured free-
text form. NOTAMs (E field) are quite short text
messages and are not written in standard English
but rather in a domain-specific language, mainly
composed of abbreviations and acronyms from the
aeronautical world; an official list of acronyms is
maintained by ICAO (International Civil Aircraft
Organization).

A strong expertise is required to decode and un-
derstand those messages; if, overall, English is the
main used language, some authorities use their lo-
cal language. Two examples of NOTAM content

(E field) are shown on figure 2.
The NOTAM language is designed to be concise

in order to transmit information in the most efficient
way. In order for this language to be understood
and written by everyone from the aeronautical
world, some guidelines exist and it is strongly en-
couraged to use the official list of acronyms. Such
patterns like ""RWY XX/YY CLSD"" (which means
that the runway "XX/YY" is closed) appear quite
often in the NOTAM corpus but despite the offi-
cial recommendations, people authoring NOTAMs
regularly deviate from them, can make spelling
mistakes, etc. The resulting NOTAM language
thus presents the same challenges as any natural
language and cannot be robustly analyzed with a
rule-based system.

3 Problem definition

3.1 Criticality prediction

During the preparation of the flight, the pilot and
co-pilot must take note of all these documents in-
troduced above. However, as mentioned before,
NOTAMs can be very numerous and may not all
be relevant for the flight in question. With the crit-
icality estimation, we aim to highlight the most
important messages for the flight, to help the pilot
optimize the preparation phase.

3.2 Named entity recognition

As mentioned in Section 2, highlighting the most
important and relevant entities can help the pilot
digest the NOTAMs and focus on the most insight-
ful parts. This is a typical NLP task called Named
Entity Recognition (NER).

One crucial information the pilot needs to know
is about the closure of airways (runway or taxi-
way)1. Sometimes, the closure of an airway is
specified with :

• a geographical condition : for example, only
a given part of the airway is closed

1A runway is where the aircraft lands/takes-off, whereas a
taxiway is a road connecting runways to terminals and hangars
in an airport
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• a temporal condition : the airway is closed
certain days of the week or at certain time
schedules of the day

• an aircraft condition : for example, an airway
can be closed only to aircraft whose wingspan
is larger than a given size

• an operational condition : for example, an air-
way can be closed only for take-off or landing

Similarly, exceptions and reasons can be added
to further specify the NOTAM.

3.3 Translation

Pilots and co-pilots are often supported by digital
apps provided on the so-called electronic flight bag
(EFB), a mobile tablet docked to the aircraft, replac-
ing the physical flight bag that used to contain all
flight documents in the past. Beyond giving digital
access to the required documents, some of these
apps now propose to visualize contextual flight in-
formation (e.g. extracted from NOTAMs) in a more
digestible format for the pilot, such as maps with
visual cues. Such apps typically rely on structured
machine-parsable languages like Airlang, synthe-
sizing the most important pieces of information
from NOTAMs. Today, the translation from raw
NOTAMs to Airlang is generally done manually
by multiple humans (in charge of the translation
itself or its verification). In this paper, we are inves-
tigating the possibility to automate this translation
using modern sequence-to-sequence language mod-
els. The goal is to accelerate this translation task,
potentially reducing the manual effort to the verifi-
cation part only.

4 Experiments and results

4.1 NOTAM language model pretraining

Significant advances in the NLP field have been
made in the recent years thanks to powerful Trans-
former architectures (Vaswani et al., 2017) and self-
supervised pretraining, as introduced by the BERT
paper (Devlin et al., 2019) and continued in various
derivative work like RoBERTa (Liu et al., 2019) or
DeBERTa (He et al., 2020). Due to its characteris-
tics, the NOTAM language can benefit from such
state-of-the-art language models.

Following popular practices on BERT models
and its variants, the idea is to pretrain a language
model on many raw NOTAMs with a dedicated
tokenizer (we cannot reuse models available online

since there is almost no overlap with standard En-
glish), and then fine-tune it for each downstream
task introduced in section 3. See Appendix B for
architecture details.

We experimented with a few language model
variants (RoBERTa and DeBERTa v2, both with
6 layers), each being trained on a dataset of 1.2
million unlabeled NOTAMs, from which the E field
(the free text part) was extracted. No other pre-
processing was performed on the data.

The RoBERTa models were trained on a cor-
pus tokenized using BPE (Sennrich et al., 2016),
whereas the DeBERTa ones were trained using Sen-
tencePiece (Kudo and Richardson, 2018) tokeniza-
tion; both tokenization models has a vocabulary
size of 52000.

The language models were trained using the
Huggingface transformers library 2, using a
masked language model objective, during 3 epochs.

4.2 Criticality prediction

The objective is to assign a score to each free-text
part of a NOTAM (part E), from 1 = lowest prior-
ity to 5 = highest priority. In terms of NLP task,
this fine-tuning consists in a sequence-level pre-
diction (classification or regression). We train a
regression head that takes as input the output of the
classification [CLS] token after passing through
the pretrained language model. This pooled em-
bedding reflects the context of the full text as it
contains information about all the other tokens of
the considered sequence. The classification head is
mainly a linear layer.

We choose to cast this task as a regression rather
than a classification in order to take into account
the ranking of the scores. Indeed, classifying a
message to 2 or 5 rather than 1 should not give
the same loss value. Therefore, the output of our
additional head is of size 1.

The dataset comes from ICAO and is composed
of circa 35000 NOTAMs annotated by experts. One
of its characteristics is its heterogeneity between
the labels : more than 10% of the dataset contains
duplicated messages to which different scores have
been attributed, sometimes even 1 and 5 for the
same NOTAM. This reflects a divergence of views
that can come from the pilot’s perception or the
context of the flight. Moreover, as you can see in
Figure 3, NOTAMs with the lowest importance are

2https://github.com/huggingface/
transformers
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Figure 3: Distribution of the scores in the training set

much more represented than the others.
The dataset is split in 80%-20% between training

and testing. By training on this dataset and consid-
ering the prediction scores rounded to the nearest
integer, we reach a Mean Absolute Error (MAE)
of 1.08 in the best case: DeBERTa v2 with hidden
size of 768. However, we notice a strong bias to-
wards middle criticality scores with low recalls on
the extremes.

To mitigate this point, we can alternatively use
a multi-class F1-score as evaluation metric for the
best model selection. To tackle the imbalance and
heterogeneity problem, we pre-process the dataset
by keeping for each NOTAM its most frequently
attributed score, followed by an oversampling in
order to have the same number of messages for
each score in the training set. With these changes,
the recall of the lowest and highest criticality NO-
TAMs are significantly improved (by absolute 28%
and 16% respectively). This shows the ability to
support the pilot in detecting important NOTAMs,
even if it is technically impossible to get perfect
predictions on this dataset because of the frequent
disagreements between the annotators themselves.

A perspective of improvement would be to cali-
brate the model with inputs coming from the pilots
and human factors team. We may expect that the
impact of predicting a low priority when it is ac-
tually a high priority message would be larger on
the flight’s safety than the contrary. An asymmetric
loss could then be used during training to reflect
these specificities.

4.3 Named entity recognition

NER is the second downstream task studied in this
work; it is a classical token classification task that
can be implemented by adding, on top of each to-

Train Dev Test
#NOTAMs 196 50 62

runway 231 56 71
taxiway 385 82 97
closure 187 42 57

condition 211 51 42
exception 25 7 9

reason 81 21 26

Table 1: NER dataset description

ken’s embedding, a linear layer and a softmax to
derive the most probable entity tag. The pretrained
language model is fine-tuned within this architec-
ture on an annotated dataset.

An extension of this approach was explored by
adding a Conditional Random Field (CRF) on top
of the linear layer as detailed in (Souza et al., 2019).
The biLSTM-CRF (Lample et al., 2016) used to
be the state-of-the-art approach before the emer-
gence of BERT-based models; in a sequence la-
beling task, CRF maximizes the probability of the
whole sequence of decisions, so it can better take
context into account instead of making independent
predictions.

The dataset consists in a set of 308 NOTAMs
that were annotated with the different entities in the
IOB format (Ramshaw and Marcus, 1995). In this
study, the following list of entities are considered:
runway, taxiway, closure, condition, exception and
reason. The dataset is rather small but annotation
is quite costly since it requires aeronautical exper-
tise. The dataset was respectively split into training,
development and test sets as detailed in Table 1.

Three different kinds of models were trained.
The baseline model is a layered biLSTM model (Ju
et al., 2018); it was already explored in the context
of NOTAMs in previous work (Arnold et al., 2019).
The layered aspect is interesting to tackle NOTAM
entities, which can be nested as shown in Figure 4.
Indeed, inside the closure clause, there can be men-
tions of other entities like runway, taxiway but also
of condition, exception or reason.

The other approaches presented in this paper are
based on the RoBERTa language model (trained
from scratch on NOTAM data), fine-tuned on the
NER dataset in two variants: without and with a
CRF layer. As entities are nested, a first simple
approach consists in training a separate model for
each kind of entity; as runway, taxiway cannot be
nested in each other, they are covered by one model.
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Figure 4: Example of nested entities

Every other entity (closure, condition, exception or
reason) is covered by its own model.

The results (obtained with the conlleval script 3

with the different models are summed up in Ta-
ble 2. Using the RoBERTa fine-tuned model with-
out CRF seems to significantly degrade the results
globally compared to the biLSTM-CRF baseline
on all entities, except for runway where the F1-
score is improved. The degradation is even more
significant for "long-span" entities like closure and
reason. However, the CRF layer seems to boost
the F1-scores for all the entities; results are signif-
icantly improved compared to the initial baseline.
In this context, where entities can have a long span,
the CRF layer seems to play a crucial role in this
sequence labeling task. Finally, entities like run-
way and taxiway reach very high F1-scores; they
are the easiest to catch (because often preceded by
keywords like "RWY" and "TWY"). The results
on other entities are globally lower; they are more
difficult to recognize because they have a longer
span and are often less represented in the corpus.

As described previously, the RoBERTa fine-
tuned models seem to provide good results globally
on all the entities but each entity needs its own
model due to the nested aspect. This approach is
not very efficient both in terms of memory and com-
puting time. This motivated us to explore multi-
task learning (Caruana, 1997; Collobert and We-
ston, 2008); the idea is to start with the pretrained
RoBERTa model but this time with one dedicated
classification head for each entity type. By simulta-
neously training on all the entities, each task could
hopefully benefit from each other. Results are pre-
sented in Table 2. The multitask model that handles
all the entities at once keep good F1-scores on en-
tities like runway, taxiway and closure, for which
we have more examples in the training set, whereas

3https://github.com/sighsmile/
conlleval/blob/master/conlleval.py

the results are a bit degraded on entities like con-
dition and reason. The results for exception are
to be considered carefully because there are too
few examples in the training and test sets. This
motivated us to train a multitask model only on
the runway, taxiway, closure and condition enti-
ties for which we had at least 200 occurrences in
the training set. F1-scores are further improved on
runway, taxiway and closure entities. Multitask
learning enables recognizing nested entities with
a single model, as long as a minimal amount of
data is present for each entity type (otherwise, less
represented entities tend to penalize the training
overall).

4.4 Translation

The last downstream task of interest is the auto-
matic translation from the raw NOTAM text to
the Airlang structured language, the latter being
parsable by a fixed grammar (see example in Fig-
ure 5). This sequence-to-sequence task requires
an encoder-decoder model like the original Trans-
former architecture (Vaswani et al., 2017). For the
encoder, we reuse the pretrained model introduced
in Section 4.1. For the decoder, we use a simi-
lar model (RoBERTa) but initialized from scratch
without pretraining because we do not have ac-
cess to huge amounts of unlabeled Airlang data,
as opposed to raw NOTAMs. We then fine-tune
the whole encoder-decoder model end-to-end on
a dataset of circa 20000 NOTAM-Airlang pairs
(translated by human professionals).

NOTAM: YMMM E1166/20 17JUN0100-17JUN0300

STIRLING AIRSPACE R192ABC ACT (RA2) DUE

MILITARY FLYING SFC / FL300

Airlang: TIMEDEF DURATION = 17 Jun 2020

1:00 TO 17 Jun 2020 3:00; AREADEF

"YM:192A" FL001 TO FL300 ACTIVE

DURATION; AREADEF "YM:192B" FL001 TO

FL300 ACTIVE DURATION; AREADEF "YM:192C"

FL001 TO FL300 ACTIVE DURATION;

Figure 5: Example of NOTAM translated to Airlang

Although the output sequence is not constrained
by any special mechanism, after training we ob-
serve that most generated Airlang translations are
valid with regard to the grammar underpinning this
structured language. As opposed to classical trans-
lation tasks where BLEU or ROUGE scores are
often used to allow for some flexibility, here the
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Layered
biLSTM CRF RoBERTa RoBERTa

CRF
Multitask

model

Multitask
model w/o

exception/reason
Entity Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

runway 95.8 95.8 95.8 97.3 100.0 98.6 98.6 100 99.3 98.6 100.0 99.3 98.6 100.0 99.3
taxiway 97.7 87.6 92.4 92.6 89.7 91.1 94.9 94.9 94.9 95.8 93.8 94.8 96.9 95.9 96.4
closure 70.5 78.2 74.1 59.4 74.6 66.1 87.0 72.7 79.2 80.8 76.4 78.5 81.8 81.8 81.8

condition 55.9 46.3 50.7 30.7 56.1 39.7 63.2 58.5 60.8 67.9 46.3 55.1 61.6 58.5 60.1
exception 100.0 33.3 50.0 100.0 22.2 36.4 100.0 33.3 50.0 100.0 22.2 36.4

reason 87.0 76.9 81.6 73.9 65.4 69.4 91.7 84.6 88.0 91.3 80.8 85.7

Table 2: NER results in terms of Precision, Recall and F1-score

model performance is evaluated (on a test set of
circa 5000 NOTAM-Airlang pairs) with a much
more conservative metric because of the safety-
critical context and the fact that the target language
is structured: we consider the percentage of "per-
fect translations", i.e. the ones matching exactly
the ground truth in a case-sensitive way. However
we noticed a few tiny variations in this ground
truth that are parsed equivalently down the line (op-
tional presence of a white space in certain places,
some words that are both valid whether they are
capitalized or not, equivalent ways of expressing
flight levels like "FL001 TO FLxxx" and "FLxxx
AND BELOW"...). So we propose to post-process
both the model output and ground truth with simple
hard-coded rules to normalize their form, leading
to adjusted performance scores which better reflect
the actual quality of the translation (see Table 3 for
results without/with post-processing using different
encoder models).

We note that our system (using the best transla-
tion model) is able to produce 84.5% correct trans-
lations, which can significantly reduce manual ef-
forts from operational teams providing such ser-
vices to airlines. To further support these teams by
giving a confidence score on these translations, we
use gradient boosting (Chen and Guestrin, 2016)
to train a classifier in charge of detecting good/bad
translations based on various seemingly relevant
features (length of the NOTAM, number of oc-
currences for certain elements like days/months,
etc.). As seen in Figure 6, this classifier obtains
a AUC score (Area Under Curve) of 0.90, show-
ing a strong ability to distinguish good/bad transla-
tions (the business can adapt the threshold to select
any point on the curve according to their preferred
trade-off between probability of detection vs false
alarms).

Encoder
model

Hidden
size

No post-
process

With post-
process

RoBERTa 768 74.3% 83.6%
RoBERTa 1536 78.1% 84.5%

DeBERTa v2 768 78.0% 83.1%
DeBERTa v2 1536 77.3% 82.3%

Table 3: Perfect NOTAM to Airlang translation scores

Figure 6: Translation classifier AUC score

5 Conclusion and perspectives

In this work, we presented the use of modern self-
supervised language models (derived from BERT)
to extract knowledge from NOTAM aeronautical
messages. We showed that a single deep learn-
ing model pretrained on circa 1 million unlabelled
NOTAMs can be efficiently reused on downstream
tasks with dedicated fine-tuning. NOTAM criti-
cality prediction can support pilots during their
pre-flight briefing by highlighting the most impor-
tant messages. Furthermore, named entity recogni-
tion can be applied to extract relevant parts of NO-
TAMs (e.g. closed runways/taxiways, specific con-
ditions/exceptions...). Finally, automatic transla-
tion to a domain-specific structured language (Air-
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lang) used by pilot apps during flight, can support
operational teams providing services to airlines.
The evaluation scores on these tasks show a high
potential for an operational usability of such mod-
els (by pilots, airlines or service providers), which
is a first to the best of our knowledge.

In the future, alternative NLP methods such as
summarization for NOTAMs could be explored
to continue reducing pilots’ workload. While the
use of deep learning networks (and pretrained lan-
guage models) enabled increasing accuracy in a
lot of NLP downstream tasks, they are known to
be overconfident in their predictions. It is an issue
in the aviation context given its safety-critical na-
ture, where trust in systems’ predictions is key. In
that respect, uncertainty quantification methods -
such as conformal predictions (Vovk V. and Shafer,
2005)(Angelopoulos and Bates, 2021) - could give
a reliable measure of confidence in model’s out-
puts. The robustness of the model could also be
assessed through adversarial attacks, as in (Mor-
ris et al., 2020). Finally, formal methods could be
used for verification and could pave the way to the
certification of such deep learning models, required
for any use on board.

Ethical considerations

In any safety-critical context like aeronautics, there
is an inherent risk associated with the use of auto-
matic methods supporting human operators. This
is why our proposed techniques are limited to a
responsible use on ground, at least until the un-
derlying models can be certified for in-flight use
thanks to rigorous methods from the Trusted Artifi-
cial Intelligence research field. In any case, such
systems are only meant to support human analysis
and decision making by decreasing workload, not
to replace them.

The NOTAMs collected worldwide and used in
this study are public data (accessible via numerous
official platforms online). The datasets used for
named entity recognition and translation are pro-
prietary and built internally by expert annotators as
part of their work (with the permission to be used
in our work). The ICAO dataset used for criticality
prediction is public and enables research use.

The Huggingface Transformers framework sup-
porting model training in our study is open sourced
under the permissive Apache 2.0 license. Every
model training mentioned in this paper (RoBERTa
and DeBERTa v2 ones) took less than 12 GPU

hours for pretraining and for each of the three down-
stream tasks. The hyperparameters used by these
models in our experiments are the default ones
from the Transformers library (faithful to the origi-
nal papers), except when explicitly mentioned (e.g.
varying the hidden size).
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A Appendix: NOTAM details (ICAO
format)

A NOTAM message is structured into 5 or 6 differ-
ent fields, namely:

• Q field is the Qualifier line; it contains a se-
ries of classification tags that the operator is
supposed to fill while authoring the NOTAM

• A field is the ICAO indicator of the aerodrome
or the FIR (Flight Information Region)

• B field corresponds to the date/time when this
NOTAM becomes effective

• C field corresponds to the date/time when the
NOTAM ceases to be effective

• D field (optional) can specify a miscellaneous
diurnal time for the NOTAM if the hours of
effect are less than 24 hours a day

• E field contains the NOTAM text message (the
free text part), the part of interest for our study
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B Appendix: Model architectures for the
three downstream tasks
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