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Abstract

Manually labeled training data is expensive,
noisy, and often scarce, such as when devel-
oping new features or localizing existing fea-
tures for a new region. In cases where labeled
data is limited but unlabeled data is abundant,
semi-supervised learning methods such as con-
sistency training can be used to improve model
performance, by training models to output con-
sistent predictions between original and aug-
mented versions of unlabeled data.

In this work, we explore different data augmen-
tation methods for consistency training (CT)
on Natural Language Understanding (NLU) do-
main classification (DC) in the limited labeled-
data regime. We explore three types of augmen-
tation techniques (human paraphrasing, back-
translation, and dropout) for unlabeled data and
train DC models to jointly minimize both the
supervised loss and the consistency loss on un-
labeled data. Our results demonstrate that DC
models trained with CT methods and dropout-
based augmentation on only 0.1% (2,998 in-
stances) of labeled data with the remainder as
unlabeled can achieve a top-1 relative accu-
racy reduction of 12.25% compared to fully
supervised model trained with 100% of labeled
data, outperforming fully supervised models
trained on 10x that amount of labeled data.
The dropout-based augmentation achieves sim-
ilar performance compare to back-translation-
based augmentation with much less computa-
tional resources. This paves the way for appli-
cations of using large scale unlabeled data for
semi-supervised learning in production NLU
systems.

1 Introduction

Deep learning, especially transformer-based lan-
guage models (Vaswani et al., 2017), have achieved
state-of-the-art performance in many tasks and are
widely used in NLU systems. A challenge in deep
learning is that it often requires large amounts of
labeled training data in order to reach a desirable

performance level. This is especially a problem for
NLU systems in commercial production as the cost
of labeling data scales with the expanding number
of supported features and languages.

Recent research in semi-supervised learning
(SSL) demonstrated that it is possible to combine a
small amount of labeled data and a large amount of
unlabeled data to match or even outperform purely
supervised learning (Xie et al., 2020; Gao et al.,
2021). One of the most promising approaches in
SSL is called consistency training (Bachman et al.,
2014; Rasmus et al., 2015; Tarvainen and Valpola,
2017; Verma et al., 2019). In short, consistency
training is a technique that regularizes model pre-
dictions to be invariant to augmentations of unla-
beled data. Examples of augmentations include ap-
plying noise to input features (Sajjadi et al., 2016;
Miyato et al., 2018) or hidden states (Bachman
et al., 2014).

In this paper, we experimented with consistency
training in a major NLU task: Domain Classifi-
cation (DC). We tested three different types of
data augmentations: paraphrasing by user feed-
back, back-translation, and dropout. As a testbed
for our approach, we applied our experiments to
BERT (Devlin et al., 2019)-based models using
a real-world dataset collected from Portuguese
users of a voice-controlled assistant. We found
that all three types of augmentations can be ef-
fectively used alongside consistency training to
improve model performance compared to a base-
line model trained without consistency training.
For the scenario where labeled data was limited
to only 0.1% of all available labeled data, the
best top-1 accuracy, which was -9.14% compared
to fully supervised model trained with 100% la-
beled data, was achieved by consistency training
on data augmented using back-translation. If we
use dropout-only augmentation, the relative top-1
accuracy change was -12.25%. Lastly, we observed
a relationship between the amount of labeled data
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used for training and the size of CT benefits, with
larger benefits for smaller sets of labeled data. Our
results demonstrate the possibility of using con-
sistency training to drastically reduce the amount
of labeled data needed for an NLU system while
retaining a reasonable accuracy. This can be done
on large unlabeled datasets without using compu-
tationally expensive back-translation or financially
costly human-authored augmentation.

2 Background

2.1 Consistency training

Consistency training (Bachman et al., 2014; Ras-
mus et al., 2015; Tarvainen and Valpola, 2017;
Verma et al., 2019) is a Semi-Supervised Learn-
ing technique that utilizes unlabeled data to en-
force consistency of the model output given simi-
lar inputs. The general schematic of this method
is shown in Figure 1. In summary, consistency
training is multitask learning with two objectives:
minimizing the supervised loss for labeled data and
the consistency loss for unlabeled data. The super-
vised loss is a regular cross-entropy loss for the
labeled data. For the consistency loss, the unla-
beled data is first paraphrased with data augmen-
tation methods. Then the original data x and the
augmented data x′ will be passed through the same
encoder model M to generate two output distri-
butions respectively pM (y|x) and pM (y|x′). The
consistency loss is defined by the Kullback–Leibler
divergence between the two output distributions
D(pM (y|x)||pM (y|x′)). Finally the consistency
loss and supervised loss are combined and back-
propagated to update the model parameters. In this
way consistency training forces the model to be
insensitive to the noise introduced by data augmen-
tation.

Figure 1: Training objective for consistency training.
Note that the three model blocks in this figure represent
the same encoder model with the same set of parameter.

2.1.1 Paraphrasing by user feedback

MARUPA (Falke et al., 2020) (Mining Annotations
from User Paraphrasing) is a tool to leverage real-
world user implicit feedback to collect paraphrased
utterances. Sometimes when a user is having a
failed interaction with the system, the user will
paraphrase the utterance and retry. MARUPA col-
lects these utterances fully autonomously without
the need for human annotators using paraphrase
detection, friction detection and label projection
models. This dataset is filtered to make sure it is rel-
evant to the main task (Domain classification). In
our experiment, we use the MARUPA dataset with-
out the labels as the augmented unlabeled dataset
for the consistency training.

2.1.2 Paraphrasing by back-translation

Back-translation a common approach for data aug-
mentation in NLP (Xie et al., 2020; Edunov et al.,
2018). Recent development of Neural Machine
Translation (NMT) (Vaswani et al., 2017), has pro-
duced models with impressive accuracy in trans-
lating text. Back-translation leverages this to gen-
erate augmented data by translating example text
sequences from an original language to an inter-
mediate language and then back to original lan-
guage. This method allows us to generate para-
phrases while retaining semantic meaning, and has
been shown to improve performance in question-
answering tasks (Yu et al., 2018; Dong et al., 2017).
In our experiment, we leverage a commercially
available cloud-based translate service to para-
phrase the unlabeled dataset using back-translation.

2.1.3 Dropout as data augmentation

Dropout (Srivastava et al., 2014) is a technique to
prevent overfitting in training deep neural networks
by randomly dropping units inside the network. In
recent research, dropout is also shown to be an ef-
fective method for data augmentation (Bouthillier
et al., 2015; Gao et al., 2021). The underlying idea
is to pass the same input sequence to the encoder
twice with different dropout masks. The two re-
sulting embeddings are then used to compute the
consistency loss. This method outperforms sev-
eral deterministic augmentation approaches such
as word deletion and replacement (Gao et al., 2021).
Another advantage of dropout-based augmentation
is that no extra paraphrase process is needed and we
can directly use the unlabeled data for consistency
learning.
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3 Experiment

We designed our experiments to explore the perfor-
mance impact of incorporating consistency training
using each type of data augmentation. We also in-
vestigated how performance changes as the amount
of labeled data or unlabeled data used for training
is varied.

3.1 Consistency-training (CT) models

All the models were based on a distilled (Hin-
ton et al., 2015) Portuguese BERT (Devlin et al.,
2019) language model. This model had 4 trans-
former layers and feedforward hidden dimension
of 1200 compare to 12 and 3072 in the BERT-Base
model. All experiments were trained on Amazon
Web Services EC2 p3.16xlarge instances. We im-
plemented CT using a multi-task learning frame-
work that trained models to jointly minimize the
sum of supervised cross-entropy error on labeled
data and the consistency loss on unlabeled data.
All models were configured to train for up to 20
epochs. During training, CT models alternated be-
tween computing loss on the supervised task and
the consistency-loss task. The task sampling rates
were set such that both tasks would finish iterating
through their associated data at approximately the
same time. We compare the CT models against a
set of baseline models that only performed super-
vised training.

3.2 Augmentations

We experimented with a total of five CT mod-
els varying in type of data augmentation used for
consistency regularization: paraphrase by humans
(MARUPA), back-translation, and dropout.

For MARUPA CT models, augmentations were
comprised of paraphrase data. We leveraged the
MARUPA paraphrase dataset as unlabeled pairs
of augmented data. This dataset consisted of
2,258,828 utterance pairs (4,517,656 total).

For Back-translate CT models, augmentations
were comprised of back-translated utterances. We
used a cloud-based translation service to trans-
late from Portuguese to an intermediate language
and back to Portuguese, generating a total of
2,998,782 pairs. For some pairs the original and
back-translated utterances were the same, and in
that case we switched to a different intermediate
language until a different back-translated utterance
was obtained. The list of intermediate language
was English, French, Japanese, Korean, Chinese,

Hindi and Hungarian.
For Dropout CT models, we used dropout to

generate an equivalent of data augmentation on the
embedding space. Our dropout augmentation in-
volved applying dropout to the same data instance
twice with different dropout masks using the same
dropout probability. Dropout layers were located in
each BERT transformer blocks and fully connected
layer with dropout probability set to 0.1. The unla-
beled data used in Dropout CT was the same as the
original data in the back-translation dataset.

We also tested two combinations of augmen-
tations. In Dropout+MARUPA CT models, we
combined dropout and paraphrase augmentations.
Specifically, we applied independently sampled
dropout to both utterances in a paraphrase pair,
and then compute the consistency loss between
the dropout-augmented pair. For Dropout+Back-
translate CT models, we combined dropout with
back-translation pairs in a similar fashion.

3.3 Training data
We experimented with six different labeled-data
sizes: 0.1%, 1%, 2%, 5%, 25%, and 100% of
the available training data. We randomly sampled
three sets of data for each labeled-data size less
than 100%. Within each sample, we used a ran-
domly selected 90% as the training data and use
the remaining 10% as the validation set. Unless
otherwise stated, for each model we experimented
with we trained three separate instances, each using
a different data split.

We also experimented with different unlabeled
data sizes. For this set of experiments we limited
our exploration to Dropout CT models that were
trained with 0.1% of the available labeled data. For
all Dropout CT models, we treated the remaining
labeled data as the set of available unlabeled data
(i.e., for a model trained using 0.1% of the labeled
data, we take the remaining 99.9% and removed
the label). We experimented with models that used
25%, 50%, 75%, and 100% of the available unla-
beled data. As before, we created three random
samples for each unlabeled-set size less than 100%
and trained a separate model on each split.

3.4 Evaluation
We evaluated our models using a held-out test set.
We considered two different types of testing scenar-
ios. In the first, we tested against the full test set of
191,762 utterances, approximating the distribution
of a real-world application scenario. In the second,
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we tested against a test set that had been filtered
to remove all utterances appearing in the training
set. This filtered set contained 46,211 utterances
and was intended to examine how well our models
were able to generalize to unseen utterances.

Our experiments were performed using a pro-
duction BERT-based domain classification model.
Models with differing architectures or for different
ML tasks may not yield the same results. Similarly,
our results may not generalize to industry applica-
tions of NLU in other domain areas, using different
spoken languages, or with access to substantially
larger amounts of labeled training data.

4 Results

Here we present the results of our consistency-
training experiments and illustrate how model per-
formance changed as we varied the underlying
training data.

4.1 Metrics definition
All metrics are reported as relative change, includ-
ing Top-1 accuracy, Top-1-Unseen accuracy, false
accept rate and false reject rate. The relative change
is defined by

(µ− µr)/µr
where µ is the experiment metric and µr is the
reference metric achieved by the fully supervised
model trained on 100% of labeled data.

4.2 Size of labeled data
Our results show that consistency training on aug-
mented data can lead to significant improvements
in performance in limited-data settings. As shown
in Table 1, when restricting models to use only 1%
of the available labeled data as training data, the
baseline supervised model achieves a top-1 accu-
racy of -67%. For the Dropout CT model trained
on the same 1% of labeled data, we saw a top-1
accuracy of -4%. The difference in performance
was even more apparent in models trained using
only 0.1% of the labeled data. For models trained
with 0.1% of the labeled data, the baseline model
achieved an top-1 accuracy of only -99%. The
Dropout CT model trained on the same amount of
labeled data achieved a top-1 accuracy of -12.25%.
This improvement in top-1 accuracy demonstrates
the utility of consistency training on unlabeled data
when labeled data is extremely limited. Table 1
also compares the top-1 accuracy of the baseline
and Dropout CT model when tested on utterances
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Figure 2: Comparison of top-1 accuracy relative change
for baseline and Dropout CT models trained on different
amounts of labeled data. Data points are shown for all
three experiments run for a given model differing only
in training sample (often overlapping).

not seen during training. Given the same model
the top-1-unseen accuracy was lower than the top-1
accuracy, as expected since this represents a more
difficult task. However, we still saw a performance
improvement in top-1-unseen accuracy when ap-
plying consistency training.

In Figure 2 we plot the top-1 accuracy of the
baseline and Dropout CT model as we varied the
amount of labeled training data. While both the
baseline and Dropout CT models benefited from
training with additional labeled data, the benefit
was much greater for the baseline model. Figure 2
also sheds light on the difficulty of the domain
classification task. We see that a baseline model
trained on 2% of the labeled data has comparable
perfomance to a baseline model trained on all the
labeled data.

4.3 Size of unlabeled data

Results on varying the size of the unlabeled train-
ing data our Dropout CT model trained with 0.1%
of the available labeled data are shown in Figure 3.
We see that even when using only 25% of the un-
labeled data (742k instances), consistency training
with dropout-based augmentations achieved a top-1
accuracy of -23%. Increasing the amount of unla-
beled data generally led to improved performance.

4.4 Types of augmentation

Table 2 shows our experiments comparing CT mod-
els that used different types of data augmentations,
where each model was trained on only 0.1% of
the labeled data. Overall, every data augmenta-
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Top-1 Top-1-Unseen

% Labeled data Count Baseline Dropout CT Baseline Dropout CT

0.1% 2998 -98.96% -12.25% -98.16% -26.66%
1% 26989 -67.33% -4.16% -67.67% -9.09%
2% 53978 -2.40% -2.71% -14.73% -5.62%
5% 134945 -1.52% -2.50% -3.12% -4.64%
25% 674725 -0.60% -0.64% -1.39% -1.39%
100% 2698903 0% - 0% -

Table 1: Top-1 accuracy relative change for baseline models trained on different amounts of labeled data.

FAR FRR

Top-1 Video Shopping Music Video Shopping Music

Baseline -98.96% -100% -100% -100% 137% 766% 2877%
Dropout CT -12.25% 308% 344% 71% 59% 346% 543%
MARUPA CT -22.42% 1145% 2844% 14% 64% 191% 1760%
Back-translate CT -9.14% 370% 733% 106% 27% 20% 132%
Dropout+MARUPA CT -21.79% 839% 3372% 14% 73% 236% 1695%
Dropout+Back-translate CT -9.66% 267% 567% 131% 32% 14% 91%

Table 2: Top-1 accuracy, false acceptance rate (FAR), and false rejection rate (FRR) relative change for the
supervised baseline model and the consistency-training models using different underlying data augmentations. All
models are trained with 0.1% labeled data. Metrics are reported as relative change compared to a fully supervised
model trained using 100% of labeled data. The ground truth test data included 44,221 Music utterances, 2,145
Shopping utterances, and 904 Video utterances.
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Figure 3: Comparison of top-1 accuracy relative change
for Dropout CT models trained on different amounts of
unlabeled data. All models were trained using 0.1% of
the labeled data.

tion method helped CT to perform better than the
baseline model. Out of all the augmentation meth-
ods we tested, Back-translate CT performed best.
The Back-translate CT model achieved an aver-
age top-1 accuracy of -9.14%, followed by the
Dropout+Back-translate CT model with a top-1
accuracy of -9.66%. MARUPA models in general

performed worse than Back-translate models, but
still had significant improvement over the baseline.

We found mixed results on the performance
benefit of combining types of augmentations
together for consistency training. While the
Dropout+MARUPA CT model had a slightly higher
top-1 accuracy than the MARUPA CT model (-
21.79% vs. -22.42%), the Dropout+Back-translate
CT model performed slightly worse than Back-
translate CT (-9.66% vs. -9.14%).

We note that the Dropout CT methods, although
slightly less performant than Back-translate CT
models, have a greater advantage from an oper-
ations perspective. Dropout augmentation does
not require any kind of domain expertise, pre-
computation, or external translation models, which
can greatly reduce data-preprocessing time and op-
erational costs.

In addition to top-1 accuracy, Table 2 shows
false acceptance and false reject rates for three dif-
ferently sized domains. The baseline model incor-
rectly rejected all utterances for which the ground
truth domain was one of Video, Shopping, or Mu-
sic. More interestingly, for a pair of models the
better performing model in terms of top-1 accu-
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racy was not always the better performing model
in terms of false acceptance or rejection rates for a
given domain. For example, although the Dropout
CT model had a higher top-1 accuracy than the
MARUPA CT model (-12.25% vs. -22.42%), if
lowering the false reject rate for the Shopping do-
main is the highest priority, then the MARUPA CT
model may be more appropriate.

5 Related work

5.1 Data Augmentation in NLP

Hedderich et al. (2021) provide a survey of NLP
techniques for training models in low-resource sce-
narios. One of the most common techniques to
address this is data augmentation, which produces
new input instances by applying transformations to
existing data.

In our study, we applied hidden-space augmen-
tations by using independently sampled dropout
masks for the same instance. Prior work has also
proposed dropout as a data augmentation technique.
Bouthillier et al. (2015) demonstrate that the effect
of dropout on a neural network can be replicated by
projecting dropout noise back into the input space
and training a model on the generated data. Zhao
et al. (2019) show that dropout can be viewed as
equivalent to data augmentation whenever the in-
put space dimension is equal to or higher than the
output space.

5.2 Consistency training

Consistency regularization, also known as consis-
tency training (Chen et al., 2021), is a popular tech-
nique in Semi-Supervised Learning. The underly-
ing idea is that model predictions for a given data
instance should not change much when that data
instance is perturbed. Xie et al. (2020) proposed
UDA, a framework for leveraging data augmenta-
tion in SSL settings by jointly minimizing a stan-
dard supervised loss with consistency-based loss
on data and its augmentations.

5.3 Contrastive learning

The goal of contrastive learning (Chopra et al.,
2005), which is very similar to consistency learn-
ing, is to learn a data representation such that simi-
lar data instances are located near to each other in
the representation space and dissimilar instances
are pushed apart. Wang and Isola (2020) showed
that optimizing a contrastive metric can lead to
better alignment and uniformity of features in the

embedding space. Gao et al. (2021) show that stan-
dard dropout noise can outperform other types of
data augmentation for contrastive learning of sen-
tence embeddings.

6 Conclusion

With the aim of developing a strategy to efficiently
leverage large amounts of unlabeled data in de-
ployed NLU systems, we examined three different
augmentation techniques for consistency training
using real-world data. Back-translation performed
the best, dropout was slightly behind and para-
phrase by human users was the worst-performing
technique. From an operations perspective dropout
is more favorable because it doesn’t require any ex-
tra system resources and is quick to compute. Para-
phrasing by back-translation requires a machine-
translation model that can translate to an interme-
diate language and back. This adds extra cost
and processing time for unlabeled data which
scales linearly with the amount of unlabeled data.
For industry-scale NLU applications with massive
amounts of data, dropout-based consistency train-
ing can provide performance gains over purely su-
pervised methods with minimal additional resource
overhead.
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these experiments, we used the Dropout CT model
trained on 0.1% of labeled data. We did not train
multiple models for each random data split.

Top-1 relative change

Dropout CT* -11.84%

confidence thresh= 0.6 -11.01%
confidence thresh = 0.3 -11.42%
confidence thresh = none -32.37%

TSA schedule = log -13.70%
TSA schedule = exp -85.69%
TSA schedule = none -14.22%

softmax temp = 0.7 -13.70%
softmax temp = 0.9 -12.87%
softmax temp = none -11.94%

Table 3: Ablation studies related to confidence-
based thresholding (confidence thresh), training-signal-
annealing (TSA) schedule, and softmax temperature. In
this table Dropout CT is the base model that each subse-
quent model modifies. We report the Dropout CT score
only for the model trained on the same 0.1% data sample
as used for the ablation-study experiments. All reported
numbers are Top-1 accuracy relative changes compared
to the performance of a baseline model trained with
100% labeled data. *For the base Dropout CT config-
uration, we used a linear TSA schedule, a consistency-
loss softmax temperature of 0.85, and consistency-loss
confidence threshold of 0.45.
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