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Abstract

We propose a system that assists a user
in constructing transparent information
extraction models, consisting of patterns
(or rules) written in a declarative lan-
guage, through program synthesis. Users
of our system can specify their require-
ments through the use of examples, which
are collected with a search interface. The
rule-synthesis system proposes rule can-
didates and the results of applying them
on a textual corpus; the user has the op-
tion to accept the candidate, request an-
other option, or adjust the examples pro-
vided to the system. Through an inter-
active evaluation, we show that our ap-
proach generates high-precision rules even
in a 1-shot setting. On a second evalua-
tion on a widely-used relation extraction
dataset (TACRED), our method generates
rules that outperform considerably man-
ually written patterns. Our code, demo,
and documentation is available at https:
//clulab.github.io/odinsynth/.

1 Introduction
Rule-based methods for information extraction
address the opacity of neural architectures by
producing models that are completely transpar-
ent, i.e., they are usually a collection of rules
written in a declarative language. Such models
are better suited for incremental improvements,
as each individual rule can be explicitly inter-
preted. However, these benefits do not come
for free: users of such systems must be familiar
with the underlying declarative rule language,
and, potentially, with representations of syntax
such as syntactic dependencies. None of these
are trivial to users outside of natural language
processing (NLP), which, we argue, should be
the target users of these systems.

To mitigate the above limitation, we propose
a human-machine interface (HMI) that: (a) lets

users synthesize rules from natural language
examples, and correct them without necessarily
understanding the rule syntax (although expert
users who do have access to the actual rule
produced), (b) generates rules in a few-shot set-
ting, i.e., from a very small number of examples.
The latter contribution is possible because our
rule synthesis engine has been pretrained on a
large collection of rules that were automatically
generated from a large text corpus (Vacareanu
et al., 2022). In other words, our rule synthe-
sis approach is akin to prompting for language
models (Liu et al., 2021). That is, we first train
an open-domain rule synthesis model, and then
we guide its predictions to the task of inter-
est using a small number of examples of the
desired extractions (the “prompt”).

We include two types of evaluations that
prove the value of the proposed approach. The
first evaluation focuses on interactive sessions
where users generate rules that extract men-
tions of named entity classes, e.g., CITY or
ACADEMIC INSTITUTION from a single exam-
ple extraction. Using six different users, we
show that, despite the minimal supervision,
the tool produces named entities in the corre-
sponding classes with high precision, e.g., pre-
cision at 20 (P@20) at over 75% for the CITY
class. This suggests that the proposed HMI is
useful to domain scientists that need to per-
form information extraction quickly, without
understanding the underlying NLP technology.
For completeness, we also include a traditional,
non-interactive evaluation, on the TACRED
dataset (Zhang et al., 2017), through which
we show that the rules synthesized by our ap-
proach outperform the manually-written rules
by over 4 F1 points, even though our synthesis
component is not re-trained on the TACRED
data.
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Figure 1: The architecture of our proposed system.

2 Architecture
At a high level, the proposed system consists
of two main modules: a rule synthesis com-
ponent, and an UI module to facilitate rapid
rule prototyping with minimal programming
or linguistic knowledge. The rule synthesis
component consists of: (a) a searcher that ex-
plores the possible rule space, and (b) a neural
scorer that prioritizes next steps during rule
generation. Figure 1 summarizes the overall
architecture. The user selects a handful of ex-
amples after an initial query. Then, our system
proposes a rule, together with its potential ex-
tractions. The user then decides if this rule
is satisfactory. If not, the user can either ask
for a new rule or add new examples (positive
or negative). This process repeats until the
generated rule is accepted. We describe these
components in detail in the next two sections.

3 Rule Synthesis
Our proposed approach for rule generation fol-
lows closely the method proposed in (Vacare-
anu et al., 2022). For completeness, we summa-
rize it here as well. Our rule synthesis method
uses enumerative search that is guided by a
transformer-based scoring mechanism, and is
optimized using search-space pruning heuris-
tics. Our transformer model scores each po-
tential next state (where a state contains the
incompletely generated rule up to this point),
given the current state, such that the number of
states to be explored is minimized. Specifically,
our system consists of two main components:
A searcher, with Branch and Bound (Land
and Doig, 1960) as the underlying algorithm.
The searcher uses the scores assigned by the
scorer (below) to determine the order of ex-
ploration, choosing the state with the highest
score, regardless of its position in the search

tree. As such, it is important for the scorer
to assign high scores to states that are in the
sub-tree that leads to the desired final rule,
and lower scores to all other states;

A scorer, with a transformer backbone that
is initialized with a pretrained model, but fine-
tuned through self-supervision, i.e., over auto-
matically generated rules (see Section 3.2). The
scorer uses the current state and the specifica-
tion, i.e., the natural language examples to be
matched by the generated rule, to score each
potential next state.

The searcher is responsible for exploring the
states in priority order (as determined by the
scorer), and deciding if a given state is suc-
cessful (i.e., it is a valid query and correctly
extracts the requested highlighted words and
nothing more). The search space can be inter-
preted as a tree, where the root is the initial
candidate solution and the children of a node
n are the candidate solutions that the node n
could expand into. Given this, the searcher
can be seen as iteratively applying a sequence
of three operations: (a) Expand the current
state according to the domain-specific language
grammar, (b) Score each expanded candidate
next state and insert them into the priority
queue, and (c) Select from the queue the state
with the highest score to be the next state. We
repeat this process until we find a solution or
we reach our step limit.

The scorer assigns a numerical value to states
to establish the order of exploration. We ex-
plore two variants: a static variant, which
assigns static weights to states based on their
components, and a contextual neural variant
based on a self-supervised method that assigns
contextual state scores based on the current
context.

As a simple example, consider a user that
wants to learn named entities belonging to the
class CITY. She may start with a specifica-
tion based on the sentence “Regina Romero
is the mayor of Tucson, Arizona, having
been elected after. . . ”, in which she high-
lights “mayor of” as the relevant context rep-
resentative of this class, and “Tucson” as
the desired entity to be extracted. From
this specification, our method would generate
the rule: [lemma=mayor] [tag=IN] (?<arg>
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[tag=NNP]+),1 which picks up “mayor” fol-
lowed by a preposition (part-of-speech tag IN)
as the context, and a sequence of 1 or more
proper nouns as the entity to be extracted.

3.1 Multiple sentences
Our system can handle specifications that con-
tain multiple sentences and their highlights.
We require the enumerative searcher to find a
rule that would satisfy all the constraints for
all sentences in the specification. When scoring,
we score a (current state, next potential state,
single-sentence specification) triple, and then
average over all sentences in the specification
to obtain a final score for the (current state,
next potential state) transition.

3.2 Training the neural scorer
Unlike the static scorer, the neural guiding
function of the contextual scorer needs to be
trained, which we do with self-supervision.
Because there is no large corpus of Odinson
rules, we artificially generate one with random
spans of text that we randomly manipulate
into rules. Our random-length text spans are
chosen from the UMBC corpus (Han et al.,
2013). Each token in this span is then ran-
domly manipulated into an Odinson token con-
straint based on either word, lemma, or part-
of-speech. For example, a span such as the
dog barked might be converted to [tag=DT]
[word=dog] [lemma=bark]. Then, to expose
the model to additional rule components (e.g.,
alternation, quantifiers), we add further ma-
nipulations, again with randomization. To add
alternations, we build a temporary query by
replacing one of the token constraints with
a wildcard that can match any token and
query the corpus for an additional sentence
that has different content in that position.
This new content is added as an alternation.
For example, with the temporary version of
the above query [tag=DT] [word=dog] [],2
we might find A dog runs, resulting in the
following alternation: [tag=DT] [word=dog]
([lemma=bark]|[lemma=run]). To add a
quantifier (i.e., *, +, or ?), we select a token
to modify and a quantifier to add, and check

1Our rules are generated in the Odinson rule lan-
guage (Valenzuela-Escárcega et al., 2020).

2The Odinson wildcard, [], matches any token.

the corpus to ensure that the addition of the
quantifier yields additional results.

After generating each random rule, we build
a corresponding specification by querying the
UMBC corpus: the retrieved sentences and
their matched spans constitute specifications.
However, having a specification and the corre-
sponding rule is not enough to train our model.
We also need a correct sequence of transitions
from the initial placeholder to the final rule.
For this, we use an Oracle to generate the short-
est sequence of transitions, which we consider
to be the correct sequence for our purposes.
This sequence of transitions, together with the
specification, forms the training data for our
model. Note that we train only on this data,
i.e., after this self-supervised training process
the transformer’s weights are fixed. We train
using the cross-entropy loss and with a cyclical
learning rate, as suggested by (Smith, 2017).
Further, we employ a curriculum learning ap-
proach (Bengio et al., 2009; Platanios et al.,
2019), splitting the training data by sentence
length and by pattern length. We did not tune
our hyperparameters.

4 User Interface

We accompany the above rule synthesis com-
ponent with a user interface (UI) to facilitate
rapid prototyping with minimal programming
or linguistic knowledge. We showcase the UI in
Figure 2, split into 5 blocks (a–e). Initially, the
user has to do an initial search for sentences
of interest (a). Then, she selects any relevant
sentence, highlighting the parts for which she
wishes to obtain a rule, e.g., highlighting the
capital city of as the context and Amman as
the entity of interest (b). The system then
returns a potential rule which satisfies the cur-
rent constraints, together with what the rule
extracts (c). Note that we display the rule for
the benefit of expert users, but most users are
not required to understand the format of the
rule. That is, a user can understand the rule’s
impact by analyzing what such a rule extracts.
She may add negative examples (a negative
example is a sentence on which the output rule
should not match anything), or ask for a new
rule (d). This process is repeated until the user
is satisfied with the given rule (e).
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Figure 2: Walkthrough example of the user interface.
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5 Evaluation
5.1 Interactive Evaluation

Figure 3: Example of a specification annotated by a
user in the interactive evaluation. The entity is high-
lighted in orange and its context in gray.

We evaluated the performance of the sys-
tem in an interactive scenario with a human
in the loop. The purpose of the interactive
evaluation is to quantify the performance of
rules generated with the interface to extract
specific entity types using a limited amount
of examples. The user is tasked with using
the interface to synthesize a rule to extract a
specific named entity type, and then manually
verify that the extractions indeed belong to
the intended entity type. Given an entity type,
the user queries an index of the UMBC corpus
to pinpoint and select a pattern in one of the
retrieved sentences. This pattern works as the
user’s specification, composed of the context
and an entity of the relevant type (See section
3). Figure 3 depicts an example of a pattern
selection.

Once the specification is selected, it is used
to synthesize a candidate rule and retrieve a
sample sentences with matches. We restrict the
evaluation to contain a single specification, to
emulate a one-shot learning scenario, where the
model generates rules using a limited amount
of information. The user inspects the rule and
its matches to determine whether the candidate
rule faithfully represents the original intent. If
it does not, the next candidate rule is generated
and the process is repeated. We encouraged
users to repeat this process up to three times,
but allowed them to repeat it a fourth time at
their discretion.

The interactive evaluation is carried out
for the following entity pairs: CITY/CAPITAL,
PERSON/ACTOR, and ORGANIZATION/ACADEMIC
INSTITUTION. Each pair represents two differ-
ent levels of granularity of the same concept.

One to two users were assigned to each pair
and each user was instructed to use the inter-
face to synthesize three rules per entity type.
For every rule, they retrieved and manually
verified precision at 10 (P@10) and precision
at 20 (P@20) on the most frequent entities in
the matches from the UMBC corpus.

Table 1 contains precision at 10 and precision
at 20 for each of the entity types. We can
observe that using minimal supervision, i.e.
using a single specification to synthesize a rule
for a named entity type, the system generates
rules that have high precision (P@20 ≥ .77)
for coarse grained named entities and similar,
albeit slightly lower precision (P@20 ≥ .63), for
finer grained named entities. This is achieved
with no more than three or four iterations,
highlighting how domain experts can readily
benefit from our proposed HMI.

Entity Type P@10 P@20
CITY .85 .85
CAPITAL .83 .75
PERSON .78 .77
ACTOR .71 .72
ORGANIZATION .93 .85
ACADEMIC INSTITUTION .70 .63

Table 1: P@10 and P@20 of our rule synthesis on
6 different named entity types. CITY, PERSON and
ORGANIZATION are coarse types. CAPIITAL, ACTOR and
ACADEMIC INSTITUTION are fine grained types.

5.2 Non-interactive Evaluation
To facilitate a comparison with other ap-
proaches, we also include an evaluation on the
TACRED dataset, a widely-used relation clas-
sification dataset (Zhang et al., 2017). In this
setting, we cluster the training sentences to
generate specifications. In particular, for each
sentence, we compute an embedding by aver-
aging the embeddings of the words in between
the two given entities.3 Then, we compare the
similarity of two sentences by cosine similarity,
and cluster similar sentences together; each
cluster becomes one specification. Then, for
each cluster we run our system to generate a
rule, considering the words in-between the two
entities as the highlighted part.

We compare our approach against sev-
eral state-of-the-art approaches, as well as
three baselines. Our first baseline is
a traditional sequence-to-sequence approach
(Sutskever et al., 2014) with transformers
(Vaswani et al., 2017). We train it to decode
the rule using the specification as input, akin

3We used GloVe (Pennington et al., 2014).
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to a traditional machine translation task. Our
second baseline (Patterns) is a rule-based sys-
tem that uses the hand-made rules compiled for
TACRED (Zhang et al., 2017). Our third base-
line No Learning consists of directly returning
a rule for trivial cases (e.g. no words or only
on word in between the two entities). When
there is no word, the final rule is empty. When
there is one word, the final rule consists of a
word, lemma, or tag constraint, depending on
which will result in a shorter rule. We present
our results in Table 2.

We note that both variants of our scorer
(static and dynamic) perform better than the
seq2seq and no-scorer baselines (34 F1 vs 28
F1). Of particular relevance for our compar-
ison is the baseline that relies on the hand-
crafted patterns for TACRED. Our contextu-
alized weights model obtains a higher F1 score
(41.4 F1 vs 36.6 F1), although at the cost of
precision, but with much higher recall. Our re-
sults add evidence that it might be possible to
replace the human expert with a neural expert.
When comparing our contextualized-scoring
approach to the supervised baselines, we note
that while we do not match their performance,
there are two important factors to consider.
First, our proposed approach is trained on do-
main agnostic data that we automatically gen-
erated, and then applied on TACRED as is,
without fine-tuning. On the other hand, the
supervised approaches that we compare with
train/fine-tune on the TACRED splits. Sec-
ond, the output of our approach is a set of
human-interpretable rules, while the output of
the other approaches is a statistical model that
produces only the final label. In other words,
previous work is much more opaque and thus
more difficult to interpret, debug, adjust, main-
tain, and protect from hidden biases present
in the training data (e.g., Kurita et al., 2019;
Sheng et al., 2019).

6 Conclusion and Future Work

We introduced a human-machine interface that
lets users synthesize rules from natural lan-
guage examples, and correct them without
necessarily understanding the rule syntax. In
an interactive evaluation, we showed that our
method is capable to rapidly generate high-
precision rules for the extraction of named enti-

Model P R F1
Baselines

Seq2Seq with Transformers 53.0 19.0 28.0
Patterns 86.9 23.2 36.6
No Learning 53.0 19.0 28.0

Supervised Approaches
Joshi et al. (2020) 70.8 70.9 70.8
Zhou and Chen (2021) – – 74.6
Cohen et al. (2020) 74.6 75.2 74.8

Our approach
Static weights 54.9 24.6 34.0
Contextual weights (BERT-Tiny) 57.6 29.6 39.1
Contextual weights (BERT-Mini) 57.2 32.5 41.4
Contextual weights (BERT-Small) 57.3 32.2 41.2
Contextual weights (BERT-Medium) 55.0 31.8 40.3
Contextual weights (BERT-Base) 55.6 32.4 41.0

Table 2: Results of our rule synthesis on the testing
partition of TACRED (given as precision (P), recall
(R), and F1 scores), compared with 3 baselines and
previous supervised approaches. We include variants of
our contextualized method using different transformer
backbones.

ties from a single example in natural language.
We also demonstrated that in a traditional,
non-interactive evaluation on the TACRED
dataset, our method produces rules that out-
perform manually-written rules, despite the
fact that our rule synthesis engine is not re-
trained on the TACRED data.

While these initial results are exciting, there
is plenty of work left to do. First, the rules
generated by the system are “surface” rules,
i.e., they act over sequences of tokens. Adding
support for the generation of rules over syntax
would allow for capturing more complicated re-
lations and over greater distances. Second, the
system is configured to generate a single rule
that captures the whole specification, which
may include multiple (positive or negative) ex-
amples. This may force the system to produce
complicated rules. A better alternative would
be to produce several simpler rules that to-
gether capture the whole specification. Lastly,
the system generates a sequence of rule candi-
dates that are presented to the user one-by-one,
which may bias the user’s perspective and im-
pact usability. For example, the current system
tends to initially propose rules that are overly
general, which yield low-precision results. To
better understand users’ preferences (i.e., do
users prefer high-precision or high-recall rules
initially?) user studies must be carried out.
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