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Abstract
Transformer-based models trained on text and
vision modalities try to improve the perfor-
mance on multimodal downstream tasks or
tackle the problem of lack of grounding, e.g.,
addressing issues like models’ insufficient com-
monsense knowledge. While it is more straight-
forward to evaluate the effects of such mod-
els on multimodal tasks, such as visual ques-
tion answering or image captioning, it is not
as well-understood how these tasks affect the
model itself, and its internal linguistic represen-
tations. In this work, we experiment with lan-
guage models grounded in videos and measure
the models’ performance on predicting masked
words chosen based on their imageability. The
results show that the smaller model benefits
from video grounding in predicting highly im-
ageable words, while the results for the larger
model seem harder to interpret.

1 Introduction

A traditional language model is only exposed to
textual data. While ample information exists in
the form of text, some text-external knowledge
might be missing, such as commonsense knowl-
edge about the physical world, how objects look
like, relate to each other, and how we interact with
them. There is an abundance of work on trying
to expose language models to other information
sources and modalities, or in other words, ground-
ing them; however, it is not clear how that would
affect a language model in general. One promis-
ing modality to ground language models in is vi-
sion. Previous work has studied the grounding of
language models in visual input and how this af-
fects their performance on downstream multimodal
tasks, such as visual question answering and im-
age retrieval (Touvron et al., 2021; Li et al., 2020b;
Lu et al., 2019; Su et al., 2019), and on models’
“understanding” of the world and their grasp of
commonsense knowledge (Sileo, 2021; Hendricks
and Nematzadeh, 2021; Norlund et al., 2021).

Our aim with this work is to see whether
grounding in videos affects the performance of
transformer-based language models on masked
lnaguage modeling. Masked language modeling is
the task of predicting one or more masked tokens,
given other tokens in the sentence. Evaluating a
model’s performance on such cloze-test-style fill-
in-the-blank tasks is simple to implement and does
not require expensive annotated data. Still, it can
provide us with helpful intuition about how models
work. This method also makes it easy to compare
language models grounded in different modalities
without further fine-tuning them. We choose to
experiment with videos rather than images because
they contain more information about the physical
world, and may be more useful for the development
of spatial, temporal and causal reasoning. Videos
are also less studied in the literature.

The masked words that we want the model to
predict are chosen based on their imageability. Im-
ageability is a well-established notion from the field
of psychology, defined as “the ease with which a
word gives rise to a sensory mental image” (Paivio
et al., 1968). For instance, words like “to prance”
and “oven” are considered highly imageable, while
words like “to consider” and “problem” are not.
Imageability is highly correlated with concreteness,
but the class of imageable words also includes ab-
stract words, e.g. emotion words such as “anger”.
At the same time, this class does not include less ex-
perienced, yet concrete, words such as “armadillo”
(Paivio et al., 1968). We use a dataset consisting
of 2,645 words annotated with their imageability
scores (Bird et al., 2001) to experiment with differ-
ent types of models and investigate whether there
is a performance difference between grounded and
not grounded language models when predicting
low-imageability versus high-imageability words.
The words in our dataset are labeled with their
parts-of-speech, which we will use in our experi-
ments and analysis of the results.
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We continue the paper with explaining the mod-
els’ architecture in §2 and the data sets used in
§3. The experimental settings and the results are
described in §4, where we also analyze the results
and try to interpret them. In §5 we briefly discuss
some related work.

2 Model

We mainly follow the data preprocessing steps, the
architecture, and the training regime of VideoBERT
model (Sun et al., 2019). We experiment with a pre-
trained BERT-base model (Vaswani et al., 2017)
and DistilBERT (Sanh et al., 2019). BERT is essen-
tially a transformer-based model (Vaswani et al.,
2017) pretrained with masked language modeling
and next sentence prediction objectives, and Distil-
BERT is the distilled version of the BERT model,
which has half the number of layers as BERT-base.
Both language models are pretrained on the same
data.

As for the video features, we use the I3D model
pre-trained on the Kinetics dataset (Carreira and
Zisserman, 2017) to encode video clips that are
sampled at 20 fps and are 1.5 seconds long. We
then apply hierarchical k-means clustering to the
video features, setting the number of hierarchy lev-
els to 4 and the number of clusters per level k to
12, which results in 124 = 20,736 clusters. Hence-
forth, we use the closest cluster centroids as video
tokens instead of continuous video features. As the
output of the I3D model is of size 600, we use a
fully connected layer to map to the embedding size
of the respective model.

We further train the pre-trained language models
with a masked language modeling training objec-
tive with a masking probability of 0.15 for each
modality. The embeddings of the word tokens (wi)
and the video tokens (vj) are concatenated with a
new special token [>] as the text–video separator.
This results in an input I of the form

I = ([CLS], w1, ..., wn, [>], v1, ..., vm, [SEP])

The [CLS] and [SEP] tokens are the models’
special tokens for classification and separation of
sentences, respectively. The embedding weights
and video features are frozen during training. The
input I is then fed to the model to get the output
O, which is mapped to the vocabulary space by
means of a projection layer consisting of two fully
connected layers (FC) and layer normalization:

ŷ = FC2(LN(FC1(O)))

All the new layers and embedding weights are
initialized randomly from a uniform distribution
(He et al., 2015). The final objective is to maximize
the log-likelihood

∑L
l=1 log p(ŷl |x\l; θ), where l

is the masked token, and the xs are the input tokens,
text or video, without the lth token. Special tokens
are never masked.

We train two models with almost the same archi-
tecture, as described above, once only with textual
input, and once with text and video input. The only
difference in the structures is that the text model
lacks the projection layer, which makes comparison
between the models possible. The random seed is
the same for both models all the time and changes
by epoch. The models are trained using the Adam
optimizer with a learning rate of 10−5 and batch
size of 210. We stop the training when the model’s
loss and accuracy plateaus on the validation set.

The implementations and the pretrained weights
of the Hugging Face Transformer library (Wolf
et al., 2019) are used in these experiments.

3 Data

To get imageability scores for nouns and verbs,
we use Bird’s dataset, in which words with dif-
ferent parts-of-speech, are rated with imageabil-
ity scores from 100 to 700. For training and test-
ing the models, HowTo100M (Miech et al., 2019)
dataset is used, which is a collection of 1.2M nar-
rated English YouTube videos from various cate-
gories. We randomly choose 55K videos from the
dataset and split these into 45K videos for train-
ing, 5K for development, and 5K for testing, or in
other words 4.7M samples for training and ∼500K
for the other sets. To get some idea on how the
HowTo100M data looks, we measure the mean im-
ageability score on a random set of 300K tokens
from the dataset, which was 454 on type level, and
366 on token level, which shows a high frequency
of low imageability words in the dataset.

There are a total of 892 verb types and 1,304
noun types in the Bird dataset. We split the words
in the Bird dataset into low imageability (≤ 300)
and high imageability (≥ 500) ones. This results
in 114 low imageability and 511 high imageability
types, or 67K and 92K tokens, respectively. The
type-token ratio for low imageability words is 17×
10−4, while being 55× 10−4 for highly imageable
ones.
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Train Test Imageability Accuracy (∆) N. Acc. (∆) V. Acc. (∆)

D
is

til
B

E
R

T

Baseline Low 22.1 22.8 22.1
High 10.1 10.5 9.4

T T Low 34.3 24.0 35.7
High 16.8 16.6 17.5

TV TV Low 33.7 (-0.6) 23.7 (-0.3) 35.0 (-0.7)
High 17.7 (0.9) 17.2 (0.6) 18.9 (1.4)

TV T Low 34.1 (-0.2) 24.0 (0.0) 35.5 (0.2)
High 17.1 (0.3) 16.7 (0.1) 18.0 (0.5)

B
E

R
T

Baseline Low 24.4 23.7 24.4
High 10.8 12.4 7.5

T T Low 38.6 32.8 38.6
High 21.4 21.5 21.2

TV TV Low 39.1 (0.5) 32.9 (0.1) 39.6 (1.0)
High 21.9 (0.5) 21.8 (0.3) 22.0 (0.8)

TV T Low 39.3 (0.7) 33.0 (0.2) 39.7 (1.2)
High 21.0 (-0.4) 21.1 (-0.4) 20.7 (-0.5)

Table 1: Accuracy on low and high imageability words for the DistilBERT and BERT models. The results columns
are for the overall accuracy (noun and verb), the noun accuracy, and the verb accuracy, respectively. The ∆ is
the difference between that result and the corresponding result (in terms of imageability) of the T-T model. The
baseline is the model with pre-trained weights, but not fine-tuned on this dataset. For more details about the T and
TV abbreviations refer to the text.

4 Results and Analysis

The model is fed with those sentences from the
HowTo100M dataset that contains at least one word
from Bird’s dataset. For each sample, we only mask
one noun or verb at a time to make the analysis
simple. The experiments are done on two models
and in three different settings:

(1) only textual input to the text-only model (T-T),

(2) text and video input to text and video model
(TV-TV), and

(3) only text input to text and video model (TV-T).

The same settings are repeated for both DistilBERT
and BERT-base models.

Table 1 contains the main token-level results of
masked word prediction accuracy of the aforemen-
tioned three different scenarios on low and high
imageability nouns and verbs. The overall accu-
racy is simply a weighted sum of the noun and verb
accuracy. For DistilBERT, which is the smaller
of the two models, the results show an increase in
performance on high imageability when the model
is grounded in videos (TV-TV). For the same sce-
nario, but with low imageability words, we see
some decrease in performance, which might be
due to the model treating the video signal as noise.
The performance goes up when removing the video
from the input of the same model (TV-T). For high
imageability words in the same TV-T setting, the
results show some increase compared to the T-T
setting, which might be due to the model learning

information from the video input which is useful to
masked word prediction task, even in the absence
of the video signal.

On the other hand, for BERT, numbers are harder
to interpret. We still see some increase for high im-
ageability words, and more for verbs compared to
nouns, but we see more or less the same amount
of increase for low imageability words. It is hard
to say why this is happening only for the BERT
model, but one reason might be that the model re-
ceives more learning signals during training when
the sequences are longer (TV), hence the higher
number of masked tokens. Removing the video in-
put from the input (TV-T) hurts the high imageabil-
ity words the most, which shows the dependence
of the model on the video signal. These results are
not consistent with the DistilBERT model.

One should bear in mind that the relative in-
crease in accuracy for high imageability words,
e.g., between T-T and TV-TV, is higher than for
low imageability ones, as the accuracy for low im-
ageability words is always considerably higher than
that of the high imageability ones. For example,
an increase of 1.4% in high imageability verb pre-
diction accuracy in the DistilBERT TV-TV model
is a 7.4% relative increase, while 1.0% for BERT
TV-TV low imageability verbs is only a 2.5%. One
should also consider the fact that low imageability
words have a much higher frequency in the data,
which means the model has seen them more often.
While the average imageability score in the Bird
dataset is around 460, the average token-based im-
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ageability score is around 360 for Howto100M and
some other datasets, including Violin (Liu et al.,
2020), and TVQA subtitles (Lei et al., 2018).

The differences between different models’ per-
formances are not large, however, considering the
size of the test set, they are quite significant. Addi-
tionally, a bootstrap test always shows a p-value of
smaller than 3.9e− 5, which indicates a very high
significance for all the results. We ran the bootstrap
test as described in Berg-Kirkpatrick et al. (2012):
a sample x(i) of the same size as the test set is
drawn with replacement for b = 106 times, and
p-value is calculated as s/b, where s is the number
of times where δ(x(i)) > 2δ(x) holds. δ is the
performance difference of systems A and B, and x
is the original test set.

Comparing DistilBERT T-T and TV-TV shows
that the words that benefit from the video signal
are predominantly highly imageable ones, e.g., add,
cook, plant, hair, bottom, turn, pour, house, remove,
and ground, while low imageability words, such
as see, want, go, way, take, and like, see a reduc-
tion in prediction accuracy. Go is a special verb
in the sense that it typically appears as an auxil-
iary verb to indicate the future tense, which is low
in imageability. When removing the video signal
in BERT (TV-T), high imageability words see a
reduction in accuracy, while it is the opposite for
the low imageability ones. Interestingly, the top
30 words that benefit the most from the video sig-
nal in DistilBERT (TV-TV) have a 63% overlap
with the ones that see the most reduction when re-
moving the signal in BERT (TV-T). BERT (T-T)
is already good at predicting the words (high or
low in imageability), and does not benefit from the
video signal as DistilBERT. However, training it on
video signals apparently makes it more dependent
on them for predicting high imageability words, so
that removing the signal hurts the performance.

5 Related Work

Recent work on visual grounding has explored the
effects of joint modeling of paired textual and vi-
sual modalities, with a focus on neural models
based on the Transformer architecture (Frank et al.,
2021; Li et al., 2020b; Chen et al., 2020; Huang
et al., 2020; Lu et al., 2019). There is also some
work that goes deeper into the problem, such as
Sileo (2021), who studies the effects of visual
grounding on text processing abilities of a language
model using transferred and associative grounding,

and how they improve text-only baselines, such as
commonsense-related downstream tasks.

Another work is Hendricks and Nematzadeh
(2021), who study how text-image pre-trained trans-
former models perform in situations that require
“noun or verb understanding”. According to them,
such models perform poorly when evaluated on
verbs compared to other parts of speech. Ebert
and Pavlick (2020) experiment with an interactive
simulated kitchen environment and conclude that
certain machine learning models predict verbs less
accurately than nouns, given a scene. They are mo-
tivated by work in psychology showing that predict-
ing actions (verbs) is much harder than predicting
objects (nouns) for people, given a video scene and
the linguistic context of the word (Gillette et al.,
1999).

In this work, we mainly followed VideoBERT
(Sun et al., 2019), but there are other methods of
integrating text and video as well. One other work
is HERO (Li et al., 2020a), which does not use
discretized video features, but continuous features
with a regression loss. One other interesting work
is ClipBERT (Lei et al., 2021), which tries to uti-
lize sparse sampling to use fewer video frames to
improve the text-video downstream tasks. There
are also some work on joint representation of text
and video, such as ActBERT (Zhu and Yang, 2020)
and MIL-NCE (Miech et al., 2020).

6 Conclusion and Future Work

Although it is hard to draw strong conclusions
based on these results, it might be that smaller mod-
els benefit more from video grounding than larger
ones in the task of masked token prediction. The
results are in line with the recent work on image
grounding (Iki and Aizawa, 2021; Li et al., 2021),
which suggests that the visual input might not be
exploited by the model to the fullest. While the
results are not strongly indicative, these models
are relatively small and training data size is also
minimal. The data size is chosen based on the re-
sults in Sun et al. (2019), who show that this much
data should be enough to see some improvement.
Increasing the data and model size could be a direc-
tion for future work. Another interesting research
question that was not addressed in this paper is
whether we really need to ground in videos for the
model to gain the relevant knowledge, or can get
the same results by using images or sampled key
frame(s).
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Abstract
Despite achieving state-of-the-art zero-shot per-
formance, existing vision-language models still
fall short of few-shot transfer ability on domain-
specific problems. Classical fine-tuning of-
ten fails to prevent highly expressive models
from exploiting spurious correlations in the
training data. Although model-agnostic meta-
learning (MAML) presents as a natural alter-
native for few-shot transfer learning, the ex-
pensive computation due to implicit second-
order optimization limits its use on large-scale
vision-language models such as CLIP. While
much literature has been devoted to exploring
alternative optimization strategies, we identify
another essential aspect towards effective few-
shot transfer learning, task sampling, which
is previously only be viewed as part of data
pre-processing in MAML. To show the impact
of task sampling, we propose a simple algo-
rithm, Model-Agnostic Multitask Fine-tuning
(MAMF), which differentiates classical fine-
tuning only on uniformly sampling multiple
tasks. Despite its simplicity, we show that
MAMF consistently outperforms classical fine-
tuning on five few-shot image classification
tasks. We further show that the effectiveness of
the bi-level optimization in MAML is highly
sensitive to the zero-shot performance of a task
in the context of few-shot vision-language clas-
sification. The goal of this paper is to provide
new insights on what makes few-shot learning
work, and encourage more research into inves-
tigating better task sampling strategies.

1 Introduction

While existing machine learning models have
achieved human-level performance at various in-
dividual tasks, they generally lack the ability of
fast adaptation and generalization. In recent years,
transfer learning has been proven to be effective on
a wide range of Computer Vision (He et al., 2016;
Dosovitskiy et al., 2020) and Natural Language
Processing (Devlin et al., 2019; Lewis et al., 2020)

tasks. Specifically, recent advances in large-scale
vision-language models (Radford et al., 2021; Jia
et al., 2021; Li et al., 2022; Alayrac et al., 2022)
have demonstrated strong zero-shot ability on a
wide range of tasks. However, these models still
have certain limitations on concepts that require
extensive domain knowledge, such as Fungi Clas-
sification. We identify two major limitations in
current few-shot transfer learning literature, from
both evaluation and algorithm perspectives.
Limitation on evaluation: In current transfer
learning paradigm, the testing instances of a down-
stream task are drawn from the same distribution as
the training set. This evaluation setting can fail to
faithfully reflect whether a model has truly learned
a new concept, since modern deep neural networks
can easily memorize and exploit spurious corre-
lations from the training set (Brown et al., 2020).
Thus, we first propose a new evaluation scheme
for few-shot transfer learning where we replace
the original testing phase with meta-testing (Sec-
tion 3). With meta-testing, the testing distribution
are distinguished from the training.
Limitation on algorithm: To make an arbitrary
pretrained vision-language model learn new con-
cepts with few examples, model-agnostic meta-
learning (MAML) (Finn et al., 2017) presents as
a natural candidate. One major limitation of the
original MAML method is the expensive compu-
tation overhead due to implicit second-order opti-
mization. Most follow-up work (Finn et al., 2017;
Nichol et al., 2018; Rajeswaran et al., 2019; Raghu
et al., 2020; Von Oswald et al., 2021) has focused
on improving the optimization strategy. However,
we found that they all achieved comparable per-
formance despite of using different optimization
algorithms. This observation motivates us to ask:
If the specific choice of optimization method is not
the key to the empirical success of MAML, what
would be?

Inspired by related work in the area of multitask
7



Figure 1: Task sampling and optimization schemes of different algorithms. Evaluation with meta-testing is applied
in all of our experiments (b,c,d). Please find the detailed formulation in Section 3.

learning (Maurer et al., 2016; Tripuraneni et al.,
2020), we conjecture that task sampling itself is
an essential ingredient in learning new concepts
efficiently. To verify this hypothesis, we propose
a simple fine-tuning algorithm, Model-Agnostic
Multitask Fine-tuning (MAMF), which simplifies
MAML by using only first-order gradient-based
optimization while keeping the uniform task sam-
pling procedure intact. The goal is NOT to propose
yet another complex algorithm, but to investigate
what is the most important aspect for effective few-
shot transfer learning. We compare MAMF with
Classical Fine-tuning, which does not perform uni-
form task sampling, and first-order MAML (FO-
MAML) (Finn et al., 2017), which adopts complex
bi-level optimization upon sampled tasks. Our em-
pirical result demonstrates the importance of uni-
form task sampling and reveals limited effective-
ness of the bi-level optimization of MAML in the
context of few-shot transfer learning. We hope our
work encourages more research into exploring bet-
ter task sampling strategies for improving few-shot
transfer learning and meta-learning algorithms.

2 Problem Formulation

We are interested in a few-shot classification prob-
lem where we have a pretrained vision-language
model f with initial parameters θ. Let τ tr be a
training task sampled from a distribution p(τ tr),
and τ ts be a testing task sampled from p(τ ts),
where a task is defined to an induced sub-problem
by restricting the output space from the original
problem. Specifically, for an original classifica-
tion problem with M classes in total, we define a
task as a sub-problem where the output space is
a subset of N classes randomly sampled from the
M classes. We further denote N tr and N ts as the

number of classes in each training and testing task.
T tr and T ts as the total number of sampled tasks
respectively. The Classical Fine-tuning setting is
depicted in Figure 1 (a), where we have T tr = 1
training tasks with N tr = M classes, and T ts = 1
testing tasks with N ts = M classes. That is, both
training and testing sets are treated as one single
task containing data points from all M classes.

3 Reformulating Classical Fine-tuning
Evaluation with Meta-testing

Our goal is to enable and evaluate a model’s ca-
pability of generalizing to new concepts with few
examples. The Classical Fine-tuning setting is not
sufficient since the training and testing data points
are drawn from the same distribution. Therefore,
we propose to replace the original joint testing in
Classical Fine-tuning with meta-testing.

Meta-testing is first introduced by related work
in meta-learning (Thrun and Pratt, 2012; Vinyals
et al., 2016; Finn et al., 2017). As shown in the
testing phase of Figure 1 (b,c,d), we first sample
T ts tasks (T ts > 1), each containing data points
from N ts classes (1 < N ts < M ). For each sam-
pled testing task τ ts, we further randomly split
the data points into two disjoint sets, i.e., support
set A and query set B, with corresponding loss
Lτ ts,A and Lτ ts,B . Then we further update the
model parameters on the support set and evaluate
on the query set. By randomly sampling multiple
tasks during meta-testing, we can distinguish the
testing distribution from training, which largely
prevents the model from exploiting spurious cor-
relations in the training set. Essentially, we make
the original problem more challenging by requir-
ing the model to quickly generalize to potentially
unseen task distributions during testing. The objec-
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tive is to find an updated model parameter θ̃ that
minimizes the expected loss on all testing tasks
Eτ ts∼p(τ ts)

[
Lτ ts(θ̃)

]
. Specifically, under this set-

ting, MAML’s objective can be written as follows:

min
θ̃

Eτ ts∼p(τ ts)

[
Lτ ts,B

(
U ts
τ ts,A(θ̃)

)]
,

θ̃ = min
θ

Eτ tr∼p(τ tr)

[
Lτ tr,B

(
U tr
τ tr,A(θ)

)]

where U tr
τ tr,A is the optimization procedure that

updates the initial parameter θ for one or more
steps on the support set of a training task τ tr.

4 Model-Agnostic Multitask Fine-tuning

As shown above, previous MAML-like methods
update model parameters iteratively via a complex
bi-level optimization scheme (Finn et al., 2017;
Raghu et al., 2020; Rajeswaran et al., 2019), which
is computationally expensive. We hypothesize that
the task sampling process itself is more impor-
tant than specific choice of optimization method.
To verify this hypothesis, we propose a simple
algorithm, Model-Agnostic Multitask Fine-tuning
(MAMF), where we keep the uniform task sampling
strategy as MAML but perform simple first-order
gradient-based optimization on each task sequen-
tially. Unlike MAML, MAMF does not further
split the tasks into support and query sets. The
objective of MAMF can be written as:

min
θ̃

Eτ ts∼p(τ ts)

[
Lτ ts,B

(
U ts
τ ts,A(θ̃)

)]

θ̃ = θi=T tr ,θi = U tr
τ tri

(θi−1), i ∈ {1, 2, ..., T tr}

where θ0 = θ and U tr
τ tri

is the optimization proce-
dure that updates the parameters from the previ-
ous task on the current training task τ tri . MAMF
can also be viewed as a simplified version of Rep-
tile (Nichol et al., 2018), where we further elim-
inate the hyper-parameter of step size. The goal
is to keep the algorithm as simple as possible to
distinguish the impact of task sampling. Figure 1
depicts a comparison of different data sampling
and optimization schemes of different algorithms.

5 Experiment

5.1 Experimental Setup

We aim to investigate two main questions experi-
mentally under a few-shot vision-language trans-
fer learning setting:

• Q1: Is the uniform task sampling during train-
ing important?

• Q2: Is the bi-level optimization in MAML
consistently effective?

To answer the first question, we compare MAMF
with Classical Fine-tuning where the only differ-
ence is the additional uniform task sampling. For
the second question, we compare FOMAML1 and
MAMF.

We perform comprehensive experiments on five
few-shot image-classification datasets with various
domains, including ClevrCounting (Johnson et al.,
2017), Amazon Berkeley Objects (ABO) (Collins
et al., 2021) Material, Fungi (Su et al., 2021), Mini-
Imagenet (Vinyals et al., 2016), Caltech-UCSD
Birds 200 (CUB) (Welinder et al., 2010). We
compare different learning algorithms by apply-
ing them to a large-scale vision-language model,
i.e., CLIP (Radford et al., 2021). We adopt
the contrastive classification framework following
(Radford et al., 2021) where we directly match
prompted label text with encoded images. This
framework allows us to avoid the label permutation
problem raised by (Ye and Chao, 2021). Details on
the datasets and the classification framework can
be found in Appendix A and B.

Given a dataset with M classes in total, we
experiment with various task configurations re-
garding the number of sub-sampled classes N ts,
where 2 ≤ N ts ≤ M . That is, during meta-
testing, each task can be formulated as a N ts-
way classification and we randomly sample T ts

such tasks. During training, for Classical Fine-
tuning, we set the training task configuration as
N tr = M,T tr = 1; for MAMF and FOMAML,
we set N tr = N ts = N,T tr = T ts = T , where T
is determined based on N to cover all classes with
a high probability. Implementation details can be
found in Appendix C.

5.2 Results

Answer to Q1: Uniform task sampling is im-
portant. As depicted in Figure 2, comparing the
performance of MAMF (red line) and Classical
Fine-tuning (yellow line), MAMF consistently out-
performs Classical Fine-tuning on all five datasets.
Recall that the only difference between MAMF and
Classical Fine-tuning is whether they perform uni-
form task sampling during training. This empirical

1We use the first-order variant of MAML for apple-to-
apple comparison with MAMF.
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Figure 2: Average accuracy on development sets (dashed line) and test sets (solid line) of five datasets. The
x-axis shows the task configurations where (N,T ) refers to sampling T tasks for N -way classification. Zeroshot
refers to zero-shot CLIP without any fine-tuning during either training or meta-testing. Classical refers to classical
fine-tuning which treats the entire training set as a single task. Both FOMAML and MAMF sample N -way T tasks
during training. MAMF consistently outperforms Classical on all datasets. Detailed scores can be found in Table 3.

result shows that task sampling itself serves as an
important procedure for learning new concepts in a
few-shot setting, even if with its simplest form, i.e.
uniform sampling.

Answer to Q2: MAML is not effective on learn-
ing initially challenging problems. One unex-
pected observation from Figure 2 is that, although
FOMAML has the same task sampling procedure
and more sophisticated optimization method than
MAMF, it is outperformed by MAMF on many
tasks. We find that the effectiveness of FOMAML
is highly sensitive to the zero-shot performance of
the target task. Whenever the task is initially more
challenging, i.e., with lower zero-shot performance,
FOMAML tends to be less effective. For example,
on CUB (Figure 2 e) where the zero-shot accuracy
ranges from 0.5 to 0.8, FOMAML outperforms
other algorithms in most cases. However, on Clevr-
Counting (Figure 2 a) where the zero-shot accuracy
ranges from 0.3 to 0.75, MAMF and even Classical
Fine-tuning consistently outperform FOMAML. To
further visualize this correlation, we plot a Winner
Map (Figure 3) which depicts the best-performing
method for each task configuration on all datasets.
We can see a clear pattern showing that FOMAML
is only effective when the zero-shot performance is
already high, while MAMF dominates on initially
more challenging tasks.

Figure 3: Each thick shaded line represents a dataset
split, e.g., test set of ClevrCounting. Each dot corre-
sponds to one task configuration in Figure 2 such as
(N = 5, T = 10). The color of a dot represents the
best-performing algorithm. MAMF tends to outperform
other algorithms when the problem is initially more
challenging, i.e., when zero-shot accuracy is lower.

6 Conclusion

In this paper, We demonstrate the importance of
task sampling by proposing a simple yet effective
fine-tuning method MAMF. We further show novel
insights on the limited effectiveness of the bi-level
optimization. We hope our work encourage more
research on improving few-shot transfer learning
via better task sampling beyond uniform sampling.
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A Dataset Details

In this work, we compare few-shot image classi-
fication performance on five datasets representing
various concepts including: ClevrCounting (John-
son et al., 2017), Amazon Berkeley Objects
(ABO) (Collins et al., 2021) Material, Fungi (Su
et al., 2021), Mini-Imagenet (Vinyals et al., 2016),
Caltech-UCSD Birds 200 (CUB) (Welinder et al.,
2010). We randomly split each dataset into disjoint
training, development, and test sets, and perform
subsampling to frame the experiments in a few-shot
setting. Specifically, for ABO Material, we con-
struct a subset of the original dataset by clustering
images according to their Material attribute. We
then manually filter out noisy samples that have
multiple major materials. Table 1 shows the statis-
tics of each dataset.

We selectively add data augmentation2 for dif-
ferent datasets. By default we use RandomResized-
Crop, RandomHorizontalFlip and Normalize for
all our five datasets. We further add ColorJitter
for Mini-Imagenet and ClevrCounting. We disable
ColorJitter for CUB, Fungi, and ABO Material
since the color feature is essential for doing classi-
fication on these datasets. Following the original
CLIP paper (Radford et al., 2021), the input images
are resized to 224×224.

2https://pytorch.org/vision/stable/
transforms.html

Dataset M Str Sts
A Sts

B

ClevrCounting 10 60 10 10
Fungi 20 60 10 10

ABO Material 9 50 15 15
Mini Imagenet 10 60 10 10

CUB 10 60 10 10

Table 1: Dataset statistics. M is the total number of
classes; Str is the number of training samples per class;
Sts
A and Sts

B are the number of support set and query set
samples per class during meta-testing respectively.

Figure 4: An illustration of the contrastive classification
framework. We show a 10-way classification task on the
Clevrcounting dataset. Each entry in the matrix is the
similarity score (dot product) of an image embedding I
and a text embedding T.

B Contrastive Image Classification
Framework

We compare three algorithms (Classical Fine-
tuning, MAML Fine-tuning, and MAMF) using
an a contrastive classification framework based on
pretrained CLIP (Radford et al., 2021). Instead of
using a linear output layer mapping to N logits cor-
responding to N class labels, we directly compute
the similarity between candidate text embeddings
representing each class with the image embedding.
Specifically, we create the text representation for
each class by using template prompts filled with la-
bel names. A full list of templates we use for each
dataset can be found in Table 2. Figure 4 shows
an example task from the ClevrCounting dataset,
where each class is represented as a string such as
“An image with 2 objects". We then compute the dot
product of each <image, text> embedding pairs.
For each row, the label with the highest similarity
score is selected as the final prediction.
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Dataset Text Input Template Example

ClevrCounting An image of <8> objects.
Fungi A photo of <mycena pura>.

ABO Material An image of a product made of <glass>
Mini Imagenet A photo of <walker hound>.

CUB A photo of <baltimore oriole>.

Table 2: Example templates with filled labels for all five
datasets.

C Implementation Details

We use the pretrained CLIP3(Radford et al., 2021)
with a ViT-B/32 Vision Transformer as image en-
coder and a masked self-attention Transformer as
text encoder. The image embedding size is 768 and
the text embedding size is 512. During training, we
take the pre-projection image/text representation
from the pretrained image/text encoder and feed
them into a newly initialized4 image/text projection
layer. We choose the pre-projection representation
as prior work (Chen et al., 2020) has shown that
in such contrastive models the hidden layer before
the last projection head serves as a better represen-
tation. Finally, we obtain an image embedding and
a text embedding with the same size of 512. Note
that for the Zeroshot baseline, we use the original
projection layer and directly test on the query set
in meta-testing without any fine-tuning. We train
the model using cross-entropy loss for all three al-
gorithms. We use the Adam optimizer (Kingma
and Ba, 2015) with learning rate 1e − 6 during
training and 1e− 7 during meta-testing. No weight
decay is used for all algorithms during training and
meta-testing. We use the MAML wrapper from
learn2learn5(Arnold et al., 2020) for training using
first-order MAML.

D Detailed Results

Table 3 shows the detailed accuracy and standard
deviation on the development sets and test sets of
all the datasets shown in Figure 2 in the main paper.
The (N,T ) column represents the task configura-
tions, where N stands for an N -way classification
task and T stands for the total number of sampled
tasks. Since the tasks are randomly sampled from

3https://huggingface.co/openai/
clip-vit-base-patch32

4We use the Kaiming initialization implemented by
Pytorch: https://pytorch.org/cppdocs/api/
function_namespacetorch_1_1nn_1_1init_
1ac8a913c051976a3f41f20df7d6126e57.html

5https://github.com/learnables/
learn2learn

the class distribution, in order to cover all classes
with high probability during testing, we set the
number of sampled tasks to be: T = log(0.001)

log(1− N
M

)
,

where M is the total number of classes. That is,
with probability higher than 0.999, we can cover
all classes if sampling T tasks. Columns with name
Zeroshot, Classical, MAMF, and FOMAML repre-
sent models using Zeroshot CLIP, Classical Fine-
tuning, Model-Agnostic Multitask Fine-tuning and
first-order MAML respectively. The superscript on
each accuracy percentage number indicates stan-
dard deviation across five random runs.
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Table 3: Detailed average accuracy (%) and standard deviation on the development set and test set of all five datasets. The (N,
T) column represents the task configurations consistent with the x-axis in Figure 3 in the main paper. Note that for the ABO
Material dataset, we have 9 classes in total, so a task has up to 8-way classification. And for the Fungi dataset, which has 20
classes in total, we test on 10-way to 19-way classification tasks.

Dataset (N, T) Zeroshot Classical MAMF FOMAML Dataset (N, T) Zeroshot Classical MAMF FOMAML

(2, 27) 68.52.6 95.31.8 96.01.8 96.12.4 (2, 27) 67.02.6 95.20.6 94.81.2 94.00.4

(3, 17) 60.66.0 91.63.0 92.92.4 96.11.0 (3, 17) 53.01.9 93.60.9 93.20.9 91.71.3

ABO (4, 12) 49.63.4 88.60.6 90.10.7 94.21.6 ABO (4, 12) 42.12.8 89.52.5 91.32.2 88.11.7

Material (5, 9) 45.71.6 87.31.5 89.01.2 93.30.7 Material (5, 9) 37.42.6 86.82.2 89.21.4 89.01.4

Test (6, 6) 40.32.1 82.12.1 86.52.5 90.51.4 Dev (6, 6) 31.51.8 84.41.6 88.13.2 85.32.9

(7, 5) 37.83.4 83.33.0 85.44.0 91.61.7 (7, 5) 28.62.0 84.01.5 84.81.2 84.23.1

(8, 3) 33.20.7 81.30.8 83.61.6 89.80.9 (8, 3) 23.92.7 80.11.3 81.91.8 81.61.2

(2, 31) 74.12.2 89.51.7 89.81.5 85.52.2 (2, 31) 75.73.4 90.12.7 91.72.5 87.31.4

(3, 19) 57.32.1 82.53.3 83.83.8 74.74.5 (3, 19) 62.61.5 81.22.5 83.63.0 78.64.5

Clevr- (4, 14) 50.12.0 76.42.0 78.03.3 74.11.6 Clevr- (4, 14) 55.71.9 79.12.0 81.41.1 73.85.3

Counting (5, 10) 41.02.5 67.93.0 73.02.8 60.29.5 Counting (5, 10) 46.63.7 69.74.6 71.56.1 56.10.9

Test (6, 8) 38.92.6 64.93.9 70.53.0 64.95.0 Dev (6, 8) 41.01.3 67.32.6 69.25.2 62.03.6

(7, 6) 31.90.9 59.43.3 64.11.7 60.06.9 (7, 6) 36.31.9 59.04.8 65.04.2 57.31.9

(8, 4) 31.01.3 56.45.8 60.33.2 42.95.6 (8, 4) 35.31.2 57.94.6 62.33.5 42.19.2

(9, 3) 28.11.2 56.53.1 59.74.8 33.613.2 (9, 3) 33.12.3 53.23.3 53.82.6 36.312.6

(2, 31) 80.02.6 91.21.6 96.21.8 96.12.9 (2, 31) 78.31.1 90.41.9 97.81.5 97.51.4

(3, 19) 68.91.6 86.15.6 95.10.9 97.13.3 (3, 19) 68.12.3 88.77.1 96.82.3 97.52.5

(4, 14) 63.93.3 79.84.4 93.82.6 97.41.9 (4, 14) 64.31.9 83.94.6 95.22.8 96.82.8

CUB (5, 10) 58.52.6 77.33.3 85.56.6 96.41.4 CUB (5, 10) 59.72.3 78.95.4 87.06.2 97.42.2

Test (6, 8) 54.72.0 79.45.5 88.83.0 93.55.6 Dev (6, 8) 56.51.3 79.10.6 94.63.1 95.25.2

(7, 6) 53.51.9 77.07.9 88.33.5 98.30.3 (7, 6) 53.32.0 77.83.4 88.43.9 98.80.0

(8, 4) 52.92.6 71.67.4 80.93.8 98.10.5 (8, 4) 51.81.7 75.07.2 79.94.7 99.40.4

(9, 3) 50.21.3 69.95.1 80.74.1 98.10.7 (9, 3) 50.12.5 64.48.3 80.73.3 98.80.9

(2, 31) 87.11.4 93.91.5 93.91.5 97.21.4 (2, 31) 85.52.7 93.60.7 93.23.0 96.40.4

(3, 19) 79.42.3 90.01.6 92.31.5 93.92.6 (3, 19) 78.03.4 89.01.5 91.31.5 95.60.8

Mini (4, 14) 74.43.1 86.71.4 92.31.4 89.95.1 Mini (4, 14) 74.44.2 85.42.4 90.30.7 90.45.7

ImageNet (5, 10) 71.02.4 86.50.7 89.21.4 92.00.7 ImageNet (5, 10) 69.65.7 85.73.3 89.01.2 93.12.6

Test (6, 8) 67.73.4 83.51.1 89.21.6 86.12.8 Dev (6, 8) 66.22.8 83.01.1 88.51.5 89.02.2

(7, 6) 62.63.0 82.31.5 89.01.3 87.33.1 (7, 6) 63.32.3 78.92.6 86.30.8 86.82.9

(8, 4) 57.81.9 79.42.9 83.63.4 87.76.0 (8, 4) 63.73.2 78.75.0 84.41.7 89.01.0

(9, 3) 58.12.6 78.23.1 82.02.9 88.71.5 (9, 3) 58.52.8 78.21.9 81.51.9 86.43.1

(10, 8) 15.20.8 60.21.5 67.92.6 64.72.7 (10, 8) 16.71.4 54.41.1 60.82.9 58.11.5

(11, 8) 14.10.5 57.22.2 66.31.7 64.11.4 (11, 8) 15.41.2 53.92.5 60.61.0 57.51.5

(12, 8) 12.80.7 58.11.9 65.62.6 61.12.6 (12, 8) 14.10.8 51.53.9 59.62.6 57.62.7

(13, 7) 12.40.7 55.81.1 64.22.7 59.92.3 (13, 7) 12.51.0 49.64.1 56.01.9 54.01.6

Fungi (14, 6) 11.51.2 51.52.6 61.72.2 54.14.3 Fungi (14, 6) 12.00.6 47.43.3 55.63.4 53.22.6

Test (15, 5) 11.80.8 53.71.7 59.23.8 57.01.3 Dev (15, 5) 11.20.1 48.60.9 53.91.7 54.62.8

(16, 4) 11.10.5 52.42.6 55.91.5 53.52.5 (16, 4) 11.10.6 50.03.0 51.12.8 50.34.4

(17, 4) 11.20.5 48.83.1 54.31.4 52.51.0 (17, 4) 10.41.0 44.51.4 51.22.1 50.11.7

(18, 3) 9.50.3 50.33.0 54.12.1 51.52.4 (18, 3) 10.60.3 42.93.1 50.21.8 45.72.0

(19, 2) 9.50.7 48.73.4 53.13.3 45.12.1 (19, 2) 10.01.3 45.83.2 47.81.6 41.43.0
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Abstract

Knowledge transfer between neural language
models is a widely used technique that has
proven to improve performance in a multi-
tude of natural language tasks, in particular
with the recent rise of large pre-trained lan-
guage models like BERT. Similarly, high cross-
lingual transfer has been shown to occur in
multilingual language models. Hence, it is of
great importance to better understand this phe-
nomenon as well as its limits. While most stud-
ies about cross-lingual transfer focus on train-
ing on independent and identically distributed
(i.e. i.i.d.) samples, in this paper we study
cross-lingual transfer in a continual learning
setting on two sequence labeling tasks: slot-
filling and named entity recognition. We inves-
tigate this by training multilingual BERT on se-
quences of 9 languages, one language at a time,
on the MultiATIS++ and MultiCoNER corpora.
Our first findings are that forward transfer be-
tween languages is retained although forgetting
is present. Additional experiments show that
lost performance can be recovered with as lit-
tle as a single training epoch even if forgetting
was high, which can be explained by a progres-
sive shift of model parameters towards a better
multilingual initialization. We also find that
commonly used metrics might be insufficient
to assess continual learning performance.

1 Introduction

State-of-the-art models for Natural Language Pro-
cessing (NLP) usually leverage deep neural net-
works. In particular, pre-trained Transformer-
based (Vaswani et al., 2017) language models like
BERT (Devlin et al., 2019) have proven to perform
very well on various NLP tasks, often achieving
state-of-the-art results (Raffel et al., 2020; Brown
et al., 2020). These models are pre-trained in a
self-supervised way on large text corpora and rely
on knowledge transfer to solve downstream tasks,

∗These authors have contributed equally. The order is
alphabetical.

where the pre-trained model is fine-tuned on the
target task. Multilingual versions of these mod-
els have also been trained and demonstrate high
cross-lingual transfer as well (K et al., 2020; Wang
et al., 2020; Conneau et al., 2020; Xue et al., 2020).
Given the interest in these models for cross-lingual
transfer, it is of great importance to better under-
stand this phenomenon as well as its limits.

In this work, we analyse the cross-lingual trans-
fer capabilities of multilingual BERT and we work
on sequence labeling, where each token of a sen-
tence must be annotated with a specific label. This
problem regroups various NLP tasks like Named
Entity Recognition (NER), Part-Of-Speech (POS)
Tagging, text chunking and slot-filling. We focus
our study on two of these tasks using two multi-
lingual corpora1: MultiATIS++ for slot-filling (Xu
et al., 2020) and MultiCoNER for NER (Malmasi
et al., 2022a,b). Experimenting on different cor-
pora allows us to identify which observations may
generalize and which ones may be corpus specific.

While most cross-lingual transfer studies about
slot-filling or NER focus either on joint training or
training on a source and a target language (Xu et al.,
2020; Schuster et al., 2019; Arkhipov et al., 2019;
Mueller et al., 2020; Wang et al., 2020), our main
contribution is a study with special focus on con-
tinual cross-lingual transfer, where the model per-
forms one single task but is progressively adapted
over a sequence of languages.

We believe this experimental setup to be inter-
esting not only as a novel way of studying cross-
lingual transfer but also because it is better suited
to real case scenarios. Indeed, adaptation to new
data over time is a highly desirable feature of most
NLP models: oftentimes, collecting data and an-

1We do not work on the recent MASSIVE (FitzGerald
et al., 2022) corpus as we consider it too similar to Multi-
ATIS++. We also avoid Universal Depedencies (Nivre et al.,
2020) because we consider POS tagging to be too simple for
this type of study. Moreover, the amount of per-language data
in the latter could bias the transfer we observe.

15



train set

select

dev set

Spanish Chinese

train

model0

train

test

model1

train set

select

dev set
train

model2

Hindi

train set

select

dev set
train

model3

English

train set

select

dev set

model4

test set test set test set test set

Figure 1: Depiction of a training sequence across 4
languages. For each language in the given order, we
train the model on its training set, select the best epoch
on the development set and then test on all test sets
independently.

notating them is expensive, which makes training
data scarce or incomplete at the beginning of a
project. Additionally, model requirements might
also evolve with time based on the needs of the
users. This means that the model has to adapt se-
quentially as training data becomes available. An
example of this could be a dialogue system that is
gradually deployed in different countries. Unfortu-
nately, naive solutions to adapt a previously trained
model are costly, as they require either re-training
from scratch or maintaining many distinct models.

On the other hand, progressively training on mul-
tiple datasets that become available one by one is
at the heart of continual learning (Hadsell et al.,
2020), where the goal is for a model to improve
itself both on past and new data. We refer to these
datasets and the order in which they appear as a
training sequence (f.i. see Figure 1). Traditional
training schemes assume that training examples (in
our case annotated sentences) are independent and
identically distributed (i.i.d.), which does not usu-
ally hold when data becomes available sequentially.
Moreover, access to previous data is not allowed2,
as this represents a linear use of resources with re-
spect to the length of the sequence, which can in
theory be infinite. In this context, transfer is gener-
ally divided in two: forward and backward (Hadsell
et al., 2020; Lopez-Paz and Ranzato, 2017; Arora
et al., 2019), defined in our case as improvement
on future and already acquired languages respec-
tively. The biggest challenge of continual learning
systems is catastrophic forgetting (Hadsell et al.,
2020; French, 1999), which is defined as a strong
performance loss in previously acquired knowledge

2Access to previous data is sometimes allowed if lim-
ited (Robins, 1995)

Language
Utterances

Labels
train dev test

MultiATIS++
Hindi 1,440 160 893 75
Turkish 578 60 715 71
Others 4,488 490 893 84

MultiCoNER
All 15,3K 800 ≥138K 6

Table 1: Number of sentences per subset and num-
ber of unique labels (without B and I prefix) for each
language in MultiATIS++ (Xu et al., 2020) and Multi-
CoNER (Malmasi et al., 2022a).

(i.e. negative backward transfer). While previous
studies on continual learning tend to focus on the
domain axis for the slot-filling task (Lee, 2017;
Madotto et al., 2020), or on the class axis for the
NER task (Monaikul et al., 2021; Xia et al., 2022),
we concentrate on the axis of language adaptation.

Similar work also investigates cross-lingual
transfer of multilingual BERT fine-tuned on se-
quence labeling tasks, namely NER and POS-
Tagging (Liu et al., 2021). They focus on preserv-
ing masked language modeling performance and
cross-lingual ability after fine-tuning on one of the
two tasks on English only, with a method devel-
oped as part of continual learning. Conversely, our
work focuses on fine-tuning on a single task over a
sequence of many languages.

In this paper, we first describe in Section 2 and 3
the task, the corpora and the model we are working
with. Then in Section 4 we define the different
continual learning metrics that we use in our ex-
periment. Our study is guided by the following
research questions, as presented in Section 5: does
cross-lingual transfer exist during continual train-
ing or does catastrophic forgetting prevent it? How
much transfer can we expect relative to monolin-
gual and multilingual i.i.d. training? In Section 6
we perform an extensive analysis on MultiATIS++
in order to understand how transfer is affected by
the training sequence. Finally, in Section 7 we
investigate whether lost performance (due to for-
getting) can be recovered and at what cost.

2 Task and corpora

2.1 Sequence labeling

In sequence labeling, each token of a sentence must
be annotated with a specific label. Hence, it is
appropriate to identify concepts or entities in sen-
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Find Denverme cheapest

O B-cost_relativeOO

one

B-round_trip

way

I-round_trip

fare I can get from

O O O O O

Boston

B-fromloc.city_name

to

O B-toloc.city_name

the

Figure 2: Example of slot filling IOB (Ramshaw and Marcus, 1995) labels for an utterance of MultiATIS++ (Xu
et al., 2020) in English. Label “O” (from outside) denotes that no concept is mentioned, “B” (from beginning)
denotes the first word of a concept and “I” (from inside) the continuation of a concept. Different slot types are
shown in different colors.

tences. In our case, the labels to predict are the
same across languages so that the task remains un-
changed over the continual learning process.

Sequences are labeled using the IOB for-
mat (Ramshaw and Marcus, 1995), where labels
consist of a prefix (B,I or O) and an optional type
that categorizes the identified concept. While O
indicates that the token is not part of a concept (O
for outside), B and I indicate that it is the begin-
ning or continuation of a concept, thus allowing the
identification of multi-token concepts. An example
of this labeling scheme is shown in Figure 2.

This task is usually evaluated using the slot
micro F1 score (Tjong Kim Sang and Buchholz,
2000).

2.2 MultiATIS++

The MultiATIS++ multilingual corpus comes from
the Air Travel Information System (ATIS) cor-
pus (Hemphill et al., 1990), consisting in utterances
of users asking for flight information. The corpus
focuses on the slot-filling task, which is related to
task-oriented dialogue systems. It enables the sys-
tem to identify the important concepts mentioned
by the user that are needed to successfully con-
tinue the dialogue. These concepts are related to
the system’s domain and to the tasks that the sys-
tem should perform. This corpus is the manual
translation of the original English (EN) ATIS sen-
tences into 6 different languages: Spanish (ES),
Portuguese (PT), German (DE), French (FR), Chi-
nese (ZH) and Japanese (JA). It also includes two
additional languages: Hindi (HI) and Turkish (TR),
that were added as part of MultiATIS in (Upadhyay
et al., 2018).

Contrary to the translations added in Multi-
ATIS++, the number of utterances of Hindi and
Turkish translations are not as many as for the other
languages. More details on the composition of Mul-
tiATIS++ are shown in Table 1.

2.3 MultiCoNER

The MultiCoNER corpus was proposed as part
of the SemEval 2022 Task 11 (Malmasi et al.,
2022a,b) and focuses on the NER task. While it is
usually a generic task consisting in identifying en-
tities like people, organizations, locations or dates
in written texts, this corpus focuses on detecting
ambiguous and complex entities in short and low-
context settings. These entities are person, loca-
tion, group, corporation, product and creative work.
MultiCoNER also aims at stimulating the research
on multilingual models, as it contains annotations
in 11 languages. For a fair comparison with Mul-
tiATIS++, we restrict these experiments to also
contain 9 languages, namely Bengali (BN), Ger-
man (DE), English (EN), Spanish (ES), Hindi (HI),
Korean (KO), Dutch (NL), Turkish (TR) and Chi-
nese (ZH). More details on the composition of Mul-
tiCoNER are shown in Table 1. In the rest of the
paper and for both corpora we denote the train, dev
and test sets of a given language i with a subscript
(e.g. traini).

3 Model

We use the multilingual BERT (Devlin et al., 2019)
base model, consisting of 12 multi-head attention
layers with 12 heads and hidden size of 768 (177M
parameters). This model was trained on large
Wikipedia dumps from 104 different languages us-
ing masked language modelling and next sentence
prediction objectives.

As we use the model for sequence labeling, we
append a two-layer feed-forward classifier with
hidden size 768 and ReLU (rectified linear unit)
activation (Nair and Hinton, 2010). The input of
the classifier are the last layer word hidden states
after applying dropout with p = 0.1.

Following (Xu et al., 2020), we train the
model on MultiATIS++ using the Adam opti-
mizer (Kingma and Ba, 2015) with a learning
rate of 10−5 and a batch size of 32 utterances for
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50 epochs (unless stated otherwise), selecting the
model with the highest slot F1 on the correspond-
ing dev set. We train the model on MultiCoNER the
same way, except for the learning rate (optimized
on dev and set to 5 × 10−5) and the number of
epochs, which is set to 15. We evaluate the model
on all testi sets for every language i using the slot
F1 calculated with the seqeval library (Nakayama,
2018).

4 Continual Learning Metrics

Cross-lingual transfer can be defined as the per-
formance improvement of a model on a particular
language based on knowledge of other languages.
This can take several forms depending on the train-
ing structure. In an i.i.d. context, where all data
are available from the start, we think of transfer in
terms of joint training. If training on language i and
j jointly (multilingual) yields better performance
on j than training only on j (monolingual), then
there is transfer from i to j.

However, continual learning adds a different di-
mension. Indeed, when training on a language
sequence we can identify two types of transfer: for-
wards and backwards (Hadsell et al., 2020; Lopez-
Paz and Ranzato, 2017). Forward transfer denotes
the performance and learning efficiency improve-
ment on a given language thanks to previously ac-
quired knowledge of other languages. Conversely,
backward transfer denotes the performance im-
provement on a previously acquired language when
learning a new one. More formally, and similarly
to Lopez-Paz and Ranzato (2017), given a sequence
of L languages, we define the performance ma-
trix P ∈ RL×L, where Pij is the performance of
language i after learning language j. In this con-
text, backward transfer of i is defined as:

BTi = PiL − Pii (1)

Negative backward transfer is also called forget-
ting, as it denotes performance loss on previous
languages. Since P11 is equivalent to monolingual
performance mono1, we can define backward trans-
fer of the first language after learning language j:

BT1j = P1j −mono1 (2)

Conversely, we define forward transfer as:

FTmono
i = Pii −monoi (3)

where monoi denotes monolingual performance
on language i. By comparing performance with a
different baseline like multilingual, we can measure
how close forward transfer is to joint transfer:

FTmulti
i = Pii −multii (4)

where multii denotes the multilingual performance
on language i. These definitions will be useful for
the analysis in Section 6.

5 Cross-lingual Transfer

Does transfer exist during continual training or
does catastrophic forgetting prevent it?

Before studying the continual learning scenario,
we first measure transfer when training the model
on all languages at once (i.e. joint transfer). Then,
having this frame of reference, we investigate trans-
fer when training the model on each language se-
quentially (i.e. continual transfer).

5.1 Joint Transfer

In order to measure transfer in unstructured i.i.d.
training, we train the model on all languages to-
gether (multilingual) and compare the performance
we obtain with monolingual training. Note that
multilingual training corresponds to concatenating
all traini for training and all devi for validation. We
report the mean and standard deviation of test slot
F1 per language across 5 runs to reduce the effect
of randomness.

Results on MultiATIS++ are reported in Ta-
ble 2. We observe that multilingual is always
stronger than monolingual (except for Chinese and
Japanese), which confirms the existence of joint
cross-lingual transfer. European languages (Ger-
man, English, Spanish, French and Portuguese)
show modest but visible gains from transfer,
whereas Asian languages (Chinese and Japanese)
do not seem to benefit from it. However, trans-
fer for the two low resource languages (Hindi and
Turkish) is outstanding, with an absolute 4.8% and
13.9% improvement. As noted in (Do et al., 2020),
MultiATIS++ translations keep the same (unrealis-
tic) slot values for particular labels (e.g. American
departure city and destination city in Turkish ut-
terances). We suspect this may be the reason why
transfer is particularly high in this corpus. The fact
that the corpus contains less training data for Hindi
and Turkish than for the other languages might also
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Training DE EN ES FR PT ZH JA HI TR Model Cost Data Cost
Time Space Space

Monolingual 94.4 (0.2) 95.6 (0.1) 88.9 (0.4) 93.2 (0.1) 90.3 (0.6) 93.3 (0.4) 93.1 (0.4) 82.4 (0.5) 71.3 (0.9) ≤224K 1.6B ≤4K
Multilingual 95.0 (0.2) 96.0 (0.2) 90.4 (0.4) 94.0 (0.3) 91.4 (0.2) 93.6 (0.2) 93.0 (0.1) 87.2 (0.3) 85.2 (0.6) 1.7M 178M 33K
Joint transfer +0.6 +0.4 +1.5 +0.8 +1.1 +0.3 -0.1 +4.8 +13.9 - - -

Continual (PLL) 94.9 (0.2) 95.9 (0.1) 89.9 (0.5) 93.9 (0.3) 91.3 (0.3) 93.9 (0.3) 93.1 (0.3) 85.6 (0.7) 84.0 (0.6) ≤224K 178M ≤4K
FTmono

1L +0.5 +0.3 +1.0 +0.7 +1.0 +0.6 +0.0 +3.2 +12.7 - - -
Continual (P1L) 94.0 (0.7) 95.5 (0.2) 89.2 (0.5) 91.4 (1.7) 88.4 (4.9) 92.0 (1.0) 91.7 (0.7) 80.5 (1.8) 68.1 (3.5) ≤224K 178M ≤4K
BT1L -0.4 -0.1 +0.3 -1.8 -1.9 -1.3 -1.4 -1.9 -3.2 - - -

Table 2: Slot F1 performance on MultiATIS++ on testi sets for monolingual, multilingual and continual experiments.
The latter are calculated as the average of the first (P1L) or last (PLL) language (indicated by the column) at the end
of the sequence. See Equations 2 and 3 for the definition of BT1L and FTmono

1L . Reported values are the average of
5 runs with standard deviation shown in parenthesis. Model time cost denotes the cost of adding a new language to
the model measured in iterations. Model space cost is the size of the model measured in number of parameters.
Data space cost represents the maximum number of training sentences stored in memory at the same time.

Training BN DE EN ES HI KO NL TR ZH Model Cost Data Cost
Time Space Space

Monolingual 41.6 (3.2) 64.1 (0.8) 61.3 (0.6) 59.0 (0.8) 43.1 (1.2) 56.7 (0.7) 61.4 (0.9) 45.7 (0.7) 57.6 (0.8) 765K 1.6B 15K
Multilingual 44.9 (1.6) 66.9 (0.4) 64.4 (0.7) 63.8 (0.4) 46.4 (1.2) 59.4 (0.8) 66.5 (0.5) 50.6 (1.0) 58.2 (1.0) 6.9M 178M 138K
Joint transfer +3.3 +2.8 +3.1 +4.8 +3.3 +2.7 +5.1 +4.9 +0.6 - - -

Continual (PLL) 43.4 (1.8) 66.0 (0.6) 63.0 (0.6) 62.1 (0.9) 44.2 (1.0) 57.0 (0.7) 64.6 (0.6) 50.1 (0.8) 56.2 (1.3) 765K 178M 15K
FTmono

1L +1.8 +1.9 +1.7 +3.1 +1.1 +0.3 +3.2 +4.4 -1.4 - - -
Continual (P1L) 31.7 (4.5) 50.9 (1.5) 52.5 (2.6) 51.1 (2.3) 32.2 (2.4) 43.2 (2.4) 55.4 (3.4) 37.4 (1.9) 40.0 (2.8) 765K 178M 15K
BT1L -9.9 -13.2 -8.8 -7.9 -10.9 -13.6 -6.0 -8.3 -17.6 - - -

Table 3: Slot F1 performance on MultiCoNER on testi sets for monolingual, multilingual and continual experiments.
Same comments from Table 2 apply.

explain why joint transfer is much higher for these
two languages.

Table 3 shows results on MultiCoNER. Monolin-
gual results are much lower than in MultiATIS++
even if the number of labels to predict is much
lower, suggesting that MultiCoNER is more diffi-
cult than MultiATIS++. Although the corpus is not
parallel, we observe significant joint cross-lingual
transfer (except for Chinese where it is negligible).
This is somehow surprising considering that only
a maximum of 8% of entity mentions appearing
in the test set of a given language are common to
those appearing in the train set of other languages.

However, multilingual training assumes that all
languages are available at once. As mentioned
before, this is not always true in practice, since ut-
terances may be scarce and annotations expensive.
Moreover, given N the maximum number of utter-
ances per language and L the number of languages,
training on a new language has time cost O(LN),
as the whole model needs to be trained from scratch.
A naive solution is to use multiple monolingual
models, raising however the space cost to O(LN).
Reducing both costs to O(N) motivates our deci-
sion to structure training as a sequence.

5.2 Continual Transfer

Given a training sequence (a list of languages in a
given order), continual learning consists in training
the model on traini (and validating on devi) for
each language i in the given order, as depicted in
Figure 1. Although having all languages at once is
not required and the language addition cost is the
lowest, this approach is prone to forgetting previ-
ously learned languages.

In the experiments of this section, we report for
both forward and backward transfer the average
performance per language. The experiments con-
sist of 3 sequences per language and per transfer
type repeated 5 times to reduce the effect of ran-
domness, making a total of 54 sequences and 270
experiments. These 3 sequences per language are
chosen randomly and maximizing the Kendall rank
correlation coefficient (Abdi, 2007) as a distance
criterion so that they are as dissimilar as possible.

We first investigate whether forward transfer ex-
ists in continual training by looking at the aver-
age PLL performance (e.g. model4 evaluated on
English in Figure 1) against monolingual and mul-
tilingual. Notice that we look at the performance
of the last language, as this allows us to measure
whether the model leverages past knowledge to
learn a new language. This has the advantage of
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isolating the effect of forward transfer from that of
backward transfer. When generating the sequences
we also make sure that each language appears at
the end of the sequence the same number of times.

Similarly, we look at backward transfer by com-
paring the average P1L performance (e.g. model4
evaluated on Spanish in Figure 1) against mono-
lingual, making sure that each language appears
at the beginning of the sequence the same num-
ber of times. This way we can determine whether
the initial performance (equal to monolingual) im-
proves with the introduction of new languages to
the model. We also look at the performance of
the first language, so that the effect of backward
transfer is isolated from that of forward transfer.

Notice that whether we focus on the first or the
last language, we always look at the performance
at the end of the training sequence so that the com-
parison to multilingual is fair.

Results on MultiATIS++ are reported in Table 2.
We observe that continual training benefits from
cross-lingual forward transfer. Indeed, PLL is on
average closer to multilingual than to monolingual
performance. However, although transfer is present
for the last language, P1L suffers from the opposite
effect, even falling under monolingual performance.
Our results show that contrary to what we expected
from the identical slot values of MultiATIS++ (e.g.
American departure city and destination city in
Turkish utterances), the naturally occurring cross-
lingual transfer completely vanishes in previous
languages.

Similar observations can be made from Multi-
CoNER continual experiments from Table 3. Al-
though forward transfer is high in general, it is
also lower than the standard deviation for Bengali,
Hindi and Korean, and even negative for Chinese.
The negative backward transfer values also show
that the model forgets a lot about the first language
it learnt.

Overall we can see that continual training ben-
efits from forward transfer, although still not per-
forming as well as the multilingual topline, whereas
forgetting is clearly present.

6 Training Sequence

How is transfer affected by the training sequence?

In order to better understand the effect of the
training sequence on transfer, we first look at mea-
sures of forward transfer at each position relative to

monolingual and multilingual. Secondly, we study
the impact of the training sequence length on back-
ward transfer measured on the first language. This
analysis is conducted only on MultiATIS++ due to
time and computational constraints. In the figures
of this section, the mean, median and percentiles do
take into account eventual outlier languages, while
the minimum and maximum do not.

When considering forward transfer, Figure 3a
shows that apart from the first position (equal to
monolingual), the model consistently benefits from
transfer at any point in the sequence, as perfor-
mance is higher than monolingual. Interestingly,
due to some outlier languages (generally Hindi and
Turkish), we observe that the means are poor esti-
mates of the distribution when measuring FTmono

i .
This is an indicator that commonly used continual
transfer metrics might over- or underestimate real
performance when transfer is not uniformly dis-
tributed among languages. Indeed, these metrics
usually consist of averages across the adaptation
axis (Lopez-Paz and Ranzato, 2017). In Figure 3b,
we also observe that performance gets closer to
multilingual as the sequence advances, although it
rarely outperforms it.

As per backward transfer, Figure 4 shows that
performance of the first language is in general
worse than monolingual for any given sequence
length. In particular, we observe that performance
loss is not strictly monotonic, which means that
measuring forgetting between the beginning and
the end of the sequence may not be sufficient to ex-
plain how the model forgets. Note that a sequence
of L = 7 would have shown less forgetting than a
sequence of L = 5.

Furthermore, as hinted by continual experiments
from Table 2, we observe that backward transfer
deteriorates as forward transfer improves with the
length of the sequence. Since negative backward
transfer (i.e. forgetting) tends to be linked to a loss
of previously acquired knowledge, it is surprising
that new language performance keeps increasing
while performance of known languages decreases.
Our results indicate that the preserved knowledge
that facilitates the acquisition of a new language in
multilingual BERT for slot filling is not the same
knowledge that preserves previous language perfor-
mance. This might be explained by a progressive
shift of model parameters towards a better multi-
lingual initialization for the ATIS task that might
however fail to retain the specificities of previous
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Figure 3: Distributions of forward transfer on testi relative to monolingual and multilingual for different positions i
in the sequence. We average over 54 sequences and 5 runs. Note that forward transfer is 0 when performance is
equal to (a) monolingual and (b) multilingual. Outliers not shown for readability.
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Figure 4: Distributions of first language backward trans-
fer BT1j = P1j − mono1 (higher is better) on test1
for different sequence lengths j. We average across 54
sequences and 5 runs. Note that BT1j = 0 if perfor-
mance is equal to monolingual. Outliers not shown for
readability.

languages. This hypothesis motivates our next re-
search question.

7 Fast Recovery

Can lost performance due to forgetting be recov-
ered?

Given that forward transfer does not seem to
be affected by forgetting, we investigate in this
section whether performance lost as a result of
forgetting can be recovered quickly after con-
tinual training. The ability to recover is espe-
cially interesting for MultiCoNER where forget-
ting is pretty high, but we still conduct exper-
iments on both corpora. To investigate if this
is possible, we first set out to discover whether
the model shifts towards a better multilingual ini-
tialization. Hence we compare the multilingual
performance of the initial model0 (consisting of
BERT and a random classifier) against modelL, the
model at the end of training sequence (e.g. model4
in Figure 1). In particular, we train both mod-

els on all languages jointly for different numbers
of epochs and evaluate on each language. Notice
that modelL comes from our continual P1L exper-
iments (see Table 2). The results are presented in
Tables 4 and 5.

The comparison between model0 multilingual
and modelL multilingual for both corpora shows
two interesting results. On one hand, we ob-
serve that even one epoch of multilingual training
for modelL achieves better performance than the
monolingual baseline (model0 monolingual) and is
even close to the multilingual topline (model0 mul-
tilingual)3, both of which are trained on the maxi-
mum number of epochs (50 or 15). This means that
modelL is capable of achieving good multilingual
performance with very little training, hence can-
celing the effect of forgetting. On the other hand,
we see that modelL multilingual performance is
greatly superior to model0 multilingual with a sin-
gle training epoch. This is not surprising given
that the classifier is initialized randomly in model0,
but it shows that the model is capable of retaining
knowledge from previous languages, although it is
not clear whether that knowledge is preserved in
the classifier or in BERT.

We dive deeper into this question by training
modelL with a random classifier in the same man-
ner (see modelL + rnd clf multi. in Table 4). We
observe that performance is still greatly superior to
model0 multilingual with a single epoch. However,
performance is not as high as modelL multilingual
(although slightly in MultiCoNER), which keeps its
continually trained classifier. This indicates most
of the knowledge retained from previous languages
is stored in BERT, and that the knowledge stored

3 Except for Chinese on MultiCoNER, which is not sur-
prising considering that its joint transfer is negligible.
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Model Epochs DE EN ES FR PT ZH JA HI TR

model0
multi. (i.i.d.)

1 82.7 (1.2) 83.6 (0.7) 78.2 (0.3) 80.7 (0.7) 79.4 (0.5) 83.5 (0.7) 82.7 (1.0) 79.6 (0.7) 69.8 (1.5)
5 94.7 (0.2) 95.3 (0.2) 89.9 (0.2) 93.2 (0.2) 90.7 (0.2) 94.0 (0.2) 93.2 (0.5) 85.9 (0.3) 83.6 (0.7)
50 95.0 (0.2) 96.0 (0.2) 90.4 (0.4) 94.0 (0.3) 91.4 (0.2) 93.6 (0.2) 93.0 (0.1) 87.2 (0.3) 85.2 (0.6)

modelL
multi.

1 94.8 (0.3) 95.9 (0.2) 89.7 (0.6) 93.8 (0.3) 91.2 (0.4) 93.6 (0.5) 93.3 (0.3) 85.7 (0.9) 82.8 (1.3)
5 94.9 (0.2) 95.9 (0.2) 90.0 (0.5) 93.9 (0.3) 91.3 (0.4) 93.7 (0.4) 93.3 (0.3) 86.0 (0.8) 83.4 (1.0)

modelL
+ rnd clf multi.

1 93.1 (0.5) 93.7 (0.5) 87.9 (0.5) 91.1 (0.5) 88.5 (0.6) 92.6 (0.5) 92.3 (0.6) 83.4 (0.8) 80.8 (1.3)
5 94.8 (0.2) 95.8 (0.2) 89.9 (0.5) 93.6 (0.3) 91.1 (0.4) 93.7 (0.4) 93.3 (0.3) 86.3 (0.6) 84.1 (0.8)

model0
mono. (i.i.d.)

50 94.4 (0.2) 95.6 (0.1) 88.9 (0.4) 93.2 (0.1) 90.3 (0.6) 93.3 (0.4) 93.1 (0.4) 82.4 (0.5) 71.3 (0.9)

modelL
mono.

1 95.1 (0.2) 95.8 (0.2) 90.2 (0.4) 93.6 (0.4) 91.2 (0.4) 93.5 (0.5) 93.4 (0.2) 86.3 (0.6) 79.1 (1.5)
5 95.0 (0.2) 95.8 (0.2) 90.0 (0.4) 94.0 (0.2) 91.3 (0.2) 93.8 (0.4) 93.4 (0.2) 86.7 (0.4) 81.6 (0.8)
10 95.1 (0.2) 95.8 (0.2) 90.0 (0.5) 93.9 (0.3) 91.3 (0.4) 93.8 (0.4) 93.4 (0.2) 86.7 (0.4) 82.2 (0.9)

Table 4: Slot F1 performance on testi sets for MultiATIS++ fast recovery experiments. modelL monolingual
performance is averaged over 3 sequences (the P1L experiment ones starting with the language in question),
while modelL multilingual is averaged over all 27 sequences from P1L experiments. Both model0 and modelL
experiments are averaged over 5 runs (standard deviation in parenthesis).

Model Epochs BN DE EN ES HI KO NL TR ZH

model0
multi. (i.i.d.)

1 36.2 (1.4) 63.1 (0.8) 61.6 (0.6) 60.5 (0.6) 40.5 (1.4) 56.9 (0.4) 63.5 (0.7) 45.5 (0.6) 53.1 (2.4)
5 43.0 (1.1) 66.6 (1.0) 63.9 (0.2) 63.7 (0.6) 45.4 (1.5) 58.9 (0.7) 66.3 (0.7) 49.7 (1.4) 57.7 (1.5)
15 44.9 (1.6) 66.9 (0.4) 64.4 (0.7) 63.8 (0.4) 46.4 (1.2) 59.4 (0.8) 66.5 (0.5) 50.6 (1.0) 58.2 (1.0)

modelL
multi. (i.i.d.)

1 42.7 (1.7) 65.8 (0.7) 63.6 (0.7) 63.0 (0.8) 44.8 (1.4) 58.8 (1.0) 65.9 (0.8) 49.8 (1.0) 56.7 (1.3)
5 43.8 (1.4) 66.4 (0.6) 64.1 (0.5) 63.5 (0.6) 45.4 (1.1) 59.2 (0.8) 66.4 (0.5) 50.6 (0.9) 57.6 (1.2)

modelL
+ rnd clf multi.

1 42.6 (1.8) 65.5 (0.7) 63.3 (0.6) 62.7 (0.8) 44.7 (1.3) 58.7 (0.8) 65.7 (0.7) 49.6 (1.2) 56.6 (1.4)
5 43.7 (1.4) 66.3 (0.6) 63.9 (0.6) 63.4 (0.7) 45.2 (1.1) 59.1 (0.8) 66.2 (0.6) 50.4 (1.0) 57.6 (1.1)

model0
mono. (i.i.d.)

15 41.6 (3.2) 64.1 (0.8) 61.3 (0.6) 59.0 (0.8) 43.1 (1.2) 56.7 (0.7) 61.4 (0.9) 45.7 (0.7) 57.6 (0.8)

modelL
mono.

1 41.8 (2.4) 65.5 (0.7) 63.7 (0.8) 61.6 (0.5) 44.2 (1.1) 57.6 (0.4) 64.6 (0.7) 49.5 (1.0) 56.0 (0.9)
5 43.6 (1.8) 66.5 (0.5) 64.0 (0.6) 62.4 (0.6) 45.4 (0.7) 57.9 (0.5) 65.0 (0.8) 50.7 (0.7) 58.3 (0.9)

Table 5: Slot F1 performance on testi sets for MultiCoNER fast recovery experiments. Same comments from
Table 4 apply.

in the classifier is dependent on the corpus.

Overall, these results lead us to think that for
the sequence labeling task, continual training over
the language sequence does indeed shift model
parameters to a better multilingual initialization.
As a result, we explore the possibility to leverage
this phenomenon in order to quickly recover lost
language specificities due to forgetting for both
corpora. To do this, we train modelL on the first
language of the sequence a second time (i.e. as if
it were an (L+ 1)th language) and evaluate on the
first language only. As shown in Tables 4 and 5,
when comparing modelL monolingual to model0
monolingual (equal to first language performance
P11), we see that the performance of the first lan-
guage can be recovered and improved upon with as
little as a single training epoch3. These results are
outstanding for MultiCoNER considering the high
forgetting that we previously observed. On Mul-

tiATIS++, modelL monolingual even achieves 50-
epoch model0 multilingual performance in most
cases after only one epoch, with the remaining lan-
guages still showing a big improvement. In partic-
ular, Hindi and Turkish improve an absolute 3.9%
and 7.8% from model0 monolingual respectively.

Note that for MultiATIS++ increasing the num-
ber of recovery epochs for the first language does
not bring considerable improvements. The only ex-
ception to this observation is Turkish, which might
be explained by the small size of its training set. In
MultiCoNER however, performance still improves
after 5 epochs, getting closer to the multilingual
topline. Surprisingly, modelL monolingual is even
on par with the multilingual topline for Turkish and
Chinese. Although the cost of adding a language
remains O(N), the ability to recover all languages
raises costs to O(LN), making it expensive to use
in practice. The design of a strategy taking full
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advantage of these recovery capabilities to limit
forgetting with lower cost is left for future work.

8 Discussion

To summarize, we observe a high level of cross-
lingual transfer in the i.i.d. setting when learning
the sequence labeling task on all languages jointly
for both corpora. In a real low resource scenario
where data and annotations are scarce, it may be
difficult or even impossible to implement either
a monolingual or multilingual adaptive approach,
as time/space complexity is high and not all lan-
guages might be available at once. In a continual
learning setting where languages are learned in se-
quence, these costs are the lowest and cross-lingual
transfer is retained in the form of forward transfer.
However, forgetting occurs for the first language of
the sequence since performance consistently drops
below monolingual.

When looking at continual cross-lingual transfer
across the entire sequence, we obtain two surpris-
ing results. First, commonly used continual transfer
metrics may not be a reliable estimate of the perfor-
mance distribution across languages when transfer
is not evenly distributed. Since even in other adapta-
tion axes a considerable variability across datasets
is to be expected, we believe a statistic like the me-
dian might be a better choice, as we believe it better
represents expected performance at any given point.
Second, as the sequence progresses, forward trans-
fer improves, while backward transfer diminishes.
This might indicate that model parameters remain
a good initialization for future languages but that
previous language specificities might be lost.

Motivated by this hypothesis, we compare the
model at the beginning and at the end of the train-
ing sequence. Our results suggest that knowledge
from past languages is mostly stored in BERT (as
opposed to the task-specific classifier) and that the
model may indeed shift towards a better multilin-
gual initialization, making it suitable to quickly
recover the performance lost as a result of forget-
ting. We then measure the recovery capabilities
of the model with respect to the first language of
the sequence. We empirically show that lost per-
formance can be recovered with as little as a single
training epoch even if forgetting is high (like in
MultiCoNER). Performance can even greatly im-
prove and approach the i.i.d. multilingual topline
after only one training epoch for MultiATIS++ and
5 epochs for MultiCoNER.

In light of the above, we believe that effective
continual learning methods for this task would ben-
efit from leveraging recovery capabilities (either
for a single language or many languages jointly) to
limit the effect of forgetting, while preserving or
even boosting forward transfer.

9 Conclusion

In this paper, we presented an analysis of cross-
lingual transfer in continual learning for the se-
quence labeling task using multilingual BERT (De-
vlin et al., 2019) as well as the MultiATIS++ (Xu
et al., 2020) and MultiCoNER (Malmasi et al.,
2022a) corpora.

Our main finding suggests that although forget-
ting is present, cross-lingual transfer is retained
in the form of forward transfer, which allows the
model to have substantial recovery capabilities.
Moreover, we empirically show that: 1) high for-
ward transfer is linked to a progressive shift of
model parameters towards a better multilingual ini-
tialization, and 2) that most knowledge from past
languages is stored in the word representation en-
coder (BERT) and not in the task-specific classifier.
Finally, we also find that current continual learning
metrics may need to be adapted if we want to bet-
ter estimate the distribution of transfer across the
adaptation axis.

As future work, we would like to reduce train-
ing costs by leveraging fast recovery for continual
learning across languages. Another interesting re-
search direction would be a study on the continual
acquisition of languages not already present in mul-
tilingual BERT.

Reproducible Research

In the spirit of reproducible research, we re-
lease our code as open source available at
github.com/juanmc2005/ContinualNLU.
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Abstract

Pixel-level autoregression with Transformer
models (Image GPT or iGPT) is one of the
recent approaches to image generation that has
not received massive attention and elaboration
due to quadratic complexity of attention as it
imposes huge memory requirements and thus
restricts the resolution of the generated images.
In this paper, we propose to tackle this problem
by adopting Byte-Pair-Encoding (BPE) origi-
nally proposed for text processing to the im-
age domain to drastically reduce the length of
the modeled sequence. The obtained results
demonstrate that it is possible to decrease the
amount of computation required to generate
images pixel-by-pixel while preserving their
quality and the expressiveness of the features
extracted from the model. Our results show
that there is room for improvement for iGPT-
like models with more thorough research on
the way to the optimal sequence encoding tech-
niques for images.

1 Introduction

Modern deep learning includes a broad scope of
problems with varying difficulty. To solve these
tasks a paradigm of pre-training is widely used
in some domains, to the greatest extent in com-
puter vision (CV) and natural language process-
ing (NLP). Whilst unsupervised or self-supervised
pre-training is more dominant in the NLP domain,
CV models are mainly trained using large amounts
of labeled data. Authors of iGPT (Chen et al.,
2020) have attempted to prove that given appro-
priate conditions (namely flexible architecture and
significant amount of computation) it is possible
to pre-train a model that will reach state-of-the-art
performance on several CV downstream tasks even
with unlabeled data. They have achieved it using
an autoregressive pixel-level image generation as
an unsupervised training objective for training a
Transformer (Vaswani et al., 2017) model.

The approach of pixel-by-pixel generation ex-
ploited in the iGPT paper simply models an image
as a continuous sequence of pixels and models
the probability distribution of the next pixel con-
ditioned on all previous ones. Flattening images
results in sequences of an enormous length, for
example, such representation of a 128x128 RGB
image will require 49152 tokens, which is infeasi-
ble for RNNs as well as for Transformer models
where complexity is quadratic with respect to the
sequence length.

Despite there being numerous ways of optimiz-
ing attention operation in Transformer authors of
the iGPT model have deliberately chosen dense
attention due to it being domain agnostic and not
imposing any additional biases on the data. In
our work, we continue research in this direction
concentrating on the optimization of the image-to-
sequence representation mechanism rather than the
attention mechanism or the Transformer architec-
ture itself.

In the presented paper we try to adopt a tok-
enization approach widely used in the NLP domain:
Byte-Pair Encoding (BPE) to the image domain to
mitigate the main issue of the original iGPT paper.
These methods allow to significantly squeeze input
sequences thus reducing the amount of computa-
tion required for training and inference. Following
the methodology of the original paper, we also test
the ability of the Transformer model pre-trained on
image generation to be used as a feature extractor
that competitively performs on downstream tasks,
namely, image classification on CIFAR datasets 1.

The main contributions of this paper are as fol-
lows:

• We propose a novel method of image-to-
sequence tokenization that allows pre-train
image models on a generative objective with
lower computational complexity.

1The code is available at https://github.com/
razzant/bpe-iGPT
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• We study the dependence between the size of
BPE vocabulary and the amount of computa-
tion required for a forward pass.

• We show that pre-training with image-BPE
increases the capacity of the model allowing
it to learn more meaningful representations.

• We conduct several experiments measuring
the model’s performance on downstream
tasks.

2 Related Work

Autoregressive approaches have proven to be
very efficient in the NLP domain both in a pre-
training and a variety of natural-language gener-
ation tasks (Radford et al. (2019), Raffel et al.
(2020)). However, in the CV domain, it has been
quite a challenge due to the high dimensionality
of the data. One of the effective ways to tractably
model a joint distribution of pixels in an image
is to cast it as a product of conditional distribu-
tions. It was adopted in several models such as
fully visible sigmoid belief networks (Neal, 1992)
or NADE (Larochelle and Murray, 2011).

Recurrent Neural Networks (RNN) are powerful
models that offer a compact, shared parametriza-
tion of a series of conditional distributions. Authors
of PixelRNN (van den Oord et al., 2016) have ap-
plied this architecture to an image domain. The au-
thors suggested two types of convolutional LSTM
layers to compute all the states along one of the spa-
tial dimensions (rows or diagonals of the image).
Moreover, instead of LSTM blocks a convolutional
layer with a mask to avoid seeing the future context
was used. This method was called PixelCNN and
got further development such as PixelCNN++ (Sal-
imans et al., 2017). A small receptive field was an
obvious disadvantage of these approaches that was
overcome with the emergence of Transformers.

Transformer-based (Vaswani et al., 2017) mod-
els are extremely successful in natural language
generation and understanding fields. GPT-2 (Rad-
ford et al., 2019) demonstrated human-level per-
formance in text generating and zero-shot tasks
via prompt engineering. There were numerous at-
tempts to use GPT architecture for image genera-
tion, which can be divided into two groups: discrete
feature-based regression (e.g. DALLE Ramesh
et al. (2022)) or pixel-level regression (iGPT Chen
et al. (2020)). The latter type of model is not fairly
popular, as processing the 1D-sequence of flattened

RGB-image pixels is too memory-expensive due to
the length of the context and attention mechanism.
To deal with this problem authors resize images to
a low resolution (like 322 × 3, 482 × 3, 962 × 3 or
1922 × 3) with further clustering (R, G, B) pixel
values using k-means with k = 512 obtaining the
resulting context length 322 or 482. However, the
iGPT model demonstrated decent results in low-
resolution image generation and downstream tasks
over contextualized features. To measure model
performance linear probe method was used. The
method consists of training multi-class logistic re-
gression on embeddings from a model with frozen
weights on an image classification task. During pre-
training on ImageNet authors also used VQVAE as
a downsampler instead of RGB-clustering to keep
the context of 482 length.

On the other side, there are numerous methods
for sequence length compression in the NLP do-
main — different tokenization techniques, which
exploit the pre-computed merge dictionaries for op-
timal encoding of words or byte groups. One of the
most efficient methods is Byte-Pair-Encoding (Shi-
bata et al., 1999). The idea of this algorithm is
to find the most frequent pair of consecutive two-
character codes in the text and then substitute an
unused code for the occurrences of the pair. This
method has become a good trade-off between vo-
cabulary size and the length of the sequence fed
to the model. In GPT models special modifica-
tion of this algorithm is used which works at byte-
level (Wang et al., 2020) — this is one more step
towards optimal sequence squeezing.

3 iGPT with BPE Image Tokenization

Our BPE-enabled iGPT model relies on the GPT-
2 model originally designed for text processing.
More specifically we use embedding size d =
1024, number of layers L = 36 and number of
heads in the multi-head attention m = 8 result-
ing in 484 million trainable parameters throughout
all experiments. Due to limited computational re-
sources, we have not conducted experiments with
the BERT pre-training objective and used only lin-
ear probing as an evaluation approach.

In our experiments, we provide results for
prompted image generation and linear probe on CI-
FAR10 and CIFAR100 datasets with pre-training
on ImageNet (Deng et al., 2009) dataset. Also
we demonstrate unconditional image generation
on CelebA dataset (Liu et al., 2015) aligned with
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MTCNN framework (Zhang et al., 2016).

3.1 Converting Images to Texts

To train byte-level BPE tokenizer we convert im-
ages to text format by assigning each pixel value a
corresponding char symbol separating each row of
the original image with \n symbol in the resulting
text file. Since every pixel has an assigned value
from 0 to 255 we can quantize them into 10 discrete
buckets using integer division by 26. Now since
every pixel has a value from 0 to 9 for the grey-
scale setting we can replace each number with the
corresponding digit character. However, for RGB
images we need to represent values from all three
channels in one symbol, that is why we concate-
nate their values resulting in one number in the
range from 0 to 999, and convert this number into
a character using the standard chr function.

For example RGB pixel [150, 112, 255] will be
converted to a char in the following way:

1. RGB pixel: [150, 112, 255]

2. Quantization: [150, 112, 255] // 26 = [5, 4, 9]

3. Concatenation: [5, 4, 9] → 549

4. To char: chr(549) = ζ

3.2 Decoding Images from Tokens

Since an output of the model can have lines of var-
ious lengths we bring them to the required fixed
resolution by either upsampling or downsampling.
Then in the case of grey-scale images, each char-
acter is directly translated to the corresponding
quantized pixel value while for the RGB scenario
we use the python ord function, inverse to the chr
method used during encoding.

3.3 Encoding Efficiency

To evaluate the sequence squeezing effect of BPE
for images we calculate the squeezing factor — an
average ratio of the pixel-sequence length of an
image to the length of tokenized pixel sequence.
It can be seen from Figure 1 that the squeezing
factor grows logarithmically with the size of the
BPE vocabulary.

While larger vocabularies produce shorter input
sequences they also increase the number of train-
able parameters and the size of modeling distribu-
tion thus hindering the generation. Figure 2 shows
that the vocabulary size of 30 000 tokens gives
an optimal trade-off between the input squeezing

Figure 1: Compression ratio. The dependency of
sequence squeezing factor from BPE vocabulary size for
RGB and grey-scale 112x112 images. The more tokens
contains BPE dictionary the shorter the sequences used
to represent an image.

and computational efficiency of the model. The se-
lected vocabulary allows us to reduce the length of
pixel sequences roughly by 9 times for grey-scale
images and by 4 times for RGB images, i.e. the
112x112 image can be represented by a sequence
of approximately a thousand tokens.

Figure 2: Computational efficiency evaluation. iGPT
forward pass FLOPs for a 64x64 RGB image with differ-
ent tokenization strategies: BPE and original pixel-level
(No BPE).

4 Experiments

4.1 Examples of Generated Images
Faces generated by our BPE-iGPT model in
112x112 resolution are presented in the Figure 3
. It is worth noting that the authors of the orig-
inal iGPT provided only examples generated by
their largest model iGPT-XL (6.4 billion parame-
ters) in 32x32 resolution, however visual fidelity of
our samples remains on the same level. This sup-
ports our statement that image-BPE tokenization
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allows for pre-train Transformer models on the data
of higher dimensionality with less computational
overhead.

Figure 3: RGB generated faces 112× 112.

We have also tested the ability of our model to
image-conditional generation. We show examples
of image completion in Figure 4. Even though we
have not used any advanced sampling techniques
such as nucleus sampling, tuning for the temper-
ature, or beam-search all of the generated images
contain clearly recognizable objects.

Figure 4: Image completions (64 × 64). Top row:
prompt fed to model, middle: the result of the gen-
eration, bottom: ground truth image.

4.2 Image Representations for Downstream
Tasks

Figure 5: Effectiveness evaluation. Linear probe eval-
uation on CIFAR-10 for features extracted from every
layer.

One of the common means to evaluate the repre-
sentations learned by pre-trained models is linear
probing on downstream tasks. To do so we train
a logistic regression model over the features ex-
tracted from the trained network and compare the
classification accuracy of the model pre-trained
using image BPE against raw pixel sequences. Fol-
lowing the approach presented in the iGPT paper,
we evaluate features extracted from every layer of
the network.

Figure 5 shows the results of classification on
CIFAR-10 and CIFAR-100 datasets. As can be
seen from the plot our findings are in the agree-
ment with the original paper: the best layers to be
used as feature extractors are situated around the
central layer. Another interesting finding is that
even the first layer of the model trained on BPE-
image contains representative features in contrast
to the model trained on pixel sequence where first
results better than random are obtained after several
layers. One of the possible explanations for this is
that some BPE-tokens represent the most common
sequences of pixels which means that they already
contain some semantic information in contrast to
raw pixel sequences.

Our finding is in the accordance with similar re-
search in the NLP domain. Authors of (Kharitonov
et al., 2021) show that the ability of Transformer
models to memorize training data is highly depen-
dent on the size of BPE vocabulary. In combination
with our results, this suggests that BPE tokeniza-
tion increases the capacity of models allowing them
to learn more information about the data from every
layer.

5 Conclusion

In this paper, we explored the use of the BPE tech-
nique originally proposed for textual data in the im-
age domain. It allows significantly squeeze the tok-
enized image sequence length mitigating the limita-
tions of the original iGPT model. We quantitatively
show that this method reduces the amount of re-
quired computation by an order of magnitude and
qualitatively verify that it does not affect the quality
of generated images. Moreover, applying BPE tok-
enization improves the representative ability of the
models trained on unlabeled data. Our results sug-
gest that the potential of image-to-sequence squeez-
ing is not fully unleashed yet and that there is room
for improvement of iGPT-like models.
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Abstract

Cross-modal language and image processing
is envisaged as a way to improve language un-
derstanding by resorting to visual grounding,
but only recently, with the emergence of neu-
ral architectures specifically tailored to cope
with both modalities, has it attracted increased
attention and obtained promising results.

In this paper we address a cross-modal task
of language-driven image design, in particular
the task of altering a given image on the basis
of language instructions. We also avoid the
need for a specifically tailored architecture and
resort instead to a general purpose model in the
Transformer family.

Experiments with the resulting tool, LX-DRIM,
show very encouraging results, confirming the
viability of the approach for language-driven
image design while keeping it affordable in
terms of compute and data.

1 Introduction

The fields of image and language processing have
mostly progressed independently of one other, each
focusing on its own modality. Recently, though,
there have been promising prospects for advance-
ment in cross-modal processing. A major moti-
vation for this has been the realization that the
so-called grounding is necessary for progress in
language understanding (Bisk et al., 2020), and
a major enabling factor has been the emergence
of underlying technology that can be successfully
applied to both modalities and their cross-modal
processing (Dosovitskiy et al., 2020; Ramesh et al.,
2021; Wu et al., 2021; Radford et al., 2021).

In the image to language direction, there has
been considerable progress in the task of image cap-
tioning, that is of generating a language description
for an input image (Radford et al., 2021; Xu et al.,
2015; Wu et al., 2017; Hossain et al., 2019), and the
subsidiary task of image retrieval from a language
description (Reed et al., 2016; Guo et al., 2018; Yu

and Grauman, 2017; Kovashka et al., 2012); while
in the language to image direction promising results
have been obtained on the task of image generation
from an input language description (Ramesh et al.,
2021; Wu et al., 2021).

Conditional Generative models based on the
Transformer architecture (Vaswani et al., 2017) be-
came one of the mainstream approaches for virtu-
ally any language processing task (Radford et al.,
2019; Brown et al., 2020; Devlin et al., 2018) due
to their ability to cope with the intrinsically com-
positional nature of language and the meaning con-
veyed by contextualized expressions. Recently,
these models have also shown promise for im-
age processing tasks, namely in image generation
(Ramesh et al., 2021; Wu et al., 2021), showcas-
ing their capacity to handle multi-modal input, and
how general purpose the Transformer architecture
can be, coping also with data rooted in signals that
are not linguistic in nature.

The DALL-E model (Ramesh et al., 2021) deliv-
ered promising results in such a task, by receiving
a description in the form of a snippet of text (e.g. “a
green clock in the form of an hexagon”) and cre-
ating an image that humans recognize as one that
could correspond to that input description. And its
extension DALL-E 2 (Ramesh et al., 2022) under-
takes also a more restricted task, where a specified
subarea of the image is to be completed on the basis
of the language description. These models achieve
these results by leveraging massive quantities of
data and compute that are hardly accessible to most
research groups and organizations.

Adopting a distinct line of inquiry, in the present
paper we aim at addressing a challenge of language
driven image design, consisting of editing an image
on the basis of language instructions to do so. Here
the output image is conditioned not only on a text
snippet but also on an input image, such that that
image is appropriately altered taking into account
the language input.
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Figure 1: First (left to right): image with the cap-
tion “dark red pumps”. Second: image generated (CIG
model) with only the textual description in the caption
of the first image. Third: outcome of the alteration of
the second image (CIA model) with the instruction “are
a darker red”. Fourth: image retrieved from the database
by using the second image for matching.

For example, given an image of a piece of furni-
ture, the model is asked to change its color. And
then possibly its height, shape, viewing perspective,
or the direction of the light. This process should
allow one to iteratively and interactively modify the
design of some object without any specific image
manipulation software, and with no knowledge of
how to work with it.

This workflow can be exploited in a wide range
of innovative applications, such as supporting a
shopping assistant that progressively matches im-
ages altered by language instructions against cur-
rent stock and suggests increasingly suitable prod-
ucts, among others examples.

Also concerned with addressing the issue of re-
source cost, in this paper we present exploratory
research results on affordable Language Driven Im-
age Design (LDID). The major contributions and
findings of this study are: (i) a suitably instantiated
GPT-2 (Radford et al., 2019) is an effective option
to perform LDID; (ii) in what concerns the task
of Conditional Image Generation, our approach of-
fers a more streamlined setup than the one adopted
in DALL-E; (iii) as a by-product of its ability for
LDID, our model may usefully support the sub-
sidiary task of image retrieval; and (iv) extending
this set up with a pre-trained language model may
improve the performance in some LDID tasks. This
study resulted on the creation of a tool, LX-DRIM,
for editing an image on the basis of language in-
structions.

The remainder of this document is structured
as follows: Section 2 describes the neural model
used in this study; Section 3 explains the experi-
ments performed and introduces the data sets used;
Section 4 presents the results obtained; Section 5
proceeds with error analysis; Section 6 discusses
related work; and Section 7 closes the paper with
concluding remarks.

2 Model

In looking for affordable LDID, we resorted to a
GPT-2 small model (Radford et al., 2019), namely
its current implementation from the transformers
package of HuggingFace,1 including their English
pre-trained GPT-2 as well.2

GPT-2 has been successfully applied to virtually
all language processing tasks. Given it was con-
ceived for text, some adaptation is required in order
for it to handle images. Interestingly, changes to
the model architecture can be dispensed with, and
the required adaptations can be restricted solely to
the way the input data is pre-processed.

The minimal twist is to pass the images through
a Vector-Quantized Variation Auto Encoder (VQ-
VAE) that is both capable of describing an image
with tokens according to an internal vocabulary of
images and of constructing an image from those
tokens (Ramesh et al., 2021).

Similarly to Variational Autoencoders, the main
goal of VQ-VAEs is the encoding of an image into
a vector, or group of vectors, that can then be de-
coded as closely as possible into the same original
image. However, while in standard Variational Au-
toencoders, the latent space is continuous and is
sampled from a Gaussian distribution, VQ-VAEs
operate on a discrete latent space by maintaining
a codebook. This codebook can then be used as
vocabulary for text conditioned image generation.

Therefore, by passing an image through a VQ-
VAE, one gets a sequence of tokens that represents
the image. This sequence can be fed to a GPT-2
model like it is done with the sequence of tokens
for language, given that the image tokens also have
their own embedding in the embedding layer.

In this work we use the VQ-VAE from (Esser
et al., 2021)3, with a “vocabulary” for images of
size 1024, which is added to the GPT-2 embed-
ding map, and by means of which every image is
represented.

With this extension to images in place, one can
now proceed to train GPT-2 as it is done when it
is applied solely to text, whereby given an input
token it learns to predict the next one.

As training parameters for the GPT-2, we use
a batch size of 6 with gradient accumulation of
16, meaning that at each step our model back-
propagates with 96 training instances. We evaluate

1https://huggingface.co/docs/transformers/index
2https://huggingface.co/gpt2
3https://github.com/CompVis/taming-transformers
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on the development set every 250 steps, and stop
training when the development set loss does not
decrease from its lowest point after 5 evaluations.

After the training of the GPT-2 model, we option-
ally rank its outputs using CLIP4 over the various
images from the same input. After using two sepa-
rate encoders, for image and for text, CLIP maps
their encoding vectors into a common embedding
so that a caption and its respective image end up
with the same representation (Radford et al., 2021).
CLIP can thus support the ranking of images gen-
erated from a caption given the encoded image that
is closer (in vector space) to the encoded caption is
the one more closely described by the caption.

3 Experiments

With this model in place, the following experiments
were undertaken:5 (i) a warm up experience, aimed
at assessing the capability of the model for Con-
ditional Image Generation (CIG)—generating an
image from a text snippet describing it; (ii) the cen-
tral experiment of interest here, aimed at assessing
how well the model is able to perform Conditional
Image Alteration (CIA)—generating an image both
from another image and from a text snippet describ-
ing how the later should be altered; and, in addi-
tion, (iii) a comparison between the model and a
variant obtained by extending it with a language
pre-training phase.

3.1 Data sets
We resorted to the two data sets developed by (Guo
et al., 2018)6 for their research on image retrieval,
which we re-purposed for the tasks of interest here,
which differ from that original image retrieval task.

These data were developed through crowdsourc-
ing with Amazon Turk and include: (i) a dataset
of images of women shoes and respective captions,
re-purposed here for the CIG task; and (ii) a dataset
where each instance contains a source image of a
shoe, a target image of another shoe, and a short
textual description of how the source image relates
to the target one, re-purposed here for the CIA task.
Figure 2 shows an example from each data set.

The data set for CIG has 3600 examples. We
randomly shuffled it and produced a 80/10/10 split,
taking 2880 examples for training, 360 for devel-
opment and the remaining 360 for testing. The

4https://github.com/openai/CLIP
5Materials for the reproduction of the results reported here

are available at https://github.com/nlx-group/LX-DRIM.
6https://github.com/XiaoxiaoGuo/fashion-retrieval

Figure 2: Left image: example in the CIA dataset, where
the pair of images are associated to this textual instruc-
tion for the source image to be altered into the target
image: “are black with a thicker heel”. Right image:
example in the CIG dataset, associated to the caption
“dark red platform high heels with a strap”.

data set for CIA, in turn, has 10750 examples, and
it was also shuffled and submitted to a 80/10/10
split, with a 8600 example set for training, 1075
for development and 1075 for testing.

All images in these data sets are augmented via
several transformations: (i) images are flipped hori-
zontally with a 50% chance; (ii) rotated between 0º
and 20º clockwise or anticlockwise; (iii) distorted
in order to simulate different perspectives with a
50% chance; (iv) their sharpness increased by a
factor of 2 with a 50% chance; and finally (v) their
contrast is maximized with a 50% chance.

3.2 Input representation

3.2.1 Conditional Image Generation

For each instance in the CIG data set, 194 input
tokens were used: 128 text tokens, with the image
caption; followed by a delimiter token (<I>) in-
dicating where the image begins; followed by the
64 tokens output by the VAE, which represent the
image; and finally, another <I> token indicating
the end of the image.

During preliminary experimentation, we varied
the number of tokens that represent the image and
observed that using more tokens created a higher
resolution image at the cost of the image being
less precise. We empirically found that using 64
tokens to represent the image led to a good trade-
off between image quality and precision.

Also in preliminary experimentation, while ex-
perimenting with other data sets not used in this
study, another finding was that using images with
white backgrounds helped the model to focus on
the main object, being difficult for the model to
precisely detect the object in question when the
image had a noisier background.
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3.2.2 Conditional Image Alteration
For each instance in the CIA data set, 259 tokens
were used: 128 text tokens with the request for
alteration; a <I> token marking the beginning of
the source image; 64 image tokens from the source
image; a <I> token marking both the end of the
source image and the beginning of the target image;
another 64 tokens from the target image; and finally,
a <I> token marking the end of the target image.

Our initial approach was to provide the source
image first, followed then by the textual alteration.
However, the resulting model had worse perfor-
mance than the one with the text in the first (left-
most) place, as described above. This is possibly
due to the fact that, by having the textual tokens
first, the model can more easily learn the point
from which no more textual tokens occur—after
the first <I>—and after that point can attribute low
probabilities to textual tokens and focus solely on
generating image tokens.

3.2.3 Impact of CLIP
The notion of prompt engineering has emerged
in papers like the ones regarding GPT-2 (Radford
et al., 2019) or GPT-3 (Brown et al., 2020), and also
DALL-E (Ramesh et al., 2021) or CLIP (Radford
et al., 2021). This concerns how the textual input is
given to the model and how the user can condition
it to deliver the desired result.

Similarly to what is reported in those papers, the
performance of our CIA model improves when the
description of the object in the source image is in-
cluded in the alteration text, instead of this text only
stating the alteration to perform—e.g. “high heels
are a darker tone” vs. “are a darker tone”. This can
be partly attributed to the fact that the model gets
a confirmation of what image to generate ("high
heels" vs. "rain boots"). We use this approach to
help CLIP rank the generated images, by prefixing
the textual input with the expression denoting the
type of object of the source image.

While the type of object of the source image may
not always be the same as that of the target image,
in general a prompt prepared this way improves the
performance when CLIP is used for ranking.

4 Results

The evaluation of a generative task (e.g. summa-
rization, etc.), where typically there can be more
than one output that is acceptable as correct, tends
to be a problematic endeavour. While one could

try to compare to a gold standard in order to per-
form an automatic evaluation, small differences (of
equally acceptable outputs) to the gold example
inevitably makes most such metrics, like accuracy,
etc., useless, leaving only some kind of distance
metric to be resorted to.

In contrast to text processing, this problem tends
to be further aggravated for images, as metrics that
are used to evaluate textual generative tasks, like
BLEU (Papineni et al., 2002) or METEOR (Baner-
jee and Lavie, 2005), work by being able to refer
to some parts that are well defined substructures in
an expression (e.g. words), but for images there are
no clear substructures that can be resorted to, and
in most cases these distance metrics work only at
the pixel level.

4.1 Distance metrics

Given these considerations, we resorted to four dis-
tance metrics, two of which are hash functions:7

Average hash (A. Hash), which takes the shape
into consideration but compares the images in gray
scale; Color hash (C. Hash), similar to A. Hash
but taking color into consideration; Mean Square
Error (MSE), the most rudimentary metric used,
which focuses on the distance between pixels; and
Structural Similarity Index Measure (SSIM) (Wang
et al., 2004), one of the most used metric for im-
age comparison, which extracts luminance, con-
trast and structure to compare two images. For the
first three, lower scores are better, while for SSIM
higher scores are better.

The results obtained with these automatic met-
rics will help to converge onto the more favorable
settings for the model whose performance will
eventually be submitted to the manual evaluation.

4.2 Conditional Image Generation

Table 1 presents the results obtained for CIG,
where images are generated from text descrip-
tions.8 All evaluation scores were obtained as the
mean score of the top four ranked images, with
the exception of the last line (as only one image
was available). The data for this task are available
at https://github.com/nlx-group/LX-DRIM, which
also include the images generated.

The best results under each metric concentrate
in the middle of the table, when CLIP is fed with

7https://pypi.org/project/ImageHash/
8Running on an NVIDIA 2080 RTX 8G, CIG models were

trained in 7 and 3 GPU hours, with and without language
pre-training respectively.
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N. Examples A. Hash C. Hash MSE SSIM A. Hash C. Hash MSE SSIM
Without textual pre-training With textual pre-training

32 13.553 4.6313 0.0868 0.5587 13.480 4.6458 0.0832 0.5658
16 13.510 4.6326 0.0859 0.5614 13.434 4.6340 0.0824 0.5691
8 13.594 4.6681 0.0850 0.5638 13.326 4.6285 0.0810 0.5741
4 18.826 5.0792 0.0859 0.5290 19.441 5.0451 0.0830 0.5226
1 33.575 6.0417 0.0916 0.4072 35.875 6.2944 0.0901 0.3704

Table 1: Evaluation of CIG with the averaged scores of top-4 images, with (right half) and without (left) textual
pre-training, with four image distance metrics (columns): Average Hash, Color Hash, Mean Square Error (lower
is better), and Structural Similarity Index Measure (higher is better). The first column indicates the number of
generated images (8, 16 and 32) given to CLIP.

eight examples. This indicates that using CLIP
improves performance only to a certain point, after
which increasing the number of examples given to
it induces a detrimental effect.

With only one image generated, the model has
the worst performance as there is no ranking to ex-
clude the worst images. However, with four images
generated (which also do not pass through CLIP),
there are better scores than with only one, indicat-
ing that the model is more prone to creating more
precise images than imprecise ones, and that by
having multiple images the error is averaged out.

Considering the best scores with each metric, the
models pre-trained with language data (right half of
the table) have better performance than those that
do not have such pre-training (left half). This may
hint at that language pre-training is still relevant
when there are images also in the fine-tuning phase.

4.3 Conditional Image Alteration

Table 2 presents the results for CIA, where images
are generated both from other images and from text
describing the alterations requested.9

The scores for the contribution of CLIP here are
less consistently aligned with each other. Like in
CIG, in general, a lower number of examples fed
into CLIP seems to lead to better results.

In fact, with the SSIM metric, the best results
are obtained with CLIP being fed with the lower
number (8) of examples. However, for the hash
metrics, it is hard to find such clear trend, other
than that CLIP supports the best scores—in many
setups with less examples, but in a few others with
more. And while lower number of examples fed
into CLIP also leads to better results with the MSE

9Running on an NVIDIA Titan RTX 24G, CIA models
were trained in 17 and 7 GPU hours, with and without lan-
guage pre-training respectively. Model inference (image gen-
eration) took less than a second.

metric, their best results, in turn, are obtained with-
out CLIP.

Additionally, considering the best scores with
each metric, in some metrics one gets better results
with textual pre-training, while with others is the
other way around. These results are thus inconclu-
sive with regards whether performance improves
with or without textual pre-training for CIA.

4.4 Calibration

As an opportunistic extension or application of our
model, its conditional image editing capability can
easily support an image retrieval system. This can
be achieved by measuring the distance, from the
image generated for the input description, to every
image in a database and retrieve the one that is
found to be the most similar.10

While the performance of this kind of approach
is likely inferior when compared to the feature-
based methodology typically used in image re-
trieval systems, it is still worth experimenting with
it. This will have the virtue of helping to assess
the reliability of each one of the four evaluation
metrics we have been using: given every metric is
agnostic to the dataset, the domain or the model,
and with no possible bias sensitive to any of them,
the one with more matches to the gold counterparts
will turn out to be the best to be used to evaluate
image design tasks.

We evaluate the CIG model, with language pre-
training, with 8 images generated (and filtered to
4 by CLIP), for its retrieval accuracy within the
top 50, 10, 5 and 1 images retrieved, resorting to

10It is worth noting again that the data set we are using
(Guo et al., 2018) was originally developed to support a image
retrieval task, which the authors addressed by means of a
complex system that takes into account the user feedback so
that at each turn the system tends to get closer to the correct
image to be retrieved.
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N. Examples A. Hash C. Hash MSE SSIM A. Hash C. Hash MSE SSIM
Without textual pre-training With textual pre-training

32 14.272 4.2679 0.1103 0.5339 14.583 4.7551 0.1109 0.5352
16 13.952 4.2842 0.1076 0.5399 14.381 4.7409 0.1100 0.5401
8 14.431 4.6902 0.1074 0.5464 14.431 4.6902 0.1074 0.5464
4 17.633 4.3937 0.1041 0.5459 20.102 5.1612 0.1040 0.4976
1 27.836 4.8112 0.1049 0.5173 34.122 6.2688 0.0967 0.3650

Table 2: Evaluation of CIA.

N. Retrieved A. Hash C. Hash MSE SSIM
50 33.61% 30.28% 46.67% 9.17%
10 10.00% 11.11% 15.00% 1.94%
5 5.56% 6.39% 8.33% 1.39%
1 1.67% 1.39% 1.67% 0.28%

Table 3: Accuracy of retrieving images with images
generated from their captions by the CIG model where
the retrieval is based in each of the four distance metrics
(columns), for top-k retrieved images (first column).

the 360 examples in the test set. The respective
evaluation scores are displayed in Table 3.

These results on image retrieval are low, being,
nevertheless, above the random baseline (1/360 or
0.27% for 1 image retrieved). We tend to attribute
these low results mainly to the nature of the data
set as most images are very similar to each other—
more on this below, in Section 5.

Nonetheless, the important take away sought for
is the comparison between the four metrics, and
their calibration to serve as evaluation metrics for
our tasks of interest. Whereas MSE is the met-
ric with higher scores at all settings considered
(i.e. each line in the table), SSIM gets the lower
scores, practically at random performance, being
only 0.01% above it when one image is retrieved.
Hash metrics, in turn, perform practically on a par
with each other, with A. Hash performing slightly
above C. Hash for 1 and 50 retrieved images, and
C. Hash performing above A. Hash for 5 and 10 im-
ages. Accordingly, these results indicate that MSE
could be considered as a more reliable distance
metric than the other three.

4.5 Evaluation

Taking these preparatory findings into account, the
model was evaluated in the task of interest here,
CIA, under what appears as its most suitable set-
tings following MSE scoring, with one example
generated and language pre-training.

Two test sets were gathered, each with 25 ran-
domly selected examples. Test set A (cf. Ap-
pendix A.1) consisted of triples with, from left
to right in each line, source image, image produced
by the model, and the alteration instruction. In test
set B (cf. Appendix A.2), the examples consisted
of 4-ary tuples with, from left to right, the source
image, the gold target image, the image output by
our model, and the instruction for alteration.

Six independent and voluntary evaluators were
assigned the following task: given the original im-
age on the left and the alteration instruction, clas-
sify how much the image on the right is a satis-
factory result with a score from {1, 2, 3, 4}, where
4 indicates that it is fully satisfactory. They ran
the evaluation over the entire test set A first, and
then over the test B. To avoid eventual prejudice
and respective bias, they were not told that images
were generated by computer.

The averaged mean ratings of the evaluators
was 2.37 (s.d. 0.11) with test set A. With test set
B, the perceived quality slightly lowered to 2.26
(s.d. 0.36), showing that evaluators’ rating tended
to be pulled down by their seeing a result deemed
as fully satisfactory side by side to the one under
evaluation.

To evaluate also the CIG task, as DALL-E is not
available, we resorted to its HuggingFace smaller
version, DALL-E mini,11 to generate images from
25 randomly selected captions in our data set (cf.
Appendix B). Our model was also run on these cap-
tions. Following the same comparative evaluation
approach used for CIG in DALL-E, in a best-of-
five vote, the images generated by our model were
always chosen as the most realistic and as best
matching the caption. The images generated by
the other system happen to be scrambled pieces of
disparate objects.

When compared to our model DALL-E mini has

11https://huggingface.co/flax-community/dalle-mini
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3 times more parameters (400 million vs 124 mil-
lion) and was trained on 5000 times more images
(15 million vs 2880).

5 Error analysis

To help in error analysis, difficult cases are exem-
plified in Figure 1. The two leftmost shoes are,
respectively, the target image and the (CIG) gener-
ated image with the description “dark red pumps”.

Both shoes are quite similar in terms of shape,
but their color is different. This is a good illus-
tration that color saturation and lightness are sub-
jective and hard to transmit via text. In the target
image (1st column), the desired dark red is almost
black, and the image generated (CIG) from “dark
red pumps” (2nd column) is lighter.

Interestingly, even the tentative correction (CIA)
of this image with the instruction “are a darker red”
still does not produce an image (3rd column) that
is not as dark as in the first column.

Though image retrieval is not a central task of
interest in this paper, it is worth noting that this
may be even more serious for image retrieval as
slight changes in saturation and lightness can make
the system choose a different image: When trying
to retrieve an image from the database, using the
generated image (2nd column), the image that is
retrieved is the one at the fourth column.

Further difficult examples, generated by the CIA
model, are shown in Figure 3.

One problem illustrated there concerns image
clarity. Even though some images (see 1st column)
are correct, they have some fuzzy details. This is
likely due to the reduced volume of the training
data set. However, as already mentioned, in order
to have images with higher resolution given a data
set of this size, one would have to sacrifice image
relevance and precision.

Another problem arises when the target image is
very different from the source image (see 2nd col-
umn). In such cases, the model is basically asked to
create a quite different object, for which the small
size of the data set provided limited evidence.

Additional problems occur when the images to
be generated are too similar to the source image
(see 3rd column), or the generated images are too
similar to each other (see 3rd and 4th images in the
1st column). While not necessarily a problem for
the overall quality of the output, the first kind of
cases becomes an issue for evaluation, as generated
images may be more similar to the source image

Figure 3: Examples of CIA for error analysis. First row:
source images. Second row: target images. Remaining
rows: top four generated images. Textual instructions
for image alteration in left column: “athletic shoes are
blue and silver”; middle column: “athletic shoes are
bronze-colored slingbacks”; right column: “pumps are
blue”.

than to the target one. As for the second kind of
cases, when the generated images are similar to one
another, it may become a problem if object design
is the intended use for the tool, and not just image
alteration.

To address these issues, further techniques to en-
hance image diversity should be explored in future
work, so that the model can suggest a more varied
set of images to the user.

6 Related Work

A promising application of deep learning to image
generation was presented in (Goodfellow et al.,
2014), with a Generative Adversarial Network
(GAN), a forerunner of a research line continued
in (Xu et al., 2017), (Zhu et al., 2019), (Tao et al.,
2021), a.o. A two part network containing a gen-
erator and a discriminator was proposed: The gen-
erator tries to create fake yet as realist as possible
images, while the discriminator tries to distinguish
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the fake images produced by the generator from
real ones.

Despite this early success being attributed also
to the use of Convolution Neural Networks (CNN)
(LeCun et al., 1989), the concept of GAN can be
used with other deep learning approaches. Such is
the case of the more recent work in (Jiang et al.,
2021b), where two Transformer models (Vaswani
et al., 2017) are used as a discriminator and a gen-
erator respectively. With no convolution at its core,
they achieve competitive scores when compared to
their CNN counterparts.

Transformers gained their notoriety with their
success in languages processing tasks of all kinds,
and recently they have been applied to other data
modalities. Relevant models that use Transformers
for Image Generation from captions are DALL-E
(Ramesh et al., 2021), and NUWA (Wu et al., 2021).
The major difference between them is that NUWA
also uses video while DALL-E works only with
pictures, and that NUWA uses a different type of
attention mechanism, 3D Nearby Attention.

The approach proposed in (Galatolo et al., 2021)
also achieves promising results in image genera-
tion with a pre-trained Transformer CLIP (Radford
et al., 2021), only by training a genetic algorithm.

More recently DALL-E 2 (Ramesh et al., 2022)
improves upon its predecessor by incorporating the
CLIP model for image and caption representation,
and through the use of a diffusion model for image
generation (Dhariwal and Nichol, 2021).

The architecture adopted in our model is simi-
lar to the backbone architecture on which the im-
plementation of DALL-E is based. Our model is
different from DALL-E, however, in not having
any specific optimization performed on the base
Transformer, like it was done to set up DALL-E,
and in being of a more reduced size (124M vs. 12B
parameters). Our system also differs in that it is
geared for a task other than the Conditional Image
Generation one, of DALL-E, namely the task of
Conditional Image Alteration. It happens also that
it was trained in a much smaller amount of data
(10750 vs. 250 million examples).

Also, related to our research topic, (Cheng et al.,
2020) tackles the same task, though by means of
a Generator/Discriminator architecture, with data
that while similar to ours is not the same. To the
best of our knowledge, that dataset is not publicly
available, so no comparison was possible. (Jiang
et al., 2021a) also work with language guided im-

age edition, with different datasets that do not
tackle the problem of object shape manipulation.

Work on image editing without language guid-
ance can be found in the work of (Zhu et al., 2020;
Zhuang et al., 2021), on different datasets.

The research presented here appears as a more
streamlined approach for the tasks involved in Lan-
guage Driven Image Design since most of the work
is performed with a common decoder-only archi-
tecture, in the form of a GPT-2 small model. This
is a generalist architecture that can be adapted for
other tasks, as it was the case here with the CIG
task, or any other task that can be represented by a
sequence (text, audio, image, etc.).

7 Conclusion

The present study explored Conditional Genera-
tive models for Language Driven Image Design, by
means of an affordable GPT-2 instantiation with
only 124M parameters. The central task of inter-
est here was Conditional Image Alteration, con-
sisting of generating a new image given a source
image and a textual instruction for its alteration, on
which the proposed LX-DRIM application showed
a performance rated at 2.37 (in 1–5) by manual
evaluators.

Resorting to the same data set, the task of Condi-
tional Image Generation, consisting of generating
an image given a textual description, was also ex-
perimented with. Very encouraging results were
also obtained, specially taking into account that
the data set used here was several orders of magni-
tude smaller than the one that has been used in the
literature for this task.

In addition, we found also that as by-product
of its cross-modal processing ability, our model
may usefully support the subsidiary task of image
retrieval through the use of its generated images.

Empirical experimentation obtained very en-
couraging results and demonstrated that the pro-
posed approach can support an effective solution
to Language Driven Image Design and represents
a promising research path whose potential is worth
being further exploited.

The present study focuses on changing a single
object in the image, rather than multiple objects
in a scene. Future work the task of scene manipu-
lation (El-Nouby et al., 2019; Zhang et al., 2021)
should be investigated by exploiting the approach
developed here with single object manipulation.
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 Are a lime green 
color  

 

 Are shiny grey 
clogs 

 

 Is white  

 Are metallic silver  

 Black flats  

 Is busier with 
contrasting panels 
and strap 

 

A CIA Manual Evaluation Sheet

A.1 TEST A
First page of the test set A. Remaining pages can be consulted at https://github.com/nlx-group/LX-DRIM.
From left to right: source image, generated image, and text snippet with alteration request.
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Is plum, not black  

 

Is gold  

 

Is busier with laces and 
zipper with rugged sole 

 

 

Have no heels  

 

White sneakers with 
blue trim 

 

 

Are yellow  

 

Are blue and silver  

A.2 TEST B
First page of the test set B. Remaining pages can be consulted at https://github.com/nlx-group/LX-DRIM.
From left to right: source image, target gold image, generated image, text snippet with alteration requested.
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ballet flats 

 

 
beige sneakers 

 

 
black flats with design 

 

 
black low heel motorcycle boot  

  
black mid-heeled long-on-the-leg 
boots 

 
 

B CIG Manual Evaluation Sheet

First page of the CIG test set. Other pages can be consulted at https://github.com/nlx-group/LX-DRIM.
From left to right: image caption, image generated by our system, image generated by DALL-E Mini.
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Abstract

Emotion Recognition in Conversations (ERC)
is an important and active research area. Re-
cent work has shown the benefits of using mul-
tiple modalities (e.g., text, audio, and video) for
the ERC task. In a conversation, participants
tend to maintain a particular emotional state
unless some stimuli evokes a change. There
is a continuous ebb and flow of emotions in
a conversation. Inspired by this observation,
we propose a multimodal ERC model and aug-
ment it with an emotion-shift component that
improves performance. The proposed emotion-
shift component is modular and can be added
to any existing multimodal ERC model (with a
few modifications). We experiment with differ-
ent variants of the model, and results show that
the inclusion of emotion shift signal helps the
model to outperform existing models for ERC
on MOSEI and IEMOCAP datasets.

1 Introduction

Humans are complex social beings, and emotions
are indicative of not just their inner state and feel-
ings but also their internal thinking process (Min-
sky, 2007). To fully understand a person, one needs
to understand their inherent emotions. Recent re-
search has witnessed colossal interest in including
artificially intelligent machines as conversable com-
panions for humans, e.g., personal digital assistants.
However, communication with AI systems is quite
limited. AI systems do not understand the inherent
emotions expressed implicitly by humans making
them unable to comprehend the underlying thought
processes and respond appropriately. Consequently,
a wide variety of approaches have been proposed
for developing emotion understanding and genera-
tion systems (Sharma and Dhall, 2021; Witon et al.,
2018; Singh et al., 2021a; Goswamy et al., 2020;
Colombo et al., 2019; Singh et al., 2021b; Joshi
et al., 2022).

∗Equal Contributions

Most of the time in an online course the student to 
content interactivity is assumed but -

- the first thing to think about here is that they are 
three interactivity types. You have student to 

student interactivity, student to content interactivity, 
and student to instructor interactivity mostly -

- assumed. Student to student relationships and 
student to instructor relationships aren't always 

assumed.

One of the opportunities you can do is to have a 
hallway conversation area i know that some ..

Negative Sentiment Positive Sentiment

Emotional Shift

Figure 1: Emotional shift on the dialogue
“m7SJs73SF8w” from CMU-MOSEI dataset

During an interaction, humans express different
emotions and fluctuate between multiple emotional
states. It is often the case that participants in a con-
versation tend to maintain a particular emotional
state unless some stimuli evokes a change. This
observation is closely related to Shapes of Stories
proposed by renowned writer Kurt Vonnegut (Von-
negut, 1995), who posits that every story has a
shape plotted by the ups and downs experienced by
the characters of the story, and this, in turn, defines
an Emotional Arc of a story. This phenomenon
has also been empirically verified by Reagan et al.
(2016), who analyzed around 1300 stories to come
up with common emotional arc patterns across vari-
ous stories. Moreover, apart from these flows, there
exists a sudden shift of emotions from positive to
negative sentiments. Consider an example shown
in Figure 1, where the sentiment of the third utter-
ance shifts from positive to negative and back again
to positive in the fourth utterance. Current state-of-
the-art methods are often oblivious to the presence
of such emotion shifts and tend to fail in cases
where there is a sudden change in the emotional
state (Poria et al., 2019). To address this issue, we
propose incorporating a novel module that explic-
itly tracks such emotional shifts in conversations.
Humans express their emotions via various modali-
ties, such as language, modulations in voice, facial
expressions, and body gestures. In this paper, to
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fully and correctly recognize human emotions, we
propose a multimodal emotion recognition system
that utilizes language, audio, and video modalities.
We propose a multimodal ERC model based on
GRUs that fuses information from different modal-
ities. An independent emotional shift component
captures the emotion shift signal between consecu-
tive utterances, allowing the model to forget past
information in case of an emotional shift. We make
the following contributions:

• We propose a new deep learning based mul-
timodal emotion recognition model that cap-
tures information from text, audio, and video
modalities. We release the model implementa-
tion and experiments code in the supplement.

• We propose a novel emotion shift network
(modeled via a Siamese network) that guides
the main emotion recognition system by pro-
viding information about possible emotion
shifts or transitions. The proposed component
is modular, it can be pretrained and added to
any existing multi-modal ERC (with a few
modifications) to improve emotion prediction.

• The proposed model is experimented on the
two widely known multimodal emotion recog-
nition datasets (MOSEI and IEMOCAP), and
results show that emotional shift component
helps to outperform some of the existing mod-
els. We perform detailed analysis and ablation
studies of the model and show the contribu-
tion of different components. We analyse the
performance of our model in the classification
of utterances having a shift in emotion and
compare this with previous models and report
an improvement due to the use of emotion-
shift information. We further examine how
the internal GRU gates behave during emo-
tion shifts.

2 Related Work

Emotion recognition using multiple modalities is
an active area of research leading to the develop-
ment of widely popular benchmark datasets, e.g.,
CMU-MOSEI (Bagher Zadeh et al., 2018), and
IEMOCAP (Busso et al., 2008). Recent works
have highlighted the crucial aspects of self, and
interpersonal dependencies in the emotional dy-
namics of the conversations (Poria et al., 2019).
Another essential feature is the role of the local
and global context for emotion recognition sys-
tems. Some notable works like Dialogue RNN

(Majumder et al., 2018b) try to capture these prop-
erties by modeling each speaker with a party state
and the emotion of each utterance by an emotional
state. Furthermore, a context state is maintained
to model the global conversation context. Another
work Multilogue-Net (Shenoy and Sardana, 2020)
highlights the limitation of the fusion mechanism
used in Dialogue RNN (Majumder et al., 2018b)
and tries to solve it using a party, context, and emo-
tion GRUs for each modality. It uses a pairwise
attention mechanism proposed by (Ghosal et al.,
2018) to fuse the emotion states for all the modali-
ties effectively. However, DialogueRNN highlights
the poor performance in predicting the emotions
with the utterances where the emotion shifts from
positive to negative sentiments. Our work consid-
ers the emotion shifts present in the dialogues and
tries to leverage them for improving emotion recog-
nition. Another line of work includes Transformer-
Based Joint-Encoding (TBJE) (Delbrouck et al.,
2020) that achieves the state-of-the-art results on
the sentiment task for the MOSEI dataset using a
multimodal transformer-based model for combin-
ing multiple modalities. However, in the emotion
task, TBJE is outperformed by the Multilogue-Net
model. The possible reason highlighted by the pa-
per is the lack of context-awareness in the architec-
ture, as TBJE neither uses the previous nor next ut-
terance to predict the emotion for the current utter-
ance. Some of the other works in multimodal emo-
tion recognition include the Memory Fusion net-
work (MFN) (Zadeh et al., 2018), which aligns mul-
timodal sequences using multi-view gated memory,
Graph-MFN (Bagher Zadeh et al., 2018) which
uses Dynamic Fusion Graph (DFG) and learns
to model the n-modal interactions dynamically,
and bc-LSTM (Poria et al., 2017) which uses an
LSTM-based model to capture contextual infor-
mation. CESTa (Wang et al., 2020) captures the
emotional consistency in the utterances using CRF
model (Lafferty et al., 2001) for boosting the per-
formance of emotion classification and comes close
to our idea of leveraging emotion shifts.

3 Task and Corpus

Problem Definition: Consider a conversation hav-
ing utterances u1, . . . , uN . The task of Emotion
Recognition in Conversation (ERC) is to predict
the emotion (or sentiment) of each utterance ut.
We define an utterance to be a coherent piece
of information (single or multiple sentences) con-
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Emotion Shift ComponentEmotion Shift Component
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Difference

sBERT 
Embeddings
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sBERT 
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Speaker A

Speaker B Speaker B

 

𝕤𝕠𝕗𝕥𝕞𝕒𝕩

Predicted Emotion

 

𝕤𝕠𝕗𝕥𝕞𝕒𝕩

Predicted Emotion

Figure 2: The model architecture for a conversation between two speakers, A and B, at time t and t+ 1. The upper
part highlights the Emotion Classification Component, and the lower part highlights the Emotion Shift Component.

veyed by a single participant at a given time. We
model an utterance in terms of different modalities:
ut = {lt, at, vt}. An utterance (ut) at time-step t
is represented via features from textual transcript
(lt), audio (at), and visuals (vt) of the speaker. We
denote the speaker of utterance ut as qt.

3.1 Corpus Details
3.1.1 CMU-MOSEI:
The CMU Multimodal Opinion Sentiment and
Emotion Intensity (Bagher Zadeh et al., 2018) is
an English language dataset containing more than
65 hours of annotated video from more than 10000
speakers and 250 topics. Each sentence is anno-
tated for a sentiment on a [−3, 3] Likert scale. How-
ever, in this work, we project these labels to a two-
class classification setup with values ≥ 0 signifies
positive sentiments and values < 0 convey nega-
tive sentiments. Dataset also contains six emotion
labels, namely angry, happy, sad, surprise, fear and
disgust for each utterance. Note that in case of emo-
tions labels the utterances are multi-label. Which
means a single utterance can have more than one
emotion label. We have shown results for both
sentiment and emotion prediction tasks.

3.1.2 IEMOCAP:
The IEMOCAP benchmark (Busso et al., 2008)
consists of a conversation between ten distinct
speakers. The dataset contains two-way conver-

sations in videos where every video clip contains
a single dyadic English dialogue. Further, each
dialogue segments into utterances with an emotion
label from six emotion labels, i.e., happy, sad, neu-
tral, angry, excited, and frustrated. The dataset
incorporates an acted setting where actors perform
improvisations or scripted scenarios, specifically
selected to elicit emotional expression.

4 The Proposed Model

During a conversation, speakers tend to maintain
an emotional flow of affective states. These states
majorly rely on the context of the entire conversa-
tion; for example, if the overall gist of the speaker
about the topic is positive, the emotions like happi-
ness, joy, and surprise can be seen more often than
negative emotions like anger and sadness. More-
over, a speaker’s emotions are often affected by the
past emotions present in the conversation. Hence,
an emotion prediction model should not only take
into account the context but should also be able to
maintain the speaker-level information along with
the emotions present in the past utterances. Consid-
ering these assumptions, we propose the primary
component of our emotion recognition model: the
Emotion Classification Component. The emotions
classification component predicts an utterance’s
emotion label using information from the current
speaker, emotions of the previous utterances, and
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the entire conversation context. Another significant
insight about the emotions in a conversation is the
sudden shift of emotional states. Many of the ex-
isting state-of-the-art approaches highlight this in
their error analysis, where the model fails to cap-
ture the sudden shifts in emotional states leading to
a misclassified emotion prediction. To incorporate
the effect of a sudden shift in the emotion, we in-
troduce a separately trained component called the
Emotion Shift Component. The emotion shift com-
ponent explicitly models the probability (pshiftt ) of
a shift in emotion between the utterances ut−1 and
ut. This shift in emotion can be expressed as mov-
ing from a positive (e.g., happy) to negative emo-
tion (e.g., sad) or vice-versa between consecutive
utterances. The emotion shift component being in-
dependent of the primary architecture is pretrained,
and helps control the information flow from past
to future during a sudden change. The signal from
the pretrained emotional shift component is added
to the emotion classification component to control
the flow of emotions from past to future. Figure 2
shows detailed architecture of the proposed model.
Emotion Classification Component: For model-
ing the underlying emotions in a conversation, we
maintain a party state, emotion state and context
state. The party state is maintained for each speaker
and helps to keep track of the participant specific
aspect in a conversation. The context state is global
(common across each participant) and helps to en-
code the entire conversation context, thereby cap-
turing inter-utterance dependencies. Akin to the
context state, the emotion state is also global and
helps to leverage the emotion information flow be-
tween utterances. Moreover, the emotion shift sig-
nal between the current and previous utterance is
used to update the global emotion state. The emo-
tion label for each utterance is then predicted by
decoding the emotion state. In our model each of
the party, context and emotion states are modality
specific and are updated using a modality specific
GRU (Chung et al., 2014) network for each modal-
ity m ∈ {l, a, v} (indicated by the superscript m).
We employ late fusion to combine the emotion
states from different modalities. Next, we explain
different GRU networks used in the model.

sqt,mt = GRUm
s

(
sqt,mt−1 , (mt ⊕ xm

t )
)

(1)

cmt = GRUm
c

(
cmt−1, (mt ⊕ sqt,mt )

)
(2)

emt = GRUm
arc

(
emt−1, s

qt,m
t , pshift

t

)
(3)

et = fusion(elt, e
a
t , e

v
t ) (4)

Party State Update (GRUs): The state of each par-
ticipant is modeled by the party state update GRUs.
For each modality m ∈ {l, a, v}, qt’s party state
sqt,mt−1 is updated to sqt,mt using an attention vector
xm
t and modality specific feature mt (Eq. 1), ⊕

denotes concatenation operation. Here xm
t is calcu-

lated using a simple dot product attention mecha-
nism over the context states (cmt ). Note that for all
speakers other than qt, the party state at t− 1 and t
remains the same.
Context State Update (GRUc): Global conversation
context is modeled using the context state update
GRUc. For each modality m ∈ {l, a, v}, the global
context state cmt−1 is updated to cmt (Eq. 2) using
the qt’s party state sqt,mt and the corresponding
modality feature mt. Context states (cm1 , · · · , cmt−1)
are used for calculating the attention vector xmt for
each modality m ∈ {l, a, v} as follows:

α = softmax
(
mT

t Wα

[
cm1 , · · · , cmt−1

])
(5)

xmt = α
[
cm1 , · · · , cmt−1

]T (6)

Emotion State Update (GRUarc): For each modal-
ity m ∈ {l, a, v}, the global emotion state emt−1 is
updated to emt (Eq. 3) using the current party state
sqt,mt and modulated by the emotion shift compo-
nent (pshift

t ). The emotion states for all the three
modalities are fused together (Eq. 4) to create et
using a pairwise attention mechanism (Shenoy and
Sardana, 2020). et is later used to decode the emo-
tion class for an utterance.

The emotion classification component is a
context-aware model similar to that of previous
works like Multilogue-net (Shenoy and Sardana,
2020) but with a few key differences. Firstly, in-
stead of modelling an emotion state for each partic-
ipant, we introduce global emotion state for each
conversation. This is done to make use of the flow
of emotion between utterances. Secondly, the emo-
tion shift signal between the current and previous
utterance (pshift

t ) is used to update the global emo-
tion state using a GRUarc which aims to model the
emotion arc in the conversation.
Emotion Shift Component: To capture the emo-
tional arc across the conversation, we explicitly
model probability of emotion shift (pshiftt ) between
successive utterances (ut−1 and ut). We use a
Siamese network (Bromley et al., 1993) to model
the emotional shift present across utterances. A
Siamese network generally consists of two or more
identical subnetworks having the same configura-
tion with shared parameters and weights. The pro-
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posed emotion shift architecture takes the textual
features of the current (lt) and previous (lt−1) ut-
terances and outputs the probability of maintaining
emotional inertia (pinertiat ). The architecture of the
emotion shift prediction network is shown in lower
half of Figure 2. We use Sentence-BERT (SBERT)
(Reimers and Gurevych, 2019) embeddings as tex-
tual features. SBERT is a modification of the pre-
trained BERT (Devlin et al., 2019) network that
uses the Siamese network to derive semantically
meaningful sentence embeddings for transfer learn-
ing tasks. The emotion shift prediction network
makes use of only the text modality for two rea-
sons. Firstly, it has often been found empirically
that among the text, audio, and video modalities,
text modality carries more information for ERC
tasks (Poria et al., 2018). Secondly, early fusion
techniques to combine the three modalities can suf-
fer in a Siamese-type architecture due to difficulty
in mapping the fused modality vector to a vector
space in which similar vectors are close. We also
experimentally verify this (§6).

The emotion shift prediction network (between
ut and ut−1) takes in text features corresponding
to utterances (lt and lt−1) and their element wise
differences to output the probability of a shift as
given by (Eq. 7). Here, pinertiat is calculated us-
ing Siamese network (Eq. 8, 9). Here, Ht is the
Siamese hidden state, W

(
∈ R3dl

)
is the model

parameter. For the Siamese network, we use Bi-
nary Cross Entropy loss (Ls) over the distribution
pshift
t . The emotion shift component modulates the

Emotion State GRUarc via pshift
t and hence controls

the flow of information during the conversation.
The Emotion Shift component captures the emo-
tional consistency in the utterances and can act as
an independent modular component that can be pre-
trained and added to any existing multi-modal ERC
framework with a few modifications for improving
emotion recognition in conversations.

pshift
t = 1− pinertiat (7)

pinertiat = σ (Ht) (8)

Ht = WT (lt−1 ⊕ lt ⊕ |lt − lt−1|) (9)

Overall Architecture: The motivation for the pro-
posed architecture follows from the intuition that
we need to weigh down the contribution of the pre-
vious emotion state in case of an emotion shift. In
other words, we need to reduce the influence of
emt−1 in the calculation of emt when there is a high
pshiftt . To do so, we modify the reset and update

gates in the GRU modelling the emotional arc of
the conversation i.e. GRUarc. A GRU has gating
units (reset and update gates) that modulate the
flow of information inside the unit. Ravanelli et al.
(2017) mention the usefulness of reset gate in sce-
narios where significant discontinuities are present
in the sequence, thereby indicating its crucial role
to forget information. Their work also finds a re-
dundancy in the activations of the reset and update
gates when processing speech sequences. Moti-
vated by this, and the intuition that we need to for-
get more information when there is a higher prob-
ability of an emotional shift, we directly use the
value of (1− pshiftt ) for both the reset and update
gates. The updates for GRUarc unit are given by
Eqs. 10, 11. Eq. 10 calculates a candidate emotion
state ẽmt in which the prior emotion state’s (emt−1) is
controlled by the emotion shift signal. The output
emt is a linear interpolation between ẽmt−1 and emt−1.
Again, pshiftt controls the influence of emt−1 (Eq.
11). Therefore, a higher value of pshiftt will limit
the contribution of the previous emotion state. In
the absence of the emotion shift component, the
GRU gates are learned using only the classification
data, much like the rest of the parameters in the
model. If the total number of parameters in a model
is huge (as is the case with most deep learning mod-
els), the gates might be unable to learn well. We
verify that the modeling of the shift in emotion
encourages better learning of these gates (§6).

ẽmt = tanh
(
Wsqt,mt + (1− pshiftt )⊙

(
Uemt−1

))

(10)

emt = (1− pshiftt )⊙ emt−1 + pshiftt ⊙ ẽmt (11)

For prediction at time t, the emotion vector et
(formed from fusion of emt as described in (Eq.
4)) is passed through a final classification layer
Wc (∈ Rde×K) where K is the number of emo-
tion or sentiment classes. This is used to obtain
probability distribution over emotion labels via the
Softmax activation: o = softmax(W T

c et). We
use the Cross-Entropy Loss over this distribution
to train the weights of the emotion classification
component.

5 Experiments and Results

Multimodal Emotion Corpora: We evaluate our
model using two benchmark English ERC datasets -
CMU Multimodal Opinion Sentiment and Emotion
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Dataset #utterances Emotion shift (in %)

Train Test Train Test

CMU-MOSEI 18191 4655 33.61 34.62
IEMOCAP 5810 1623 12.89 12.75

Table 1: Statistics for number of utterances and emotion
shift percentage in various datasets

Model F1 Accuracy

Graph-MFN 77.00 76.90
DialogueRNN 79.82 79.98
Multilogue-Net 80.01 82.10
TBJE - 82.4
Our Model 83.07 82.66

Table 2: Performance comparison on the sentiment task
of CMU-MOSEI dataset (all numbers in %)

Intensity (CMU-MOSEI) dataset and the Interac-
tive Emotional Dyadic Motion Capture (IEMO-
CAP) dataset. Details of these corpora are dis-
cussed in §3.1. In a nutshell, each of the two cor-
pora has language, audio, and video modalities.
MOSEI has both sentiment and six emotion labels,
IEMOCAP has video recordings of dyadic conver-
sations and is labeled with six emotion labels.
Emotion shift in Dataset: We define an emotion
shift between consecutive utterances if there is a
shift from a positive to a negative emotion or vice-
versa. CMU-MOSEI dataset provides annotated
(positive/negative) sentiment label for each utter-
ance. This is not the case for the IEMOCAP dataset,
therefore we divide the emotion classes into a posi-
tive and negative category. Happiness and surprise
are taken into the positive category while disgust,
angry and sad are considered as the negative cat-
egory. Note that IEMOCAP also has a neutral
emotion, but a shift is only counted if it is from a
positive to negative emotion or vice-versa. Table
1 shows the percentage of emotion shift observed
in the datasets. Since CMU-MOSEI shows a larger
amount of emotion shift, we were motivated to
perform experiments on CMU-MOSEI first.

5.1 Results
We evaluate our approaches using standard F1
score and Accuracy evaluation metrics (App. A).
We train and report the performance of our model
for four sub-tasks, 2-way sentiment classification
and binary emotion classification on CMU-MOSEI,
and four-class and six-class emotion classification
task for IEMOCAP. The focus of our work is mul-
timodal ERC and consequently, as is done in pre-

Emotion Multilogue-Net TBJE Our Model

A F1 A F1 A F1

Happiness 70.05 70.03 66.00 65.50 68.51 68.61
Sadness 71.04 70.42 73.90 67.90 74.20 71.74
Anger 74.78 74.31 81.90 76.00 75.17 76.10

Disgust 77.98 79.20 86.50 84.50 83.67 82.79
Fear 69.04 75.50 89.20 87.20 87.11 85.90

Surprise 88.89 85.98 90.60 86.10 78.99 81.62

Table 3: Performance comparison on the emotion task
of CMU-MOSEI dataset (all numbers in %)

vious work, we compare only with previous mul-
timodal approaches, since comparison with uni-
modal (e.g., text) only approaches does not make
sense. Moreover, SOTA unimodal approaches
(such as text based) use additional information such
external knowledge sources (e.g., (Ghosal et al.,
2020)) which makes the comparison with multi-
modal approach unfair specially given that such
knowledge may not be available for other modali-
ties. Nevertheless, it is possible to incorporate the
emotion shift component into existing emotion pre-
diction architectures (unimodal or multimodal) and
we leave this exploration for future.
Results on CMU-MOSEI: Table 2 shows compari-
son of our best performing model on CMU-MOSEI
sentiment labels, with current state of the art mod-
els: TBJE (Delbrouck et al., 2020), Multilogue-
Net (Shenoy and Sardana, 2020), Dialogue RNN
(Majumder et al., 2018b), and Graph-MFN (Po-
ria et al., 2017). As evident from the results, we
are able to significantly outperform the previous
SOTA Multilogue-Net model with an increase of
3% in F1 score. We further compare our model
on the emotion classification task with TBJE and
Multilogue-Net (Table 3). As shown in the table,
our model outperforms for some of the emotion
classes. We speculate that poor performance is
due to the multilabel setting in the CMU-MOSEI
dataset. As the emotion labels are multilabel, the
emotion shift component is not able to play a mean-
ingful role in providing a performance boost to the
emotion classification component. We consider
multilabel settings as another line of future work
where the emotion shift modeling takes into ac-
count the multilabel property.
Results on IEMOCAP: Previous works on
Multimodal-IEMOCAP have shown performance
only on angry, happy, sad, and neutral emotions.
We compare our model performance on these four
classes with state-of-the-art models CHFusion (Ma-
jumder et al., 2018a) and bc-LSTM (Poria et al.,
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Emotion bc-LSTM CHFusion Our model
A F1 A F1 A F1

Happy 79.31 - 74.30 81.40 68.75 72.79
Sad 78.30 - 75.60 77.00 76.73 81.21

Neutral 69.92 - 78.40 71.20 81.51 78.25
Angry 77.98 - 79.60 77.60 82.35 79.77
Avg(w) 75.20 - 76.50 76.80 78.47 78.46

Table 4: Performance comparison on the IEMOCAP
dataset for four emotion labels (all numbers in %)

Emotion Hap Sad Neu Ang Exc Fru Avg(w)

Acc 54.17 65.31 62.50 62.94 67.89 64.04 63.59
F1 50.81 70.48 60.23 63.69 70.73 62.72 63.82

Table 5: Performance of our model on IEMOCAP
dataset for 6 labels (all numbers in %)

2017) (Table 4). Our model significantly outper-
forms both of these on average weighted F1 and
Accuracy. Also, emotion classes neutral and an-
gry show improved performance. We also provide
results on six emotion classes - happy, sad, neu-
tral, angry, excited, and frustrated (Table 5). For
these experiments, we use BERT features for text
(§6), OpenSmile features for audio and 3D-CNN
features (Majumder et al., 2018b) for video. We
did not come across any existing work on 6-class
multimodal IEMOCAP for the comparison.
Performance of emotion shift component: The
results describing the capability of the emotion shift
component to predict the shift for CMU-MOSEI
and IEMOCAP dataset are shown in Table 6. It is
to be noted that predicting the shift accurately is
not our primary objective. Our objective is to be
able to improve the emotion prediction by using
the signal (pshiftt ) received from the emotion shift
component.

6 Analysis and Ablation Studies

Due to a wide variety of components, it becomes vi-
tal to perform a detailed analysis of the architecture
to understand the importance of various choices.
Feature and Design choices: For understanding
the importance of features used for different modal-
ities, we choose two different sets of features for
text and visual modalities. In one setting, we use av-
eraged GloVe embeddings (Pennington et al., 2014)
for text, OpenSmile features (Eyben et al., 2010)
for Audio and Facet features (Stöckli et al., 2017)
for Video. Whereas in another setting, for text
modality, we make use of a pre-trained BERT (De-
vlin et al., 2019) model’s output layer. We calculate
the average of the output layer to get a fixed-sized

Datasets Accuracy F1

CMU-MOSEI 72.65 67.32
IEMOCAP 4-label 80.50 79.68

6-label 85.63 84.28

Table 6: Performance of Siamese Model on MOSEI and
IEMOCAP

Input Features Classification Emotion Shift
Accuracy F1 Accuracy F1

G(L), O(A), F(V) 80.85 80.31 63.38 62.15
B(L), O(A), O(V) 81.98 80.91 64.01 63.30
B(L), O(A), O(V) 82.66 83.07 72.65 67.32

Table 7: Effect of different feature combinations for
MOSEI. The classification columns are results on 2 class
sentiment prediction task and emotion shift columns are
results on 2 class emotion shifts classes. Here G(L):
Glove, B(L): BERT, F(V): Facet, O(A): OpenSmile,
O(V): OpenFace2.0

vector. For visual modality, we use the features pro-
vided by OpenFace2.0 (Baltrusaitis et al., 2018),
which are useful in performing facial analysis tasks
such as facial landmark detection, head-pose track-
ing, and eye-gaze tracking. The results in Table 7
(first two rows) highlight the advantage of features
used in second setting.
Importance of Pretraining the Emotion Shift
Component: To review the significance of the pre-
training emotion shift component, we compare it
with the two settings described above. We argue
that jointly optimizing the emotion classification
and emotion shift component from scratch might
degrade the model classification performance. At
the onset of training, the Siamese component does
not provide a helpful signal to the classification
component due to the random initialization of its
weights, hampering the learning of the classifica-
tion component. To prevent this, we pre-train the
emotion shift component on the emotion shift la-
bels separately before the joint training task, which
helps provide the classification component with a
better emotion shift signal at the start of training,
making learning more accessible. The results in
Table 7 (third row) shows an increase of approxi-
mately 2% in the F1 score when compared to the
same features setting without pretraining (second
row). Moreover, the Siamese network, when pre-
trained, also achieves an F1 score of 67.32%, the
highest among all the experiments depicting the
hindrance caused by joint training from scratch.
Performance over emotion shift utterances: To
verify the effectiveness of the emotion shift com-

50



Emotion shift type Multilogue-Net Our Model

Positive - Negative 69.78 73.83
Negative - Positive 59.49 80.35

Table 8: Accuracy comparison with Multilogue-Net on
MOSEI emotion shift utterances

Emotion shift type 4-label 6-label

Positive - Negative 63.04 53.22
Negative - Positive 69.77 70.68

Table 9: Accuracy of the proposed model on IEMOCAP
emotion shift utterances

ponent we consider cases where an emotion shift
has occurred between a target utterance ut and the
prior utterance ut−1 if there is a switch from posi-
tive emotion in ut−1 to negative emotion in ut, or
vice versa (§3). We evaluate our emotion classifica-
tion performance on such utterances ut displaying
an emotion shift. Popular architectures like CMN,
ICON, IANN and DialogueRNN perform poorly
on the utterances with an emotion shift (Poria et al.,
2019). In particular, in cases where the emotion of
the target utterance differs from the previous utter-
ance, DialogueRNN could only correctly predict
47.5% instances, much lesser than the 69.2% suc-
cess rate that it achieves at the regions of no emo-
tional shift. In Table 8 we compare our results with
another multimodal ERC SOTA: Multilogue-Net.
The results show a significant increase in accuracy
for both positive to negative and negative to pos-
itive emotion shifts on the CMU-MOSEI dataset
depicting the importance of the independent emo-
tion shift component introduced in our architecture.
Even though the Siamese network can predict the
presence of emotion shift with an accuracy of about
72.65% (Table 7), the signal received from it (in
the form of reset and update gates of GRU) helps
the emotion classification network to overcome the
emotional inertia and predict the correct emotion.
We also show the accuracy of our model on emo-
tion shift utterances of the IEMOCAP dataset in
Table 9. We could not calculate these numbers for
CHFusion (SOTA on IEMOCAP) due unavailabil-
ity of their code.
Effect of Modeling Emotion Shift: To further ver-
ify the significance of modeling emotion shift as a
separate component, we compare two variants of
our best model - one with and the other without
the Emotion shift component. Table 10 shows a
comparison on both the datasets. Across both the

Datasets Without With

A F1 A F1

CMU-MOSEI 81.31 81.01 82.66 83.07
IEMOCAP 4-label 77.53 77.51 78.47 78.46

6-label 61.37 61.65 66.73 66.86

Table 10: Performance with and without the emotion
shift component (all numbers in %)

Datasets
L+A L+V A+V L+A+V

A F1 A F1 A F1 A F1

CMU-MOSEI 82.49 82.81 81.65 82.16 72.22 71.28 82.66 83.07

IEMOCAP
4-label 80.06 80.07 77.52 77.56 78.26 78.20 78.47 78.46
6-label 64.26 64.48 63.34 63.40 58.90 58.84 66.73 66.86

Table 11: Ablation study to observe the contribution of
different modalities

datasets, we observe a substantial increase in per-
formance while using the emotion shift component.
Contributions of the Modalities: To understand
the importance of different modalities present in
the datasets, we conduct experiments by choosing a
combination of two out of the three modalities. As
expected, models using all three modalities outper-
form models using only two modalities across most
datasets (Table 11). On the IEMOCAP dataset with
four classes, the text+audio model performs better
than six classes. The text modality seems to be
the most essential compared to other modalities
highlighting the significance of context.
Using other modalities in the Emotion Shift
Component: To observe the effectiveness of
modalities other than text on the Emotion Shift
Component, we empirically analyze the effect of
using all three modalities for training this com-
ponent. We make use of the early fusion tech-
nique where modalities lt, at, vt are concatenated
(lt ⊕ at ⊕ vt ) and then passed to the Siamese net-
work. Observing the obtained results, we see that
the use of the three modalities does not lead to an
improvement (Table 12). A possible reason for this
might be the importance of context (captured in the
text modality) in predicting emotion shifts.
Analyzing reset gate updates in GRUarc: We
also verify the practical significance of the emo-
tion shift component qualitatively. We compare the
GRU reset gate activations obtained from the emo-
tion shift component and the reset gate activations
learned by GRU without explicit emotion shift in-
formation. We randomly pick an instance from the
CMU-MOSEI test set and analyze the GRU unit
using it. In Figure 3, we show these activations for
the Video ID "m7SJs73SF8w" randomly selected
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Modalities Accuracy F1

L 82.66 83.07
L+A+V 82.20 82.78

Table 12: Performance using other modalities in
Siamese component (all numbers in %)

from the test set. This dialogue has four utterances,
and we see a shift from positive to negative emo-
tion between utterances two and three and a shift
from negative to positive emotion between utter-
ances three and four. As seen in the left graph in
Figure 3, the emotion shift component learns to
set a low reset gate value when there is an emo-
tion shift (namely timestamps t = 3 and t = 4).
This low reset gate value helps to weigh down the
contribution of the previous emotion state for the
predictions at the current timestamp. Comparing
it to the case when we remove the emotion shift
component (right graph in Figure 3), the reset gate
activations learned by the GRU do not follow the
same trend, indicating that the previous emotion
state will still significantly contribute to predictions
at the current timestamp. Overall, the emotion shift
component plays a vital role in effectively control-
ling information from the past.

7 Discussion

The presence of emotion shifts in human-to-human
conversation is prominent in the conversational
datasets. The existing works based on sequential
modeling often suffer from these shifts, leading
to poor performance for utterances with emotion
shifts. In this work, we try to control the effect
of previous utterances using an independent emo-
tion shift module. As highlighted in Tables 8 and
9, the proposed architecture performs significantly
better on emotion shift cases when compared to
Multilogue-Net (20% improvement in negative-
positive and 4% improvement on positive-negative
shifts). The novel design of the emotion shift-based
gating mechanism in the GRU unit helps boost the
prediction performance for utterances with emotion
shifts. As noticed in Fig. 3, the reset and update
gates provide a significant signal when there is an
emotional shift in conversation.
Modularity: The modular design and idea of the
proposed emotion shift component can further be
used to improve any emotion prediction systems
that have poor performance in emotion shift cases.
Moreover, the designed emotion shift component

Most of the time in an online course the student to 
content interactivity is assumed but -

- the �rst thing to think about here is that they are 
three interactivity types. You have student to 
student interactivity, student to content interactivity, 
and student to instructor interactivity mostly -

- assumed. Student to student relationships and 
student to instructor relationships aren't always 
assumed.

One of the opportunities you can do is to have a 
hallway conversation area i know that some ..
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Figure 3: Reset Gate activations on the dialogue
‘m7SJs73SF8w" from CMU-MOSEI test dataset

works considering only the textual modality, mak-
ing it applicable to both multimodal as well as
unimodal systems.
Application to Real-Time Systems: A notable
limitation of all the existing Emotion Recognition
state-of-the-art systems often comes from the inca-
pability of their implementations for real-time use
cases as they require the entire context to be given
in the form of multiple utterances to the model. For
future approaches where the models will target the
real-time setting, the proposed emotion shift com-
ponent can be handy as it only uses two consecutive
utterances to predict the emotion shift.

8 Conclusion and Future Directions

In this paper, we proposed a deep learning based
model for multimodal emotion recognition in con-
versations. We proposed a new emotion shift
component (modeled using the Siamese net) that
captures the emotional arc in a conversation and
steers the main emotion recognition model. We
performed a battery of experiments on two main
emotion recognition datasets. Results and analysis
show the importance of the emotion shift compo-
nent. Currently, the emotion shift component uses
only the text modality for predicting the shift and
we plan to explore more sophisticated ways of us-
ing information from multiple modalities.
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Appendix

A Evaluation Metrics

Consider {yn}Nn=1 as the true labels and {ŷ}Nn=1 as
the predicted labels for the N datapoints. Note that
yn, ŷn ∈ {1, 2, . . . ,K} where K is the number of
classes.

The Accuracy score for predictions if given by:

Accuracy =

∑N
n=1 I [yn = ŷn]

N

We use the accuracy_score method of Python
based Scikit-learn library (Buitinck et al., 2013)
for its evaluation. The F1 score for a class k is
given by:

F1k =
2× precisionk × recallk

precisionk + recallk

where, precisionk is the precision for class k and
recallk is the recall for class k. These are calculated
using:

precisionk =

∑
ŷn=k

I [yn = ŷn]

∑
ŷn=k

1

recallk =

∑
yn=k

I [yn = ŷn]

∑
yn=k

1

Finally, the weighted F1 score is defined as

weighted F1 =
K∑

k=1

fk × F1k

where fk is the relative frequency of class k
We use the F1_score method of Scikit-learn

library for its evaluation.

B Experiment Reproducibility

B.1 Input and hidden states dimensions
The Input modality dimensions for the different
datasets we experimented are as follows:
CMU-MOSEI

• Text (BERT): 768

• Audio (OpenSmile): 384

• Video (OpenFace2.0): 711

IEMOCAP:

• Text (BERT): 768

• Audio (OpenSmile): 100

• Video (3D CNN): 512

The dimension of the hidden states and GRU
states are as follows:

• Siamese hidden state (Ht): 300

• Party state for each modality sqt,mt : 150

• Context State for each modality cmt : 150

• Emotion State for each modality emt : 100

All other weights and parameters are such that the
equations given in §3 hold.

There are a total of 5578803 parameters in the
model.

B.2 Training the main model
All experiments are implemented using the Py-
Torch library (Paszke et al., 2019). All weights
are initialized randomly using PyTorch’s default
methods, and we use the Adam optimizer (Kingma
and Ba, 2014) for training these weights.

The following hyper-parameters are used for the
optimizer:

• Learning rate (lr) : 0.0001

• Weight decay (weight_decay): 0.0001

• β1, β2 (betas): (0.9, 0.999)

Here, the names in parenthesis denote the argu-
ments corresponding to the hyper-parameters in
the Adam Optimizer object of the PyTorch library.

We use a batch size of 128 for training across all
experiments. The number of epochs for which the
model was trained varies across datasets. These are
listed as follows:

• CMU-MOSEI - 50 epochs

• IEMOCAP - 500 epochs

Training time per epoch was approximately 2.5
minutes for CMU-MOSEI and 15 seconds for
IEMOCAP.

The model is evaluated at every epoch on the
validation set (constructed using an 80:20 random
split of the training data). The model giving the
best weighted average F1 score across all classes
is checkpointed. All the randomizations in the
training procedure are reproducible using a seed
value of 42 for libraries NumPy and PyTorch.
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B.3 Training of the emotion shift component
This section provides the hyper-parameters for the
pre-training procedure of the emotion shift compo-
nent described in 4. We use a batch size of 8, and
the model is pre-trained for five epochs. The model
is checkpointed against the best F1 score.

B.4 Hyperparameter Tuning
Hyperparameters like the size of siamese hid-
den state (Ht), size of context/party/hidden states
(sqt,mt , cmt , emt ) are tuned manually. The best
weighted average F1 score over the validation set
across all epochs was used as the criterion to select
the best hyperparameter configuration.

To tune the hyperparameters used in the opti-
mizer (learning rate, weight decay, β1, β2), we
started with the default values used in the PyTorch
library. These values are:

• learning rate: 0.001

• weight decay: 0

• β1: 0.9

• β2: 0.999

On manual tuning, we found that decreasing the
learning rate to 0.0001 and increasing the weight
decay to 0.0001 helped in better convergence and
superior validation performance. Changing the val-
ues of β1 and β2 did not lead to any improvement.
So these were kept the same as the default values.

B.5 Machine Specification
All experiments were performed on a server using
Intel i7-5820K CPU @ 3.30GHz, Nvidia GeForce
GTX TITAN X GPU, and CUDA 11.
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