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Abstract
Transformer-based models trained on text and
vision modalities try to improve the perfor-
mance on multimodal downstream tasks or
tackle the problem of lack of grounding, e.g.,
addressing issues like models’ insufficient com-
monsense knowledge. While it is more straight-
forward to evaluate the effects of such mod-
els on multimodal tasks, such as visual ques-
tion answering or image captioning, it is not
as well-understood how these tasks affect the
model itself, and its internal linguistic represen-
tations. In this work, we experiment with lan-
guage models grounded in videos and measure
the models’ performance on predicting masked
words chosen based on their imageability. The
results show that the smaller model benefits
from video grounding in predicting highly im-
ageable words, while the results for the larger
model seem harder to interpret.

1 Introduction

A traditional language model is only exposed to
textual data. While ample information exists in
the form of text, some text-external knowledge
might be missing, such as commonsense knowl-
edge about the physical world, how objects look
like, relate to each other, and how we interact with
them. There is an abundance of work on trying
to expose language models to other information
sources and modalities, or in other words, ground-
ing them; however, it is not clear how that would
affect a language model in general. One promis-
ing modality to ground language models in is vi-
sion. Previous work has studied the grounding of
language models in visual input and how this af-
fects their performance on downstream multimodal
tasks, such as visual question answering and im-
age retrieval (Touvron et al., 2021; Li et al., 2020b;
Lu et al., 2019; Su et al., 2019), and on models’
“understanding” of the world and their grasp of
commonsense knowledge (Sileo, 2021; Hendricks
and Nematzadeh, 2021; Norlund et al., 2021).

Our aim with this work is to see whether
grounding in videos affects the performance of
transformer-based language models on masked
lnaguage modeling. Masked language modeling is
the task of predicting one or more masked tokens,
given other tokens in the sentence. Evaluating a
model’s performance on such cloze-test-style fill-
in-the-blank tasks is simple to implement and does
not require expensive annotated data. Still, it can
provide us with helpful intuition about how models
work. This method also makes it easy to compare
language models grounded in different modalities
without further fine-tuning them. We choose to
experiment with videos rather than images because
they contain more information about the physical
world, and may be more useful for the development
of spatial, temporal and causal reasoning. Videos
are also less studied in the literature.

The masked words that we want the model to
predict are chosen based on their imageability. Im-
ageability is a well-established notion from the field
of psychology, defined as “the ease with which a
word gives rise to a sensory mental image” (Paivio
et al., 1968). For instance, words like “to prance”
and “oven” are considered highly imageable, while
words like “to consider” and “problem” are not.
Imageability is highly correlated with concreteness,
but the class of imageable words also includes ab-
stract words, e.g. emotion words such as “anger”.
At the same time, this class does not include less ex-
perienced, yet concrete, words such as “armadillo”
(Paivio et al., 1968). We use a dataset consisting
of 2,645 words annotated with their imageability
scores (Bird et al., 2001) to experiment with differ-
ent types of models and investigate whether there
is a performance difference between grounded and
not grounded language models when predicting
low-imageability versus high-imageability words.
The words in our dataset are labeled with their
parts-of-speech, which we will use in our experi-
ments and analysis of the results.
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We continue the paper with explaining the mod-
els’ architecture in §2 and the data sets used in
§3. The experimental settings and the results are
described in §4, where we also analyze the results
and try to interpret them. In §5 we briefly discuss
some related work.

2 Model

We mainly follow the data preprocessing steps, the
architecture, and the training regime of VideoBERT
model (Sun et al., 2019). We experiment with a pre-
trained BERT-base model (Vaswani et al., 2017)
and DistilBERT (Sanh et al., 2019). BERT is essen-
tially a transformer-based model (Vaswani et al.,
2017) pretrained with masked language modeling
and next sentence prediction objectives, and Distil-
BERT is the distilled version of the BERT model,
which has half the number of layers as BERT-base.
Both language models are pretrained on the same
data.

As for the video features, we use the I3D model
pre-trained on the Kinetics dataset (Carreira and
Zisserman, 2017) to encode video clips that are
sampled at 20 fps and are 1.5 seconds long. We
then apply hierarchical k-means clustering to the
video features, setting the number of hierarchy lev-
els to 4 and the number of clusters per level k to
12, which results in 124 = 20,736 clusters. Hence-
forth, we use the closest cluster centroids as video
tokens instead of continuous video features. As the
output of the I3D model is of size 600, we use a
fully connected layer to map to the embedding size
of the respective model.

We further train the pre-trained language models
with a masked language modeling training objec-
tive with a masking probability of 0.15 for each
modality. The embeddings of the word tokens (wi)
and the video tokens (vj) are concatenated with a
new special token [>] as the text–video separator.
This results in an input I of the form

I = ([CLS], w1, ..., wn, [>], v1, ..., vm, [SEP])

The [CLS] and [SEP] tokens are the models’
special tokens for classification and separation of
sentences, respectively. The embedding weights
and video features are frozen during training. The
input I is then fed to the model to get the output
O, which is mapped to the vocabulary space by
means of a projection layer consisting of two fully
connected layers (FC) and layer normalization:

ŷ = FC2(LN(FC1(O)))

All the new layers and embedding weights are
initialized randomly from a uniform distribution
(He et al., 2015). The final objective is to maximize
the log-likelihood

∑L
l=1 log p(ŷl |x\l; θ), where l

is the masked token, and the xs are the input tokens,
text or video, without the lth token. Special tokens
are never masked.

We train two models with almost the same archi-
tecture, as described above, once only with textual
input, and once with text and video input. The only
difference in the structures is that the text model
lacks the projection layer, which makes comparison
between the models possible. The random seed is
the same for both models all the time and changes
by epoch. The models are trained using the Adam
optimizer with a learning rate of 10−5 and batch
size of 210. We stop the training when the model’s
loss and accuracy plateaus on the validation set.

The implementations and the pretrained weights
of the Hugging Face Transformer library (Wolf
et al., 2019) are used in these experiments.

3 Data

To get imageability scores for nouns and verbs,
we use Bird’s dataset, in which words with dif-
ferent parts-of-speech, are rated with imageabil-
ity scores from 100 to 700. For training and test-
ing the models, HowTo100M (Miech et al., 2019)
dataset is used, which is a collection of 1.2M nar-
rated English YouTube videos from various cate-
gories. We randomly choose 55K videos from the
dataset and split these into 45K videos for train-
ing, 5K for development, and 5K for testing, or in
other words 4.7M samples for training and ∼500K
for the other sets. To get some idea on how the
HowTo100M data looks, we measure the mean im-
ageability score on a random set of 300K tokens
from the dataset, which was 454 on type level, and
366 on token level, which shows a high frequency
of low imageability words in the dataset.

There are a total of 892 verb types and 1,304
noun types in the Bird dataset. We split the words
in the Bird dataset into low imageability (≤ 300)
and high imageability (≥ 500) ones. This results
in 114 low imageability and 511 high imageability
types, or 67K and 92K tokens, respectively. The
type-token ratio for low imageability words is 17×
10−4, while being 55× 10−4 for highly imageable
ones.
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Train Test Imageability Accuracy (∆) N. Acc. (∆) V. Acc. (∆)

D
is

til
B

E
R

T

Baseline Low 22.1 22.8 22.1
High 10.1 10.5 9.4

T T Low 34.3 24.0 35.7
High 16.8 16.6 17.5

TV TV Low 33.7 (-0.6) 23.7 (-0.3) 35.0 (-0.7)
High 17.7 (0.9) 17.2 (0.6) 18.9 (1.4)

TV T Low 34.1 (-0.2) 24.0 (0.0) 35.5 (0.2)
High 17.1 (0.3) 16.7 (0.1) 18.0 (0.5)

B
E

R
T

Baseline Low 24.4 23.7 24.4
High 10.8 12.4 7.5

T T Low 38.6 32.8 38.6
High 21.4 21.5 21.2

TV TV Low 39.1 (0.5) 32.9 (0.1) 39.6 (1.0)
High 21.9 (0.5) 21.8 (0.3) 22.0 (0.8)

TV T Low 39.3 (0.7) 33.0 (0.2) 39.7 (1.2)
High 21.0 (-0.4) 21.1 (-0.4) 20.7 (-0.5)

Table 1: Accuracy on low and high imageability words for the DistilBERT and BERT models. The results columns
are for the overall accuracy (noun and verb), the noun accuracy, and the verb accuracy, respectively. The ∆ is
the difference between that result and the corresponding result (in terms of imageability) of the T-T model. The
baseline is the model with pre-trained weights, but not fine-tuned on this dataset. For more details about the T and
TV abbreviations refer to the text.

4 Results and Analysis

The model is fed with those sentences from the
HowTo100M dataset that contains at least one word
from Bird’s dataset. For each sample, we only mask
one noun or verb at a time to make the analysis
simple. The experiments are done on two models
and in three different settings:

(1) only textual input to the text-only model (T-T),

(2) text and video input to text and video model
(TV-TV), and

(3) only text input to text and video model (TV-T).

The same settings are repeated for both DistilBERT
and BERT-base models.

Table 1 contains the main token-level results of
masked word prediction accuracy of the aforemen-
tioned three different scenarios on low and high
imageability nouns and verbs. The overall accu-
racy is simply a weighted sum of the noun and verb
accuracy. For DistilBERT, which is the smaller
of the two models, the results show an increase in
performance on high imageability when the model
is grounded in videos (TV-TV). For the same sce-
nario, but with low imageability words, we see
some decrease in performance, which might be
due to the model treating the video signal as noise.
The performance goes up when removing the video
from the input of the same model (TV-T). For high
imageability words in the same TV-T setting, the
results show some increase compared to the T-T
setting, which might be due to the model learning

information from the video input which is useful to
masked word prediction task, even in the absence
of the video signal.

On the other hand, for BERT, numbers are harder
to interpret. We still see some increase for high im-
ageability words, and more for verbs compared to
nouns, but we see more or less the same amount
of increase for low imageability words. It is hard
to say why this is happening only for the BERT
model, but one reason might be that the model re-
ceives more learning signals during training when
the sequences are longer (TV), hence the higher
number of masked tokens. Removing the video in-
put from the input (TV-T) hurts the high imageabil-
ity words the most, which shows the dependence
of the model on the video signal. These results are
not consistent with the DistilBERT model.

One should bear in mind that the relative in-
crease in accuracy for high imageability words,
e.g., between T-T and TV-TV, is higher than for
low imageability ones, as the accuracy for low im-
ageability words is always considerably higher than
that of the high imageability ones. For example,
an increase of 1.4% in high imageability verb pre-
diction accuracy in the DistilBERT TV-TV model
is a 7.4% relative increase, while 1.0% for BERT
TV-TV low imageability verbs is only a 2.5%. One
should also consider the fact that low imageability
words have a much higher frequency in the data,
which means the model has seen them more often.
While the average imageability score in the Bird
dataset is around 460, the average token-based im-
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ageability score is around 360 for Howto100M and
some other datasets, including Violin (Liu et al.,
2020), and TVQA subtitles (Lei et al., 2018).

The differences between different models’ per-
formances are not large, however, considering the
size of the test set, they are quite significant. Addi-
tionally, a bootstrap test always shows a p-value of
smaller than 3.9e− 5, which indicates a very high
significance for all the results. We ran the bootstrap
test as described in Berg-Kirkpatrick et al. (2012):
a sample x(i) of the same size as the test set is
drawn with replacement for b = 106 times, and
p-value is calculated as s/b, where s is the number
of times where δ(x(i)) > 2δ(x) holds. δ is the
performance difference of systems A and B, and x
is the original test set.

Comparing DistilBERT T-T and TV-TV shows
that the words that benefit from the video signal
are predominantly highly imageable ones, e.g., add,
cook, plant, hair, bottom, turn, pour, house, remove,
and ground, while low imageability words, such
as see, want, go, way, take, and like, see a reduc-
tion in prediction accuracy. Go is a special verb
in the sense that it typically appears as an auxil-
iary verb to indicate the future tense, which is low
in imageability. When removing the video signal
in BERT (TV-T), high imageability words see a
reduction in accuracy, while it is the opposite for
the low imageability ones. Interestingly, the top
30 words that benefit the most from the video sig-
nal in DistilBERT (TV-TV) have a 63% overlap
with the ones that see the most reduction when re-
moving the signal in BERT (TV-T). BERT (T-T)
is already good at predicting the words (high or
low in imageability), and does not benefit from the
video signal as DistilBERT. However, training it on
video signals apparently makes it more dependent
on them for predicting high imageability words, so
that removing the signal hurts the performance.

5 Related Work

Recent work on visual grounding has explored the
effects of joint modeling of paired textual and vi-
sual modalities, with a focus on neural models
based on the Transformer architecture (Frank et al.,
2021; Li et al., 2020b; Chen et al., 2020; Huang
et al., 2020; Lu et al., 2019). There is also some
work that goes deeper into the problem, such as
Sileo (2021), who studies the effects of visual
grounding on text processing abilities of a language
model using transferred and associative grounding,

and how they improve text-only baselines, such as
commonsense-related downstream tasks.

Another work is Hendricks and Nematzadeh
(2021), who study how text-image pre-trained trans-
former models perform in situations that require
“noun or verb understanding”. According to them,
such models perform poorly when evaluated on
verbs compared to other parts of speech. Ebert
and Pavlick (2020) experiment with an interactive
simulated kitchen environment and conclude that
certain machine learning models predict verbs less
accurately than nouns, given a scene. They are mo-
tivated by work in psychology showing that predict-
ing actions (verbs) is much harder than predicting
objects (nouns) for people, given a video scene and
the linguistic context of the word (Gillette et al.,
1999).

In this work, we mainly followed VideoBERT
(Sun et al., 2019), but there are other methods of
integrating text and video as well. One other work
is HERO (Li et al., 2020a), which does not use
discretized video features, but continuous features
with a regression loss. One other interesting work
is ClipBERT (Lei et al., 2021), which tries to uti-
lize sparse sampling to use fewer video frames to
improve the text-video downstream tasks. There
are also some work on joint representation of text
and video, such as ActBERT (Zhu and Yang, 2020)
and MIL-NCE (Miech et al., 2020).

6 Conclusion and Future Work

Although it is hard to draw strong conclusions
based on these results, it might be that smaller mod-
els benefit more from video grounding than larger
ones in the task of masked token prediction. The
results are in line with the recent work on image
grounding (Iki and Aizawa, 2021; Li et al., 2021),
which suggests that the visual input might not be
exploited by the model to the fullest. While the
results are not strongly indicative, these models
are relatively small and training data size is also
minimal. The data size is chosen based on the re-
sults in Sun et al. (2019), who show that this much
data should be enough to see some improvement.
Increasing the data and model size could be a direc-
tion for future work. Another interesting research
question that was not addressed in this paper is
whether we really need to ground in videos for the
model to gain the relevant knowledge, or can get
the same results by using images or sampled key
frame(s).
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