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Abstract
Grammatical Error Correction systems are typically evaluated overall, without taking into consideration performance on
individual error types because system output is not annotated with respect to error type. We introduce a tool that automatically
classifies errors in Russian learner texts. The tool takes an edit pair consisting of the original token(s) and the corresponding
replacement and provides a grammatical error category. Manual evaluation of the output reveals that in more than 93% of
cases the error categories are judged as correct or acceptable. We apply the tool to carry out a fine-grained evaluation on the
performance of two error correction systems for Russian.
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1. Introduction
In the field of Grammatical Error Correction (GEC),
similarly to Machine Translation, evaluation is per-
formed by first producing edits (token deletions, in-
sertions, and replacements) needed to transform the
source sentence into its corrected counterpart. This is
done by aligning the two sentences. A gold edit is an
edit between a source sentence and its reference, i.e. a
corrected version produced by a human annotator. A
proposed (system) edit is an edit between a source sen-
tence and the corrected version proposed by the auto-
matic system, or system hypothesis. A correct edit is
an edit in the intersection of gold and proposed edits.
Below we show a sample (source, reference) pair, a
possible alignment, and the resulting gold edits: “re-
allistic” → “realistic”, “a” → ∅), and “are” → “were”
.

• Source: The settings are very reallistic and the
actors had a great performance .

• Ref.: The settings were very realistic and the ac-
tors had great performance .

When annotating and correcting learner data, annota-
tors can also be asked to categorize the resulting gold
edits. For the example above, the edits would be clas-
sified as verb tense, spelling, and missing determiner.
Classifying system edits generated by neural machine
translation frameworks that are being used today is not
trivial, as these systems are not restricted in the type
of edits that can be made (Susanto et al., 2014; Yuan
and Briscoe, 2016; Hoang et al., 2016; ?; Junczys-
Dowmunt and Grundkiewicz, 2016; Mizumoto and
Matsumoto, 2016; Jianshu et al., 2017; Chollampatt
and Ng, 2018).
As the system edits are not labeled for linguistic type, it
is not possible to perform type-based evaluation. Type-
based evaluation would be extremely useful, as it could
help provide directions for making further progress in

system development by allowing one to focus on and
improve performance on specific error types. Further-
more, the resulting error categories can be used in
language learning applications, to provide educational
feedback. Finally, automatic type classification allows
for a standartization of multiple GEC datasets (Bryant
et al., 2017). For instance, various GEC corpora in
English (e.g. FCE (Yannakoudakis et al., 2011) and
CoNLL (Ng et al., 2014)) have different error classifi-
cation schemas, which can be unified using automatic
error typing.

Recently, Bryant et al. (2017) introduced ERRANT, an
error annotation toolkit for English, designed to extract
edits from a pair of the original and corrected sentences
and classify these according to a rule-based framework.
Grammatical error types are assigned based on rules
that rely on the part-of-speech (POS) of original and
corrected token(s), as opposed to manually designed
error categories. A key advantage of a rule-based ap-
proach over a canonical automatic one of training a
classifier is that this approach is not tied to a specific er-
ror classification schema, which can vary significantly
among datasets in the same language (Bryant et al.,
2017). ERRANT is widely used for fine-grained evalu-
ation and error analysis in English GEC (Bryant et al.,
2019).

Our approach is inspired by ERRANT and adapted to
the specific challenges of a language with rich mor-
phology, such as Russian. We develop a rule-based
classification framework, which uses POS and morpho-
logical information to classify edits. Manual evaluation
of the resulting edits with 2 raters and on 2 learner cor-
pora shows that the edits are judged as correct or ac-
ceptable on average 93.5% of the time. We use the
tool to perform fine-grained evaluation of two GEC
systems using two learner corpora. Type-based eval-
uation allows us to identify performance differences
between the two models, as well as to determine the
sets of “easy” and “challenging” errors for the cur-
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Corpus Total Incorr. Error
words words rate (%)

RULEC (Foreign) 164,071 11,343 6.9
RULEC (Herit.) 42,187 1,705 4.0
RU-Lang8 (dev) 23,138 3,605 15.6
RU-Lang8 (test) 31,603 3,558 11.3

Table 1: Error rates in RULEC (foreign and heritage
speakers shown separately) and in RU-Lang8. Error
rates refer to the percentage of tokens that have been
modified.

rent systems. We show, in particular, that most of the
learner errors, with the exception of spelling mistakes
and select morpho-syntactic errors, remain challeng-
ing. Overall, errors that require major changes that
go beyond character-level modifications remain unre-
solved. The tool will be made available for research.

2. Automatic Error Typing
2.1. Learner datasets
We perform experiments using two datasets of Russian
learner data manually corrected for errors: the RULEC-
GEC corpus (Rozovskaya and Roth, 2019) (henceforth
RULEC) and another dataset of Russian learner writ-
ing that has been recently collected from the online
language learning platform Lang-8 (Mizumoto et al.,
2011) and annotated by native speakers. We refer
to this dataset as RU-Lang8 (Trinh and Rozovskaya,
2021).
RU-Lang8 is collected from the Lang-8 website and
contains data from learners of a variety of foreign lan-
guages. The size of the Russian subcorpus is 633,000
tokens. A subset of that (54,000 tokens) has been man-
ually corrected by expert annotators and split into de-
velopment and test. The RU-Lang8 corpus differs from
RULEC: the latter consists of essays written on a Uni-
versity setting in a controlled environment, while the
Lang8 data was collected online; the majority of texts
are short paragraphs or questions posed by learners.
To compare to RULEC, we show in Table 1 the error
rates, i.e. the percentage of the erroneous tokens in
the data. RU-Lang8 data has significantly higher error
rates than both foreign and heritage parts of RULEC
(Table 1). We attribute this to the overall higher profi-
ciency level of the RULEC corpus writers.

2.2. Automatic edit extraction
Before the edits can be categorized, they need to be ex-
tracted using pairs of original and corrected sentences.
This is essentially an alignment problem, where the
start and end position of each edit need to be identified.
Table 2 shows a pair of original and corrected sentence
and a sample alignment that includes three edits: (1)
merging the first two tokens всё таки → всё-таки, (2)
merging tokens 4 and 5 не плохо → неплохо and (3)
inserting missing preposition ∅ → на. We note that this

Всё таки он не плохо играет скрипке
Всё-таки он неплохо играет на скрипке
Nevertheless he not badly plays on the violin

Table 2: Sample alignment between original and cor-
rected sentence. The source and the target token(s) in
each edit are shown in red and blue, respectively.

Dataset Method Edit Extraction
P R F1

RULEC Lev. 88.0 85.9 87.0
DL-Rules 91.0 88.1 89.5

RU-Lang8 Lev. 82.8 80.1 81.4
DL-Rules 91.4 86.1 88.7

Table 3: Performance of different edit extraction
methods. Lev stands for Levenshtein distance; DL-
Rules stands for Damerau-Levenshtein distance and
linguistically-motivated rules.

is not a unique alignment. For example, inserting the
missing preposition can be represented as скрипке →
на скрипке.
In the humanly-corrected data, edit boundaries are
typically already known, however, for automatically-
corrected data this is not the case. Thus, automatic
edit extraction is necessary to identify boundaries of
the proposed edits.1

Several attempts have been made at automatic edit ex-
traction. Swanson and Yamangil (2012) used Leven-
shtein distance, but it does not align multi-token ed-
its, i.e. edits where there is more than one token on
either side. Felice et al. (2016) proposed a rule-
based linguistically-motivated alignment algorithm. It
includes both generic and English-specific rules com-
bined with the Damerau-Levenshtein (DL) algorithm
and showed the effectiveness of the approach compared
to Levenshtein distance.2

We evaluate the rule-based strategy (excluding rules
that are English-specific) and the Levenshtein distance.
We compare the quality of the automatically-extracted
edits against the gold humanly-generated edits in Ta-
ble 3. Surprisingly, the Levenshtein distance per-
forms reasonably well on the Russian datasets, ob-
taining F-scores of 81-87% on the RU-Lang8 and
RULEC datasets, respectively (on the English datasets
it achieved and an F-score of 60%). The rule-based
strategy is better on RULEC by 2 points and is a 7-
point improvement on RU-Lang8.
Overall, results on edit extraction on Russian are
slightly better than on English. This may be due to
the fact that single-token edits account for a higher per-
centage of Russian edits (91.4% in RULEC and 93.8%

1Automatic alignment may also desirable for humanly-
corrected data to ensure uniformity across learner
datasets (Felice et al., 2016)

2DL algorithm, unlike Levenshtein, is able to handle word
order (transposition) errors.
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(1) Determine the original token(s) (O) and the corrected token(s) (C). Check whether O and C are in the
dictionary.
(2) If O is not in the dictionary, assign category Spelling.
(3) Deletions and Insertions: A single-token insertion or deletion is categorized based on the token’s POS.
Exceptions are nouns, verbs, and adjectives that are assigned the category Insert or Delete. Insertion or
deletion of a punctuation symbol (,.-?!) is treated as Punctuation error.
(4) Replacements
(a) Replacing one punctuation symbol with another is Punctuation category.
(b) If C is not in the dictionary, the error category is based on POS tag of the token, e.g. NO/AO/VO (Noun
Other). Note that other POS categories are closed-class and thus words that are not in the dictionary can
only be a noun, verb, or adjective/adverb.
(c) Determine POS tags of the O and C tokens. If one of the tokens has more than one POS tags select those
that match. If POS tags do not match, the error category is either Lexical or Morphology (see below).
(d) If POS categories match but base words are different, error category is Lexical or Morphology (see
below) for N, V, and A. All other words are assigned error type based on POS tag.
(e) Distinguish between Morphology and Lexical errors: different POS tags or different base forms for A,
N, or V. Compute the length of the longest common prefix (or suffiex) in O and C. If its greater than or
equal to the half of the O or C (whichever is less), the error type is Morphology. The intuition here is the
stem word is most likely the same, and the error involves incorrect affixation (e.g. ).
(f) For O and C that share the same POS tag and base form, error type is assigned based on the mismatch
between linguistic categories within the specific POS tag. For example, if both O and C are nouns, the
values of the categories gender, case, and number are compared. If the values for number are different, for
instance, the error category assigned is NN. Multiple categories are assigned if more than one category does
not match.
(g) Verb aspect errors: In addition to category mismatch as in (f), the aspectual value of the verb is deter-
mined based on a list of verb that lists all pairs of corresponding verbs (perfective/imperfective). This is
needed since the morphological analysis maps verbs that share the same stem but different aspectual forms
to different base forms. Using the aspect list allows us to identify pairs of verbs that, even though they do
not share the same base form, they differ only in the aspect category and thus we classify these as Aspect
errors.
(h) Verb voice errors: These are difficult to identify as these are not mapped to the same base form. We thus
check for the specific endings that signal the passive (reflexive) verbs (собрать (“get something ready”)→
собрать-ся (“get oneself ready”). The ending ся signals reflexive form.

Table 4: Error classification rules. O stands for original token, and C stands for corrected token.

in RU-Lang8), while in English, these account for 71-
81%. A lot of multi-token edits in English are phrasal
verbs, verbs with auxiliaries, and missing possessive
markers on nouns. These categories are typically ex-
pressed in Russian via morphological markers. In the
remainder of the paper, we use the DL-rules method of
edit extraction.

2.3. Automatic type prediction
Error type classification in English relies on the POS
information of the edit tokens (Bryant et al., 2017).
Since Russian is a morphologically-rich language, we
rely on the grammatical categories within each major
POS (V(erb), N(oun), A(djective)). This approach fol-
lows closely the error categories adopted for the man-
ual annotation in Rozovskaya and Roth (2019).

Overview of the rules The complete description of
rules is presented in Table 4. The pseudocode is pre-
sented in Appendix Algorithm 1. We adhere to the
morphological properties within each major POS cat-
egory (A, N, V); otherwise the POS tag is used to

assign error type (preposition, pronoun, adverb, etc.).
The original and corrected tokens are pre-processed
with a morphological analyzer (Sorokin, 2017). Given
a word token, the analyzer produces the token’s base
form and generates all possible morphological analy-
ses. Each morphological analysis consists of a con-
catenation of all the relevant grammatical categories.
For nouns and adjectives, the categories are gender
(masculine/feminine/neuter), number (singular/plural),
and declension (6 cases). For verbs, the categories
include aspect (perfective/imperfective), voice (ac-
tive/reflexive), number (singular/plural), gender (mas-
culine/feminine/neuter), person (1st, 2nd, 3rd), tense
(past/present/future), voice (active/reflexive), and may
include additional categories, such as gerund or partici-
ple.3 Many Russian words do not have a unique analy-
sis (we discuss this further below).
Given the list of grammatical properties for the source

3Participles behave like adjectives in Russian and are
specified for the same set of categories. We treat them as
adjectives.
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Error type RULEC RU-Lang8
Gold count Rel. Freq. Gold count Rel. freq.

Spelling 965 18.3 739 21.8
Lex. choice 819 15.5 497 14.8
Punc. 592 11.2 277 8.2
Prep. 333 6.3 236 7.0
Replace 381 7.2 185 5.5
Insert 252 4.8 144 4.3
Delete 94 1.8 117 3.5
Adv. 78 1.5 90 2.7
Conj. 77 1.5 78 2.3
Part. 56 1.1 36 1.1
Morph. 110 2.1 30 0.9
Noun case 339 6.4 217 6.4
Noun case/Noun number 423 8.1 144 4.3
Noun number 29 0.6 14 0.4
Noun other 13 0.3 - -
Noun (all) 804 15.2 382 11.3
Verb aspect 50 1.0 82 2.4
Verb other 68 1.3 75 2.2
Verb agreement 134 2.5 73 2.2
Verb tense 12 0.2 16 0.5
Verb voice 45 0.9 12 0.4
Verb (all) 324 6.1 264 7.8
Adj. case 101 1.9 62 1.8
Adj. gender 69 1.3 70 2.1
Adj. other 128 2.4 83 2.5
Adj. number 55 1.0 49 1.4
Adj. (all) 370 7.0 275 8.1

Table 5: List of automatic error types and their distribution in the RULEC and RU-Lang8 corpora.

and the target tokens, the error category is determined
based on the property that has different values in the
source and target tokens. For example, given an edit
that involves two nouns that share the same base form,
a noun case error is assigned if the number and gender
properties match, but the case values do not.
Several error types require additional checks – mor-
phology, lexical choice, and spelling. If a source token
is not in the dictionary4 we consider the edit to be a
spelling mistake. Insertions and deletions that involve
open-class words (N, V, A) are marked as Insert and
Delete, respectively. Otherwise, an inserted or deleted
token is assigned the error type based on its POS tag.
Lexical change errors involve single-token edits that do
not share a stem, while Replace errors are mistakes that
involve multi-token replacements.
Challenges specific to Russian: Morphology errors
Word morphology errors include edits where the source
and the target token share the same stem but incorrect
word formation. Some of the mistakes in this category
result in words that are not valid Russian words (due
to an incorrect word formation suffix), and, since these

4We use a large native corpus of Russian (250M tokens
collected over the web (Borisov and Galinskaya, 2014) to
build a dictionary of valid Russian words.

are not found in the dictionary, can be confused with
spelling mistakes (путешеств-овая → путешеств-уя,
“while travelling” where an incorrect suffix is used re-
sulting in an invalid word.). We view such errors sep-
arately from spelling errors. Some morphology errors
involve confusing valid words that share the same stem
but differ in morphology (e.g. практич-еский “prac-
tic”, практич-ный “practical”).5 Identifying morphol-
ogy errors is difficult overall since the morphological
analyzer does not map such edits to the same base form.
We use an approach of identifying the longest com-
mon subsequence between the source and the target,
which allows us to catch some of these errors. Nev-
ertheless, distinguishing between morphological errors
and spelling errors is challenging when the source to-
ken is not a valid word.
Challenges specific to Russian: Noun number and
case errors As mentioned above, some Russian surface
forms have multiple analyses. A notable case is nouns:
for some nouns, the singular genitive form, the plu-
ral nominative, and the plural accusative forms are the

5Morphology errors also occur in English, but in Rus-
sian, arguably, these are more common and challenging due
to more options of morphological formation.
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Rater RULEC RU-Lang8
Good Accept. Bad Good Accept. Bad

1 70 25 5 88 8 4
2 63 25 12 83 12 5

Table 6: Manual evaluation of the automatically as-
signed error categories by each rater and each dataset
on a set of 100 edits, randomly selected.

Model RULEC RU-Lang8
P R F0.5 P R F0.5

CNN 55.8 26.6 45.7 57.9 26.8 47.0
Transf. 63.3 27.5 50.2 55.3 28.5 46.5

Table 7: Results on the test of the models trained on
learner and synthetic data. Best result for each test set
is in bold.

same.6 This ambiguity can be resolved in most cases by
considering sentential context, however, we only look
at token edits in isolation. Such cases are problematic,
as, depending on the analysis chosen, a different mis-
match in the grammatical category between the source
and the target tokens will be identified (either number
or case). For such edits, we predict both noun case and
noun number error categories. A manual evaluation of
31 ambiguous cases shows that 64.5% of these are er-
rors in case, while 22.6% are errors in noun number,
and 12.9% have errors in both number and case.

Manual evaluation of automatic error typing We
perform a manual evaluation of the rule-based classi-
fier, following the approach in Bryant et al. (2017)
used to evaluate the performance of ERRANT. 100 ran-
domly chosen edits from gold reference files are man-
ually evaluated by two independent native annotators
as “Good”, “Acceptable”, or “Bad”. “Good” means
the chosen error type was the most appropriate for the
given edit; “Acceptable” means that the chosen type
was appropriate but not the optimum, and “Bad” means
not appropriate.
The results of the evaluation are shown in Table 6. In
all cases, with the exception of RU-Lang8 and rater 2,
at least 95% of the predicted error types were judged
as acceptable. These results are comparable to those re-
ported for English. However, note that, unlike with ER-
RANT, our evaluation excludes trivial error categories,
such as Punctuation, Insertion, and Deletion errors. A
complete list of the error categories and statistics on the
two learner datasets are shown in Table 5.

3. Type-Based Evaluation
We now apply the automatic error classification to the
outputs of two GEC models applied two learner cor-
pora: RULEC and RU-Lang8. The models that make
use of state-of-the-art techniques: a Convolutional

6This is one common ambiguity but is not the only one.

Encoder-Decoder Neural Network (CNN) (Chollam-
patt and Ng, 2018) and a Transformer model (Naplava
and Straka, 2019). We train the CNN model using
the same hyperparameter values. The Transformer
achieved the highest F-score on the RULEC corpus in
the literature.
Both of the models use the training and dev portions of
RULEC as learner data, and similar amounts of native
data with synthetic errors. Overall performance of the
two models on each of the two benchmark corpora is
shown in Table 7. Observe that the transformer model
outperforms CNN on RULEC by almost 5 points, how-
ever, on the RU-Lang8 corpus the two models perform
similarly.
We show type-based performance of the models on
RULEC and RU-Lang8 in Tables 8 and 9, respec-
tively. For both datasets, highest results are achieved
on spelling mistakes (F-scores between 60% and 70%).
This is followed by errors related to grammar on nouns,
verbs, and adjectives (F-scores of 40-60%). The Trans-
former model also does well on preposition errors,
while the CNN model performs well on punctuation
mistakes.
Regarding performance differences between the mod-
els, the Transformer does better on RULEC in almost
all error categories, with the exception of punctuation.
However, on RU-Lang8, both models perform simi-
larly on errors related to nouns, verbs, and adjectives,
with the CNN model being slightly ahead, which sug-
gests that the Transformer may be overfitting towards
RULEC more strongly than the CNN model. Finally,
the most challenging error categories for both models
are lexical choice, replacement,7 and insertion errors.
To summarize, the type-based analysis indicates that
the models currently have difficulty correcting mistakes
that involve major changes that go beyond character-
level modifications.

4. Conclusion
We describe a tool for automatic classification of
learner errors in Russian. The classification is based
on POS (similar to English) but also incorporates
additional constraints specific to Russian. We be-
lieve this tool can be easily modified to fit another
(morphologically-rich) language. The tool has been
evaluated on two Russian learner datasets with en-
couraging results. Using the tool, we have also con-
ducted type-based evaluation of two state-of-the-art
GEC systems. Type-based evaluation can assist in
making progress on developing robust GEC systems.
In particular, we showed that beyond spelling mistakes
and select grammar errors that require character-level
modifications, current systems do not do well on ma-
jor learner misuse that requires more global lexical
changes. This tool can also be used to inform language
learners and provide feedback with explanations.

7Replacements refer to multi-token lexical changes.
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Error type CNN Transformer
P R F0.5 P R F0.5

Spelling 66.2 53.9 63.3 75.93 63.73 73.13
Lex. choice 46.3 3.0 12.1 67.07 13.43 37.29
Punc. 54.8 23.3 43.1 42.71 6.93 21.01
Replace 0.00 0.00 0.00 2.30 1.05 1.86
Prep. 25.2 8.1 17.7 70.25 25.53 52.02
Morph. 20.0 1.8 6.7 51.61 14.55 34.19
Insert 0.0 0.0 0.0 17.39 6.35 12.90
Delete 75.0 3.2 13.6 38.24 13.83 28.26
Noun (all) 61.1 38.4 54.6 72.0 36.4 60.2
Verb (all) 54.5 20.4 40.8 71.5 38.0 60.8
Adj (all) 50.0 21.6 39.6 64.1 29.5 51.9

Table 8: Evaluation by error type on the RULEC corpus.

Error type CNN Transformer
P R F0.5 P R F0.5

Spelling 66.9 45.8 61.3 70.3 63.3 68.8
Lex. choice 38.8 3.8 13.7 50.00 13.68 32.7
Punc. 67.1 39.0 58.6 44.4 5.8 19.0
Prep. 49.2 14.0 32.7 76.2 20.3 49.2
Replace 0.0 0.0 0.0 9.6 10.3 9.7
Morph. 0.0 0.0 0.0 50.0 16.7 35.7
Insert 25.0 2.1 7.8 12.2 6.2 10.2
Delete 76.5 11.1 35.1 39.2 17.1 31.1
Noun (all) 69.6 41.9 61.4 70.5 35.1 58.7
Verb (all) 54.8 19.3 40.1 49.1 21.2 38.9
Adj. (all) 74.8 33.5 60.0 66.4 34.5 56.1

Table 9: Evaluation by error type on the RU-Lang8 corpus.
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Algorithm 1
Error Type Classification Algorithm

Input: Source token(s) s, target token(s) t, baseform dictionary BaseD containing all basic wordforms and their POS tags as keys, and a list of all possible
morphological analyses and corresponding wordforms; wordform dictionary WordD containing a morphological form as key and a list of possible analyses
with corresponding POS tag as values; list of verb aspect pairs AspectD listing perfective/imperfective verb pairs; list of punctuation symbols PUNC
Output: error type //Set list of grammatical categories
gram_cats=[’case’,’number’,’gender’,’tense’,’aspect’,’voice’,’form’,’finite’]
//Handle split and merge errors
if t equals s.replace(’ ’,”) or s equals t.replace(’ ’,”) then

return Spelling
end if
//If source or target contain more than one token, set error to Replace
if len(s.split())>1 or len(t.split())>1 then

return Replace
end if
//Punctuation errors
if s in PUNC or t in PUNC then

return Punctuation
end if
//Spelling errors if source word not in dictionary
if s not in WordD then

return Spelling
end if
//Missing token errors
if s is empty then

Initialize POS(target)← None
POS(target) = WordD[t] if t in WordD
if POS(target) in {Adj,Noun,Verb} then

return Insert
else

return POS(target)
end if

end if
//Extraneous token errors
if t is empty then

Initialize POS(source)← None
POS(source) = WordD[s] if s in WordD
if POS(source) in {Adj,Noun,Verb} then

return Delete
else

return POS(source)
end if

end if
//Get list of all baseforms and their corresponding POS tags for source token
Initialize pos_list(source)← None
Initialize baseform_list(source)← None
pos_list(source) = WordD[s].postags()
baseform_list(source) = WordD[s].baseforms()
//Handle errors where target word not in dictionary
if t not in WordD then

POS(source) = WordD[s]
if POS(source) in {Adj,Noun,Verb} then

return POS(source)+′ : O′

else
return POS(source)

end if
end if
//Get list of all baseforms and their corresponding POS tags for target token
Initialize pos_list(target)← None
Initialize baseform_list(target)← None
pos_list(target) = WordD[t].postags()
baseform_list(target) = WordD[t].baseforms()
//Find common POS of source and target tokens
Initialize pos← None
Initialize baseform_t← None
Initialize baseform_s← None
for pos pos_t in pos_list(target) do

if pos_t in pos_list(source) then
pos=pos_t //Set baseforms of source and target tokens based on the common POS
base(s)=WDict[s].getbase(pos)
base(t)=WDict[t].getbase(pos)

end if
end for
//If source and target do not have the same POS, error is either M or L
//Check if s and t share a common prefix or suffix that is at least half of min(len(s),len(t))+1
if pos equals None then

Lcom = 1 +
min(len(s),len(t)

2
if Lcom≥ 4 and (s[: Lcom] equals t[: Lcom] or s[−Lcom :] equals t[−Lcom :] ) then

return M
else

return L
end if

end if
//If shared POS is not an Adj., Noun, or Verb
if pos not in {A,N,V} then

return pos
end if
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Algorithm 1
Error Type Classification Algorithm: Part II

Input: Source token(s) s, target token(s) t, baseform dictionary BaseD containing all basic wordforms and their POS tags as keys, and a list of all possible
morphological analyses and corresponding wordforms; wordform dictionary WordD containing a morphological form as key and a list of possible analyses
with corresponding POS tag as values; list of verb aspect pairs AspectD listing perfective/imperfective verb pairs; list of punctuation symbols PUNC
Output: error type
//Handle verb voice errors – confusing active and reflexive forms
if pos equals V then

for ending en in {ся,сь} do
if base(s)+en equals base(t) or base(s) equals base(t)+en then

return VV
end if

end for
end if
//Handle verb aspect errors using verb aspect table of perfective/imperfective verb pairs
if pos equals V then

if base(s) in DAspect and base(t) in DAspect[base(s)] then
return VA

end if
end if
//Source and target have same POS, different baseforms – check if it could be an M error //Check if s and t share a common prefix or suffix that is at least half
of min(len(s),len(t))+1
if base(s) not equals base (t) then

Lcom = 1 +
min(len(s),len(t)

2
if Lcom≥ 4 and (s[: Lcom] equals t[: Lcom] or s[−Lcom :] equals t[−Lcom :] ) then

return M
else

return L
end if

end if
//Get all morph. variants of baseform with chosen POS; note that here source and target share the same baseform and POS
morpho_variants=BaseD[pos+’:’+baseform(s)]
cat_values={}
for gr in gram_cats do

cat_values[gr]={}
cat_values[gr][0]=cat_values[gr][2]=”
cat_values[gr][1]=cat_values[gr][3]=0

end for
for var in morpho_variants do

word=var.word()
if word in {s,t} then

gram_cats_word=var.values()
//Example category is GENDER; example value is FEM
for c in gram_cats_word do

c_name=gram_cats_word.name()
c_val=gram_cats_word.value()
if c_name in gram_cats then

index=0
if word equals t then

index=2
end if
//Add parameter value for the corresponding (source or target) wordform
if c_val not in cat_values[c_name][index] then

cat_values[c_name][index]+=’:’+c_val
cat_values[c_name][index+1]+=1

end if
if pos equals ’V’ and c_val equals ’NFIN’ then

inf+=1
end if

end if
end for

end if
end for
//Handle errors where verb infinitival form is confused with tensed form
if inf equals 1 then

return VINF
end if
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Algorithm 1
Error Type Classification Algorithm: Part III

Input: Source token(s) s, target token(s) t, baseform dictionary BaseD containing all basic wordforms and their POS tags as keys, and a list of all possible
morphological analyses and corresponding wordforms; wordform dictionary WordD containing a morphological form as key and a list of possible analyses
with corresponding POS tag as values; list of verb aspect pairs AspectD listing perfective/imperfective verb pairs; list of punctuation symbols PUNC
Output: error type
//Compare values of grammatical categories for source and target, where POS is either adjective, noun, or verb; and set error category based on the category
where the values in source and target differ
cats_N = {’case’:’NC’,’num’:’NN’,’gen’:’NG’}
cats_V = {’aspect’:’VA’,’tense’:’VT’,’num’:’VNG’,’gen’:’VNG’,’per’:’VNG’,’voice’:’VV’,’other’:’VO’,’case’:’VO’}
cats_A = {’case’:’AC’,’num’:’AN’,’gen’:’AG’,’form’:’AO’}
error_type=”
for gr in cat_values do

if (pos equals N and gr in cats_N) or (pos equals A and gr in cats_A) or (pos equals V and gr in cats_V) then
if cats_values[gr][1]*cats_values[gr][3] greater than 0 then

if pos equals N then
diff_val=cats_Ngr

else if pos equals A then
diff_val=cats_Agr

else if pos equals V then
diff_val=cats_Vgr

end if
if diff_val not in error_type then

error_type+=diff_val+’,’
end if
values=cat_values[gr][0].split(’:’) //Check if source and target wordforms share same parameter value
for val in values do

if (val not equal ”) and (val in cat_values[gr][2]) then
cat_values[gr][1]=0
Break

end if
end for
//If source and target wordforms do not share the value for given parameter, set error type to this parameter
if cat_values[gr][1] not equal 0 then

if pos equals N then
diff_val=cats_Ngr

else if pos equals A then
diff_val=cats_Agr

else if pos equals V then
diff_val=cats_Vgr

end if
if diff_val not in error_type then

error_type+=diff_val+’,’
end if

end if
end if

end if
end for
if error_type equals ” then

error_type=pos+’:O’
end if
return error_type
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