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peter.lundberg@liu.se

∗∗Radiation Physics, and Department of Health, Medicine and Care,
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Abstract
In this paper, we compare the performance of two BERT-based text classifiers whose task is to classify patients (more
precisely, their medical histories) as having or not having implant(s) in their body. One classifier is a fully-supervised BERT
classifier. The other one is a semi-supervised GAN-BERT classifier. Both models are compared against a fully-supervised
SVM classifier. Since fully-supervised classification is expensive in terms of data annotation, with the experiments presented
in this paper, we investigate whether we can achieve a competitive performance with a semi-supervised classifier based only
on a small amount of annotated data. Results are promising and show that the semi-supervised classifier has a competitive
performance when compared with the fully-supervised classifier.
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1. Introduction
The paradigm shift in NLP (Natural Language Pro-
cessing) (Sun et al., 2021) based on large pre-trained
language models that can be fine-tuned to downstream
tasks has boosted the performance of many NLP tasks
when tested on traditional benchmarks (Min et al.,
2021).
In the experiments presented in this paper, we investi-
gate a downstream task that is related to a real-world
need, where standard benchmarks are not available,
namely the automatic identification of patients who
bear implant(s) in their body.
Identifying the presence of implants in certain patients
is important for radiologists and other clinical profes-
sionals because some implants are not compatible with
MRI scanning. The current process to ascertain the
presence of implants in a patient is manual (Kihlberg
and Lundberg, 2019), slow and error prone, especially
if patients are elderly and might have forgotten about
implants they had when they were younger. Addition-
ally, even if implants are removed, parts (like leads)

might remain in the body and cause damage (burns or
scorches) to the patient during the MRI scanning.

The core idea of these experiments is then to classify
implant-bearing patients on the basis of their medical
histories. We rely on the following assumption: if pa-
tients underwent an implant operation, certainly this in-
formation is stored in patients’ medical records. By
sieving through medical records, we circumvent the
risk of overlooking crucial clinical information that are
useful for professional staff.

Therefore, rather than relying on patients’ memory, we
propose addressing this problem as a text classifica-
tion task that leverages on state-of-the-art NLP. One of
the most successful models of this generation is BERT
(Devlin et al., 2018). BERT has proved to achieve the
state of the art in full-supervised text classification in
different languages and in different genres (González-
Carvajal and Garrido-Merchán, 2020). Being fine-
tuned as a fully-supervised classifier, BERT classifica-
tion models normally need large amounts of labelled
data, a possibility that is often prohibitive in real-world
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scenarios.
This issue has already been pointed out and addressed
by Croce et al. (2020) who proposed GAN-BERT,
a semi-supervised model based on Semi-Supervised
General Adversarial Networks (SS-GANs) used to cut
down the need of annotated data without negatively af-
fecting the performance of the classifier. In their ex-
periments, GAN-BERT achieved promising results in
downstream tasks (namely, topic classification, ques-
tion classification, sentiment analysis and natural lan-
guage inference) evaluated on English benchmarks.
Inspired by these findings, we decided to start out our
own investigation by re-using the code provided with
semi-supervised GAN-BERT for the real-world task of
classifying implant-bearing patients via their medical
histories. Code reuse and experimental replication are
pillars of modern research. They support both research
and development at low cost, and are a must before ini-
tiating any ad-hoc modelling. Essentially, GAN-BERT
will be re-used for a different downstream task (i.e. the
classification of implant-bearing patients), on a differ-
ent language (i.e. Swedish) and on a different genre
(i.e. electronic medical records, EMRs).
The main research question we would like to answer
with the experiments presented in is paper is whether
and to what extent it is possible to achieve a compet-
itive performance with a semi-supervised GAN-BERT
model based only on a relatively small amount of anno-
tated EMRs written in Swedish for the classification of
patients bearing implant(s). The results are also com-
pared to an SVM baseline which puts the BERT re-
sults into a greater context in regards to the NLP field at
large. The answer to the research question will provide
the following contributions to the community: (1) the
re-use and evaluation of an existing semi-supervised
model (GAN-BERT) on text classification, i.e a down-
stream task where the model was not tested upon; (2)
the applicability of an existing model tailored on En-
glish to the Swedish language, i.e. a different language;
(3) the applicability of an existing model on a difficult
genre, namely EMRs. Results are indeed informative
and lead the way to future experiments that capitalize
on unlabelled data.1

2. Previous Work
We are not aware of any previous study on the clas-
sification of implant-bearing patients via their medical
histories. Computationally speaking, this task is treated
as a text classification problem and in this pre-study it
is a binary classification problem because we are going
to use only two classes, one positive class and one neg-
ative class, with unbalanced distribution (as explained
in Section 3).
BERT has proved to achieve the state of the art in text
classification in fully supervised settings (Sun et al.,

1The study was approved by the Swedish Ethical Re-
view Authority (Etikprövningsmyndigheten), authorization
nr.: 2021-00890.

2019; González-Carvajal and Garrido-Merchán, 2020).
It has also been shown, however, that although BERT
outperforms baselines in standard datasets with large
training sets, when the training sets are small, sim-
pler methods, like fastText (Joulin et al., 2017) com-
bined with domain-specific word embeddings perform
equally well or better than BERT (Edwards et al.,
2020).
In real-world scenarios, obtaining reliable annotated
data is expensive and time-consuming, even if the train-
ing set is supposed to be small. Conversely, the un-
labeled examples that represent a specific target task
are often abundant, but remain unutilized in fully-
supervised approaches. This is why in practical em-
pirical settings the semi-supervised approach would be
ideal.
A recent approach proposed by Croce et al. (2020)
implements a BERT-based semi-supervised approach
that capitalizes on unlabelled data. This approach has
been inspired by promising research in image process-
ing and has been successfully transferred to NLP. Such
a method is based on Semi-Supervised Generative Ad-
versarial Networks (SS-GANs) (Salimans et al., 2016a)
and has proved to be effective in several NLP tasks
when evaluated on standard benchmarks (Croce et al.,
2020; Owen, 2020; Breazzano et al., 2021; Zaharia et
al., 2021). Croce et al. (2020) showed that GAN-BERT
cuts off the need of labelled examples and their exper-
iments show that with fewer than 200 labelled exam-
ples results competitive with fully supervised settings
can be achieved.
As pointed out earlier, given GAN-BERT’s promising
performance on standard benchmarks, on a range of
tasks and on range of different languages, in the exper-
iments presented here we test GAN-BERT on a real-
world dataset (not an academic one) representing a dif-
ficult genre (EMRs), on a specific practical downstream
task (classification of patients with implants) and on an
untested language (Swedish).

3. Data, Datasets and Annotation
The data that we use in the following experiments is a
small random sample of Swedish EMRs from Region
Östergötland (Sweden). This random sample has been
extracted from a much larger corpus of EMRs coming
from four clinics, i.e. neurology, cardiology and two
different orthopedic departments. The corpus includes
EMRs covering a period of 5 years.
The random sample was built using EMRs belonging
to the cardiology and neurology clinics. In this sam-
ple, a patient is represented by a varying number of
EMRs. Some patients are represented only by a sin-
gle EMR, most of the patients are represented by sev-
eral EMRs. Essentially, the medical history of a patient
is made of one or multiple EMRs. Consequently, the
length of medical histories varies a lot across the pa-
tients represented in the sample. 184 medical histories
have a length between 4 and 64 words; 1309 medical
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histories have a length between 65 and 512 words; 328
medical histories have a word length between 513 and
1000; 1166 medical histories have a length greater than
1000 words.
The sample contains the medical histories of 2987 pa-
tients, out of which 1203 were labelled and 1784 are
used as unlabelled. The labelled random sample is di-
vided into two classes, namely the Y(es) class, repre-
senting medical histories of patients that have or have
had an implant, and the N(o) class, i.e. patients who
have no implants. The decision of having or not having
an implant is based on the mentions of terms indicative
of implants in the medical histories. If the medical his-
tory of a patient has no mentions of terms indicative of
implants, then we assume that the patient has no im-
plant. In previous studies on the same corpus of EMRs
(Jerdhaf et al., 2021), we identified a list of terms that
are indicative of implants. This list was evaluated by
two domain experts (MRI physicists), and in these ex-
periments we use only the terms where the two experts
have a 100% agreement in assessing that a term is in-
dicative of implants. These terms were used as key-
words to automatically tag patients’ medical histories.
The 1784 unlabelled medical histories can belong to
classes other than Y or N. For example, they can rep-
resent medical histories where the domain experts felt
”unsure” or disagreed on the final labels.
The labelled dataset is unbalanced, as unbalanced is
the number of patients wearing implants in real life,
since the majority of patients has NO implants. There-
fore, the class distribution of our dataset well represent
a real-life population. The distribution of the classes in
the dataset is the following: out of 1203 labelled med-
ical histories, 250 represent patients with implants (the
Y class), and 953 represent patients with NO implants
(N class).
Since the dataset contains information that can be
traced back to patients, staff and locations, it cannot
be released at present.

4. Methods: Swedish BERT

In this section we briefly describe the pre-trained
(Malmsten et al., 2020) and the fine-tuned Swedish
BERT (Jerdhaf et al., 2021), as well as the fully su-
pervised BERT classifier, the semi-supervised GAN-
BERT and an SVM classifier.

4.1. SVM: Traditional ML as Baseline

The baseline used for comparisons is a Support Vec-
tor Machine (SVM), a method that attempts to find
the maximum margin hyperplane between two cate-
gories (Joachims, 1998). The SVM classifier was im-
plemented using the scikit-learn toolkit (Buitinck et al.,
2013), using TF-IDF as a feature space for linear clas-
sification. The classifier’s hyperparameters were opti-
mized using a gridsearch algorithm.

4.2. Pre-Trained Model
The pre-trained BERT model used in these experiments
is the bert-base-swedish-cased released by the National
Library of Sweden (Malmsten et al., 2020)2. To pro-
vide a representative BERT model for the Swedish lan-
guage, the model was trained on approximately 15-20
gigabyte of text (200M sentences, 3000M tokens) from
a range of genres and text types including books, news,
and internet forums. The model was trained with the
same hyperparameters as first published by Google and
corresponded to the size of Google’s base version of
BERT with 12 so-called transformer blocks (number
of encoder layers), 768 hidden units, 12 attention heads
and 110 million parameters.
A BERT model has a predefined vocabulary. This vo-
cabulary is a set of words known to the model and it is
used to tokenize words. A token can in this case be a
common word, a common subpart of a word or a sin-
gle letter. Each object in the vocabulary of the model
has a known embedding. To use the model for finding
the embedding of a new word the model was used to
tokenize the word, which means that it would try to re-
build the word using as few tokens from the vocabulary
as possible. The pre-trained BERT model used in this
study had a vocabulary of 50325 words. Pre-trained
model hyperparameters are listed in Table 1.

Hyperparemeter Dimensions/Value

Dropout 0.1
Hidden Activation GELU
Hidden Size 768
Embedding Size 512
Attentional Heads 12
Hidden Layers 12
Forward Size 3072
Vocabulary Size 50325
Trainable Parameters 11 · 107

Table 1: Pre-training parameters

4.2.1. Fine-Tuning the Pre-Trained Model
In the first fine-tuning step, the decisions about how to
set parameters were made partly based on the original
BERT paper (Devlin et al., 2019), partly on previous
findings based on electronic health records notes (Li et
al., 2019), partly on the observation of our current data.
Hyperparameters used for fine-tuning in this study are
shown in Table 2. We relied on the Adam algorithm
with default values for its hyperparameters as indicated
by Kingma and Ba (2014). The pre-processed EMRs
and the pre-trained model were fed into a Python script.
For the first fine-tuning, the corpus was split into sen-
tences. The model was fine-tuned with MLM (Masked
Language Model), a technique which allows bidirec-
tional training. MLM consists in replacing 15% of the
words in each sequence with a [MASK] token before

2https://github.com/Kungbib/swedish-bert-models
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Hyperparameter Dimension/Value

Epochs 3
Batch Size 32
Block Size 64
Learning Rate 5e− 5

Table 2: Parameters used for fine-tuning

feeding word sequences into BERT. The model then
attempts to predict the original value of the masked
words, based on the context provided by the other, non-
masked, words in the sequence. The block size was set
to 64, which means that sequences with fewer than 64
tokens are padded to meet this length, and sequences
with more than 64 tokens are truncated. Actually, the
value of 64 is generous since according to our current
calculations the average sentence length in tokens is 12.

4.3. Further Fine-Tuning: Fully-Supervised
BERT Classifier

The fully-supervised BERT classifier leverages on the
fine-tuned model described above and it is further fine-
tuned as a BERT classifier (Sun et al., 2019). Our im-
plementations are based on Hugging Face libraries and
public code.
The BERT classifier makes use of the prepended [CLS]
token which acts as a representation of the sentence.
The [CLS] token is fed into an activation function and
based on the result, an optimizer further trains the
BERT model which results in the [CLS] token being
improved through repetition (training)3. The activation
function used in the classification is arbitrary, but the
default function used in Hugging Face’s classification
is a tanh (hyperbolic tangent) function layered between
two linear layers4, the first of which extracts the clas-
sification from the [CLS] token and the second layer
outputs the representation for training.
The classifier was trained on the labelled data described
in Section 3. The maximum allowed length (sequence
length) for a BERT model is 512 tokens. In the exper-
iments below we used both 512 tokens, but also 64 to-
kens to allow the comparison with GAN-BERT as im-
plemented on our computer. Fully-supervised BERT
was trained for 5 epochs with a batch size of 32 (see
Table 3.

4.4. GAN-BERT
Croce et al. (2020) further extends BERT fine-tuning
with a SS-GAN’s perspective. In the SS-GAN’s per-
spective (Salimans et al., 2016a), a discriminator is

3https://discuss.huggingface.co/t/
what-is-the-purpose-of-the-additional-
dense-layer-in-classification-heads/526

4https://github.com/
huggingface/transformers/blob/
09a2f40684f77e62d0fd8485fe9d2d610390453f/
src/transformers/modeling_bert.py#L476

Hyperparameter Value
Epochs 5
Batch size 32
Sequence len 512 and 64

Table 3: Hyperparameters used for BERT classifier

trained to distinguish fake examples artificially created
by a generator from the real examples. In SS-GAN, the
labelled examples are used to train the discriminator,
while both the unlabelled data and the fake examples
are used to improve data representation. Similarly, in
GAN-BERT (Croce et al., 2020), a generator produces
fake examples resembling the actual data distribution,
while BERT is used as a discriminator. This enables
semi-supervised learning since the generated samples
are labelled by the SS-GAN model (Salimans et al.,
2016b). Sagaciously, GAN-BERT exploits BERT’s po-
tential to produce accurate representations of input ex-
amples (in its role of discriminator) and leverages on
the unleashed power of unlabeled data material (via the
generator) to help in the generalization needed for the
final task.
The implementation of the GAN-BERT model used in
this paper is in PyTorch5. Our implementation was
trained with 10 epochs, a batch size of 64 and a se-
quence length of 64 tokens (see Table 4), although
BERT allows up to 512 tokens. The sequence length
was set to 64 tokens because GAN-BERT is computa-
tionally expensive for our current computing resources
(see Table 5).

Hyperparameter Value
Epochs 10
Batch size 64
Sequence len 64

Table 4: Hyperparameters used for the GAN-BERT
classifier

Label Description

CPU Intel Xeon - 12x(E5-2620 v3)
GPU NVIDIA Quadro M4000

[8GB(VRAM)|20GB(Shared)]
Clock Speed 2.40GHz
Memory (RAM) 40GB

Table 5: Details of computing resources.

5. Experiments
Seven experiments were set up in order to under-
stand the performance advantages and disadvantages of

5https://awesomeopensource.com/
project/crux82/ganbert-pytorch

https://discuss.huggingface.co/t/what-is-the-purpose-of-the-additional-dense-layer-in-classification-heads/526
https://discuss.huggingface.co/t/what-is-the-purpose-of-the-additional-dense-layer-in-classification-heads/526
https://discuss.huggingface.co/t/what-is-the-purpose-of-the-additional-dense-layer-in-classification-heads/526
https://github.com/huggingface/transformers/blob/09a2f40684f77e62d0fd8485fe9d2d610390453f/src/transformers/modeling_bert.py#L476
https://github.com/huggingface/transformers/blob/09a2f40684f77e62d0fd8485fe9d2d610390453f/src/transformers/modeling_bert.py#L476
https://github.com/huggingface/transformers/blob/09a2f40684f77e62d0fd8485fe9d2d610390453f/src/transformers/modeling_bert.py#L476
https://github.com/huggingface/transformers/blob/09a2f40684f77e62d0fd8485fe9d2d610390453f/src/transformers/modeling_bert.py#L476
https://awesomeopensource.com/project/crux82/ganbert-pytorch
https://awesomeopensource.com/project/crux82/ganbert-pytorch
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using semi-supervised GAN-BERT rather than fully-
supervised BERT. For fully-supervised BERT we used
both 512 and 64 tokens, and for GAN-BERT only 64
tokens for the reasons explained in Section 4.4. All the
experiments were gauged against the SVM baseline.
In Experiment 1, we compared the performance of
BERT and GAN-BERT on a training set of 903 in-
stances and a test set of 300 instances. In all models,
training set and test set are the same. This experiment
applies the traditional partition of the data of 70% for
training and 30% for testing. GAN-BERT relies also
on 1784 unlabelled instances.
In Experiments 2, 3 and 4, we compared the perfor-
mance of BERT and GAN-BERT on a small but in-
creasing size of the training set, namely 100, 200 and
300 instances, and a fixed test set of 300 instances.
In the three models, GAN-BERT relies on 1784 unla-
belled instances.
In Experiments 5, 6 and 7, we compared the perfor-
mance of BERT and GAN-BERT on a small but in-
creasing size of the training set, namely 100, 200 and
300 instances for training and a fixed test set of 300
instances for fully supervised BERT (the same as in
previous experiments). Conversely for GAN-BERT we
use large test sets of varying size. The challenge in
this set of experiments is for GAN-BERT, since it is
trained on small training sets but tested on large test
sets. As in previous experiments, GAN-BERT relies
on 1784 unlabelled instances. In this set of experi-
ments we use four types of data: 1) labelled data for
supervised training and testing; 2) de-labelled data for
semi-supervision; 3) re-labelled data for testing; 4) un-
labelled data for semi-supervision only.
By de-labelled, we refer to instances that have a label,
but their label is ignored during the semi-supervised
learning with GAN-BERT, so they get the status of un-
labelled data. However, since the de-labelled data have
a label, we use the re-labelled version (re-lab in Table
6) of the de-labelled data for testing. Essentially, the
labels of the de-labelled data are not seen during the
semi-supervised training. At testing time, we use the
ignored labels to assess the performance of the model
on the de-labelled instances. This validation technique
is normally used for external cluster validation, and
consists in comparing the results of a cluster analysis
to externally provided class labels to measure the ex-
tent to which cluster labels match externally supplied
class labels.
The rationale of this experimental setting is to under-
stand to what extent unlabelled/de-labelled data con-
tribute directly to the correct classification of classes
of the test set. We know that unlabelled data is used
by GAN-BERT to create data representation, but it is
not clear so far if there exists a direct relation between
the representation learned from unlabelled data and the
final classes of the test set. This is why the use of
de-labelled data could help us shed some light on this
point.

6. Results
Table 6 presents the results of the 7 experiments. Best
results are in bold and competitive results in italics.
We can observe that fully-supervised BERT achieves
the best results when trained with 512 tokens in a
traditional evaluation settings, i.e. 70% training vs
30% testing by reaching a weighted F1 of 0.97 (Exp
1). Fully-supervised BERT (512 tokens) performs well
also when the training set is as large as the test set with
a promising results of 0.93 (Exp. 4). Both BERT mod-
els outperforms the SVM baseline. However, fully-
supervised BERT does not perform well when trained
with 512 tokens on very small training sets, because
it achieves 0.15 and 0.10 weighted F1 when trained
on 100 and 200 instances respectively, and tested on
300 instances (Exp. 2 and Exp. 3). This is a poor
performance in comparison with the SVM baseline of
0.76 and 0.75. For some reasons, the performance is
slightly better when fully supervised BERT is trained
and tested in the same conditions but with 64 tokens
rather than 512. We speculate that it might be possible
that tokens between 65 to 512 are not representative of
the data, and therefore misguide the model into false
global contextuality. This in turn could hinder its per-
formance during the classification task. This specula-
tion however must be tested in future experiments.
GAN-BERT largely outperforms fully-supervised
BERT when trained on small training sets (100 and
200 instances) and tested on 300 instances using 64
tokens (experiments 2, 3 and 4). It achieves an exciting
0.67 (vs. 0.31) and 0.84 (vs. 0.33) in experiments 2
and 3. When trained on 300 instances (Exp.4), fully
supervised BERT’(64 token) soars to 0.85, while the
increase of GAN-BERT’s performance (i.e. 0.87) is
small when compared with that achieved in Exp. 3, but
it is still competitive. Only in Exp. 2, all BERT-based
models underperform the SVM baseline.
In Experiments 5, 6 and 7, no tangible benefits can
be observed when semi-supervised GAN-BERT mod-
els are trained with de-labelled data and tested on re-
labelled data. In all the three training configurations,
i.e. 100, 200 and 300 training instances, performance
is low, reaching respectively a weighted F1 of 0.24,
0.26 and 0.29, a score much lower than the SVM base-
line. When semi-supervised GAN-BERT models are
trained with unlabelled data (1784 instances) and tested
on large test sets, the performance goes slightly up to
0.34, 0.37 and 0.42.
Interestingly, when semi-supervised GAN-BERT mod-
els are trained with both unlabelled and de-labelled
data, results are definitely more encouraging, and reach
a weighted F1 of 0.44 (with 100 training instances
and 1103 testing instances), 0.55 (with 200 training in-
stances and 1003 testing instances), and 0.80 (with 300
training instances and 903 testing instances). It is in-
triguing to observe that performance of 0.80 (higher
than the SVM baseline) is achieved in very diffi-
cult conditions, where the proportions of training set
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(i.e. 30% training instances) and test set (70% test
instances) are the inverse of the proportions used in
Exp.1.

7. Discussion
The results presented in the previous section provide
answers to our research question, i.e. whether and to
what extent it is possible to achieve a competitive per-
formance with a semi-supervised GAN-BERT model
based only on a small amount of annotated EMRs writ-
ten in Swedish for the classification of patients bearing
implant(s). The answer is: yes, it is possible to achieve
competitive performances using GAN-BERT in some
of the scenarios that we have set up in our experiments.
The most promising results of GAN-BERT’s potential
are returned by experiments 3 and 4 on a fixed test set
of 300 instances. However, we find much more inspir-
ing the results achieved in experiment 7 where a small
training set of 300 instances can achieve an astonish-
ing performance of 0.80 when tested on a test set that
is 3 times larger than the training set. This means in
our opinion that the semi-supervised approach is prof-
itable and efficient in the difficult scenarios of real-
world tasks, where it is just impossible to label all the
data, especially if domain-specific.
GAN-BERT was able to achieve the highest score in
Exp. 3, and competitive results in Exp. 4. The fully-
supervised SVM baseline scores vary very little across
the 7 experiments, while fully-supervised BERT mod-
els vary from as low as 0.10 (Exp. 3) and as high has
0.97 (Exp. 1), depending on the amount of labelled
training instances.
It is also to be noticed that experiments based on de-
labelled instances only (i.e without the 1784 unlabelled
instances) and tested on re-labelled instances are ex-
tremely informative. They show that GAN-BERT is
not biassed by having seen the de-labelled data during
the semi-supervision phase: results on the re-labelled
test sets were so bad that we cannot surmize that the de-
labelled data have somehow unexpectedly positively
affected the performance. This interpretation is con-
firmed by the results achieved with unlabelled data: it
seems that it is the sheer size of the data that makes the
trick with semi-supervised GAN-BERT, not the labels.
This independence between the semi-supervision phase
and the test phase is evident in experiment 7 where
the performance with de-labelled data only (0.29) and
with unlabelled only (0.42) is much lower than the per-
formance of 0.80 with de-labelled and unlabelled data
added together. This is, we reckon, the most revealing
finding of our set of experiments because it indicates
that we can use as much de-labelled and unlabelled
data as possible during semi-supervision without fear-
ing that the actual performance is biassed or tweaked,
because it is the amount of instances that matters, noth-
ing else.
We can then conclude: 1) that GAN-BERT is suitable
for a real-world downstream task, such as the classifi-

cation of implant-bearing implants, 2) that it can prof-
itably be applied to the Swedish language, and finally
3) that it can make sense of a difficult genre, like EMRs.

8. Conclusion and Future Work
In this paper, we investigated whether and to what ex-
tent BERT-based semi-supervised text classification is
viable in real-world settings, where no standard bench-
marks are available for evaluation.
Results are promising and informative. It is indeed pos-
sible to create BERT-based semi-supervised classifica-
tion models based on small training sets that capitalize
on unlabelled and de-labelled data.
However, several challenges lie ahead for the improve-
ment of the approach. The first challenge is to find the
ideal size of the training set for a specific task: would
it be possible to find an automatic way to determine the
size of the best performing training set for a specific
downstream task thus overriding tedious empirical tries
with training sets of different sizes? Obviously, learn-
ing curves can help, but they do not tell the whole story
since they are based on a single training set.
Another challenge is to overcome the token limitation
(our experiments are based either on 512 tokens or 64
tokens). This restriction is unrealistic for the text types
we want to classify, i.e. medical histories whose length
varies from a few words up to thousands of words.
Several solutions have been proposed to safely apply
BERT to long texts – e.g. (Devlin, 2018; Fiok et al.,
2021; Adhikari et al., 2019) – and we will investigate
them all.
Many of the algorithms that have been proposed for
state-of-the-art NLP are computationally and environ-
mentally expensive. Thus, a further challenge is for us
to find the trade-off between the CO2 impact and the
hardware limitations with respect to the most advanced
NLP solutions, that are invariably too computationally
and environmentally demanding for real-world empiri-
cal settings, such a public hospitals.
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